Towards High-Repetition-Rate Fast Neutron Sources Using Novel Enabling Technologies
Abstract
:1. Introduction
2. Platform Setup
3. High-Repetition-Rate Cryogenic Deuterium Jet Target
Ion Beam Generation
4. Deuteron Beam Diagnostics
4.1. Thomson Parabola
4.2. Ion Imager
5. Neutron Generation in Pitcher–Catcher Configuration
5.1. Nuclear Reaction Channels
5.2. Converter Design
6. Neutron Beam Detection
6.1. Bubble Detectors
6.2. Neutron Time of Flight Detectors
7. Single-Shot Demonstration
8. Discussion and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perkins, L.J.; Logan, B.G.; Rosen, M.D.; Perry, M.D.; Diaz de la Rubia, T.; Ghoniem, N.M.; Ditmire, T.; Springer, P.T.; Wilks, S.C. The investigation of high intensity laser driven micro neutron sources for fusion materials research at high fluence. Nucl. Fusion 2000, 40, 1. [Google Scholar] [CrossRef]
- Higginson, D.P.; McNaney, J.M.; Swift, D.C.; Bartal, T.; Hey, D.S.; Kodama, R.; Le Pape, S.; Mackinnon, A.; Mariscal, D.; Nakamura, H.; et al. Laser generated neutron source for neutron resonance spectroscopy. Phys. Plasmas 2010, 17, 100701. [Google Scholar] [CrossRef]
- Noguere, G.; Cserpak, F.; Ingelbrecht, C.; Plompen, A.J.M.; Quetel, C.R.; Schillebeeckx, P. Non-destructive analysis of materials by neutron resonance transmission. Nucl. Instrum. Methods Phys. Res. Sect. A 2007, 575, 476. [Google Scholar] [CrossRef]
- Brown, D.R.; Gozani, T.; Loveman, R.; Bendahan, J.; Ryge, P.; Stevenson, J.; Liu, F.; Sivakumar, M. Application of pulsed fast neutrons analysis to cargo inspection. Nucl. Instrum. Methods Phys. Res. Sect. A 1994, 353, 684. [Google Scholar] [CrossRef]
- Gray, L.; Read, J. Treatment of cancer by fast neutrons. Nature 1943, 152, 53. [Google Scholar] [CrossRef]
- Melnichenko, Y.B.; Wignall, G.D. Small-angle neutron scattering in materials science: Recent practical applications. J. Appl. Phys. 2007, 102. [Google Scholar] [CrossRef]
- Chen, S.N.; Negoita, F.; Spohr, K.; d’Humières, E.; Pomerantz, I.; Fuchs, J. Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory. Matter Radiat. Extrem. 2019, 4, 054402. [Google Scholar] [CrossRef]
- Rebut, P.-H. ITER: The first experimental fusion reactor. Fusion Eng. Des. 1995, 30, 85–118. [Google Scholar] [CrossRef]
- Ikeda, K. ITER on the road to fusion energy. Nucl. Fusion 2009, 50, 014002. [Google Scholar] [CrossRef]
- Ciattaglia, S.; Federici, G.; Barucca, L.; Lampasi, A.; Minucci, S.; Moscato, I. The European DEMO fusion reactor: Design status and challenges from balance of plant point of view. In Proceedings of the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I CPS Europe), Milan, Italy, 6–9 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Reinders, L.J. Post-ITER: DEMO and Fusion Power Plants. In The Fairy Tale of Nuclear Fusion; Springer International Publishing: Cham, Switzerland, 2021; pp. 455–484. [Google Scholar] [CrossRef]
- Fusion Energy Science Advisory Committee (FESAC). Powering the Future: Fusion and Plasmas. 2020. Available online: https://science.osti.gov/-/media/fes/fesac/pdf/2020/202012/DRAFT_Fusion_and_Plasmas_Report_120420.pdf (accessed on 9 September 2021).
- Russell, G.J.; Gilmore, J.S.; Robinson, H.; Legate, G.L.; Bridge, A.; Sanchez, R.J.; Brewton, R.J.; Woods, R.; Hughes, H.G. LANSCE target system performance. In Advanced Neutron Sources; IOP Publishing Ltd: Bristol, UK, 1988; pp. 483–496. [Google Scholar]
- International Atomic Energy Agency (IAEA). Research Reactor Details - LENA, TRIGA II PAVIA. 2009. Available online: http://www-naweb.iaea.org/napc/physics/research_reactors/database/RR%20Data%20Base/datasets/report/Italy%20(Italian%20Republic)%20%20Research%20Reactor%20Details%20-%20LENA,%20TRIGA%20II%20PAVIA.htm (accessed on 8 October 2021).
- Comsan, M.N.H. Spallation Neutron Sources for Science and Technology. 2011. Available online: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/43/099/43099436.pdf (accessed on 8 October 2021).
- Roth, M.; Jung, D.; Falk, K.; Guler, N.; Deppert, O.; Devlin, M.; Favalli, A.; Fernandez, J.; Gautier, D.; Geissel, M.; et al. Bright Laser-Driven Neutron Source Based on the Relativistic Transparency of Solids. Phys. Rev. Lett. 2013, 110, 044802. [Google Scholar] [CrossRef]
- Pomerantz, I.; McCary, E.; Meadows, A.R.; Arefiev, A.; Bernstein, A.C.; Chester, C.; Cortez, J.; Donovan, M.E.; Dyer, G.; Gaul, E.W.; et al. Ultrashort Pulsed Neutron Source. Phys. Rev. Lett. 2014, 113, 184801. [Google Scholar] [CrossRef]
- Higginson, D.P.; Vassura, L.; Gugiu, M.M.; Antici, P.; Borghesi, M.; Brauckmann, S.; Diouf, C.; Green, A.; Palumbo, L.; Petrascu, H.; et al. Temporal Narrowing of Neutrons Produced by High-Intensity Short-Pulse Lasers. Phys. Rev. Lett. 2015, 115, 054802. [Google Scholar] [CrossRef]
- Herrmann, M.C. (Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551). Personal Communication, 2021. [Google Scholar]
- Kodama, R.; Norreys, P.A.; Mima, K.; Dangor, A.E.; Evans, R.G.; Fujita, H.; Kitagawa, Y.; Krushelnick, K.; Miyakoshi, T.; Miyanaga, N.; et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 2001, 412, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Betti, R. and Hurricane, O. Inertial-confinement fusion with lasers. Nat. Phys. 2016, 12, 435–448. [Google Scholar] [CrossRef]
- Radha, P.B.; Betti, R.; Boehly, T.R.; Delettrez, J.A.; Edgell, D.H.; Goncharov, V.N.; Igumenshchev, I.V.; Knauer, J.P.; Marozas, J.A.; Marshall, F.J.; et al. Inertial Confinement Fusion Using the OMEGA Laser System. IEEE Trans. Plasma Sci. 2011, 39, 1007–1014. [Google Scholar] [CrossRef]
- Glenzer, S.H.; MacGowan, B.J.; Michel, P.; Meezan, N.B.; Suter, L.J.; Dixit, S.N.; Kline, J.L.; Kyrala, G.A.; Bradley, D.K.; Callahan, D.A.; et al. Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies. Science 2010, 327, 1228–1231. [Google Scholar] [CrossRef]
- Disdier, L.; Garçonnet, J.-P.; Malka, G.; Miquel, J.-L. Fast Neutron Emission from a High-Energy Ion Beam Produced by a High-Intensity Subpicosecond Laser Pulse. Phys. Rev. Lett. 1999, 82, 1454–1457. [Google Scholar] [CrossRef]
- Ditmire, T.; Zweiback, J.; Yanovsky, V.P.; Cowan, T.E.; Hays, G.; Wharton, K.B. Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 1999, 398, 6727. [Google Scholar] [CrossRef]
- Hilscher, D.; Berndt, O.; Enke, M.; Jahnke, U.; Nickles, P.V.; Ruhl, H.; Sandner, W. Neutron energy spectra from the laser-induced D(d,n)3He reaction. Phys. Rev. E 2001, 64, 016414. [Google Scholar] [CrossRef]
- Youssef, A.; Kodama, R.; Habara, H.; Tanaka, K.A.; Sentoku, Y.; Tampo, M.; Toyama, Y. Broad-range neutron spectra identification in ultraintense laser interactions with carbon-deuterated plasma. Phys. Plasmas 2005, 12, 110703. [Google Scholar] [CrossRef]
- Lancaster, K.L.; Karsch, S.; Habara, H.; Beg, F.N.; Clark, E.L.; Freeman, R.; Key, M.H.; King, J.A.; Kodama, R.; Krushelnick, K.; et al. Characterization of 7Li(p,n)7Be neutron yields from laser produced ion beams for fast neutron radiography. Phys. Plasmas 2004, 11, 3404–3408. [Google Scholar] [CrossRef]
- Willingale, L.; Petrov, G.M.; Maksimchuk, A.; Davis, J.; Freeman, R.R.; Joglekar, A.S.; Matsuoka, T.; Murphy, C.D.; Ovchinnikov, V.M.; Thomas, A.G.R.; et al. Comparison of bulk and pitcher-catcher targets for laser-driven neutron production. Phys. Plasmas 2011, 18, 083106. [Google Scholar] [CrossRef]
- Favalli, A.; Guler, N.; Henzlova, D.; Croft, S.; Falk, K.; Gautier, D.C.; Ianakiev, K.D.; Iliev, M.; Palaniyappan, S.; Roth, M.; et al. Characterizing laser-plasma ion accelerators driving an intense neutron beam via nuclear signatures. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Spinka, T.M.; Haefner, C. High Average-Power Ultrafast Lasers. In Optics & Photonics News; Optica: Washington, DC, USA, 2017. [Google Scholar]
- Nakamura, K.; Mao, H.-S.; Gonsalves, A.J.; Vincenti, H.; Mittelberger, D.E.; Daniels, J.; Magana, A.; Toth, C.; Leemans, W.P. Diagnostics, Control and Performance Parameters for the BELLA High Repetition Rate Petawatt Class Laser. IEEE J. Quantum Electron. 2017, 53, 1–21. [Google Scholar] [CrossRef]
- Bayramian, A.; Bopp, R.; Borden, M.; Deri, B.; DesJardin, R.; Di Nicola, J.M.; Drouin, M.; Erlandson, A.; Fulkerson, S.; Jarboe, J.; et al. High energy, high average power, DPSSL system for next generation petawatt laser systems. In Proceedings of the 2016 Conference on Lasers and Electro-Optics, CLEO 2016, San Jose, CA, USA, 5–10 June 2016; pp. 3–4. [Google Scholar] [CrossRef]
- Curry, C.B.; Schoenwaelder, C.; Goede, S.; Kim, J.B.; Rehwald, M.; Treffert, F.; Zeil, K.; Glenzer, S.H.; Gauthier, M. Cryogenic Liquid Jets for High Repetition Rate Discovery Science. J. Vis. Exp. 2020, 159, e61130. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, J.; Antici, P.; d’Humières, E.; Lefebvre, E.; Borghesi, M.; Brambrink, E.; Cecchetti, C.A.; Kaluza, M.; Malka, V.; Manclossi, M.; et al. Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2005, 2, 48–54. [Google Scholar] [CrossRef]
- Zeil, K.; Kraft, S.D.; Bock, S.; Bussmann, M.; Cowan, T.E.; Kluge, T.; Metzkes, J.; Richter, T.; Sauerbrey, R.; Schramm, U. The scaling of proton energies in ultrashort pulse laser plasma acceleration. New J. Phys. 2010, 12. [Google Scholar] [CrossRef]
- Brenner, C.M.; Green, J.S.; Robinson, A.P.L.; Carroll, D.C.; Dromey, B.; Foster, P.S.; Kar, S.; Li, Y.T.; Markey, K.; Spindloe, C.; et al. Dependence of laser accelerated protons on laser energy following the interaction of defocused, intense laser pulses with ultra-thin targets. Laser Part. Beams 2011, 29, 345–351. [Google Scholar] [CrossRef]
- Simpson, R.A.; Scott, G.G.; Mariscal, D.; Rusby, D.; King, P.M.; Grace, E.; Aghedo, A.; Pagano, I.; Sinclair, M.; Armstrong, C.; et al. Scaling of laser-driven electron and proton acceleration as a function of laser pulse duration, energy, and intensity in the multi-picosecond regime. Phys. Plasmas 2021, 28, 013108. [Google Scholar] [CrossRef]
- Higginson, D.P.; McNaney, J.M.; Swift, D.C.; Petrov, G.M.; Davis, J.; Frenje, J.A.; Jarrott, L.C.; Kodama, R.; Lancaster, K.L.; Mackinnon, A.J.; et al. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions. Phys. Plasmas 2011, 18, 100703. [Google Scholar] [CrossRef]
- Jung, D.; Falk, K.; Guler, N.; Deppert, O.; Devlin, M.; Favalli, A.; Fernandez, J.C.; Gautier, D.C.; Geissel, M.; Haight, R.; et al. Characterization of a novel, short pulse laser-driven neutron source. Phys. Plasmas 2013, 20, 056706. [Google Scholar] [CrossRef]
- Zulick, C.; Dollar, F.; Chvykov, V.; Davis, J.; Kalinchenko, G.; Maksimchuk, A.; Petrov, G.M.; Raymond, A.; Thomas, A.G.R.; Willingale, L.; et al. Energetic neutron beams generated from femtosecond laser plasma interactions. Appl. Phys. Lett. 2013, 102, 124101. [Google Scholar] [CrossRef]
- Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A.P.L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; et al. Beamed neutron emission driven by laser accelerated light ions. New J. Phys. 2016, 18, 053002. [Google Scholar] [CrossRef]
- Alejo, A.; Krygier, A.G.; Ahmed, H.; Morrison, J.T.; Clarke, R.J.; Fuchs, J.; Green, A.; Green, J.S.; Jung, D.; Kleinschmidt, A.; et al. High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets. Plasma Phys. Control. Fusion 2017, 59, 064004. [Google Scholar] [CrossRef]
- Kim, J.B.; Goede, S.; Glenzer, S.H. Development of a cryogenic hydrogen microjet for high-intensity, high-repetition rate experiments. Rev. Sci. Inst. 2016, 87, 11. [Google Scholar] [CrossRef] [PubMed]
- Treffert, F.; Curry, C.B.; Ditmire, T.; Galtier, E.; Glenn, G.D.; Quevedo, H.J.; Richmond, G.; Roth, M.; Schoenwaelder, C.; Zimmer, M.; et al. High flux fast neutron beams using low-Z cryogenic jet targets. 2021. In preparation. [Google Scholar]
- Neely, D.; Foster, P.; Robinson, A.; Lindau, F.; Lundh, O.; Persson, A.; Wahlström, C.-G.; McKenna, P. Enhanced proton beams from ultrathin targets driven by high contrast laser pulses. Appl. Phys. Lett. 2006, 89, 021502. [Google Scholar] [CrossRef]
- Antici, P.; Fuchs, J.; d’Humières, E.; Lefebvre, E.; Borghesi, M.; Brambrink, E.; Cecchetti, C.A.; Gaillard, S.; Romagnani, L.; Sentoku, Y.; et al. Energetic protons generated by ultrahigh contrast laser pulses interacting with ultrathin targets. Phys. Plasmas 2007, 14, 030701. [Google Scholar] [CrossRef]
- Ceccotti, T.; Lévy, A.; Popescu, H.; Réau, F.; D’Oliveira, P.; Monot, P.; Geindre, J.P.; Lefebvre, E.; Martin, P. Proton Acceleration with High-Intensity Ultrahigh-Contrast Laser Pulses. Phys. Rev. Lett. 2007, 99, 185002. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, E.; Galtier, E.; Dyer, G.; Robinson, J.; Fry, A. Pulse contrast enhancement via non-collinear sum-frequency generation with the signal and idler of an optical parametric amplifier. Appl. Phys. Lett. 2019, 114, 221106. [Google Scholar] [CrossRef]
- Rödel, C.; Heyer, M.; Behmke, M.; Kübel, M.; Jäckel, O.; Ziegler, W.; Ehrt, D.; Kaluza, M.C.; Paulus, G.G. High repetition rate plasma mirror for temporal contrast enhancement of terawatt femtosecond laser pulses by three orders of magnitude. Appl. Phys. B 2011, 103, 295–302. [Google Scholar] [CrossRef]
- Poole, P.; Krygier, A.; Cochran, G.E.; Foster, P.S.; Scott, G.G.; Wilson, L.A.; Bailey, J.; Bourgeois, N.; Hernandez-Gomez, C.; Neely, D.; et al. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses. Sci. Rep. 2016, 6, 32041. [Google Scholar] [CrossRef]
- Gauthier, M.; Kim, J.B.; Curry, C.B.; Aurand, B.; Gamboa, E.J.; Goede, S.; Goyon, C.; Hazi, A.; Kerr, S.; Pak, A.; et al. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target. Rev. Sci. Inst. 2016, 87, 11. [Google Scholar] [CrossRef] [PubMed]
- Obst, L.; Goede, S.; Rehwald, M.; Brack, F.-E.; Branco, J.; Bock, S.; Bussmann, M.; Cowan, T.E.; Curry, C.B.; Fiuza, F.; et al. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Snavely, R.A.; Key, M.H.; Hatchett, S.P.; Cowan, T.E.; Roth, M.; Phillips, T.W.; Stoyer, M.A.; Henry, E.A.; Sangster, T.C.; Singh, M.S.; et al. Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids. Phys. Rev. Lett. 2000, 85, 2945–2948. [Google Scholar] [CrossRef]
- Wilks, S.C.; Langdon, A.B.; Cowan, T.E.; Roth, M.; Singh, M.; Hatchett, S.; Key, M.H.; Pennington, D.; MacKinnon, A.; Snavely, R.A. Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 2001, 8, 542–549. [Google Scholar] [CrossRef]
- Mora, P. Plasma Expansion into a Vacuum. Phys. Rev. Lett. 2003, 90, 185002. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.; Schollmeier, M. Ion Acceleration—Target Normal Sheath Acceleration. In Proceedings of the 2014 CAS-CERN Accelerator School: Plasma Wake Acceleration, Geneva, Switzerland, 23–29 November 2014; Volume 1. [Google Scholar]
- Zeil, K.; Metzkes, J.; Kluge, T.; Bussmann, M.; Cowan, T.E.; Kraft, S.D.; Sauerbrey, R.; Schmidt, B.; Zier, M.; Schramm, U. Robust energy enhancement of ultrashort pulse laser accelerated protons from reduced mass targets. Plasma Phys. Control. Fusion 2014, 56, 084004. [Google Scholar] [CrossRef]
- Gauthier, M.; Curry, C.B.; Goede, S.; Brack, F.-E.; Kim, J.B.; MacDonald, M.J.; Metzkes, J.; Obst, L.; Rehwald, M.; Rödel, C.; et al. High repetition rate, multi-MeV proton source from cryogenic hydrogen jets. Appl. Phys. Lett. 2017, 111, 114102. [Google Scholar] [CrossRef]
- Kojima, S.; Inoue, S.; Dinh, T.H.; Hasegawa, N.; Mori, M.; Sakaki, H.; Yamamoto, Y.; Sasaki, T.; Shiokawa, K.; Kondo, K.; et al. Compact Thomson parabola spectrometer with variability of energy range and measurability of angular distribution for low-energy laser-driven accelerated ions. Rev. Sci. Instrum. 2020, 91, 053305. [Google Scholar] [CrossRef]
- Tanaka, K.A.; Yabuuchi, T.; Sato, T.; Kodama, R.; Kitagawa, Y.; Takahashi, T.; Ikeda, T.; Honda, Y.; Okuda, S. Calibration of imaging plate for high energy electron spectrometer. Rev. Sci. Instrum. 2005, 76, 013507. [Google Scholar] [CrossRef]
- Borghesi, M.; Schiavi, A.; Campbell, D.H.; Haines, M.G.; Willi, O.; Mackinnon, A.J.; Patel, P.; Galimberti, M.; Gizzi, L.A. Proton imaging detection of transient electromagnetic fields in laser-plasma interactions (invited). Rev. Sci. Instrum. 2003, 74, 1688–1693. [Google Scholar] [CrossRef]
- Hey, D.S.; Key, M.H.; Mackinnon, A.J.; MacPhee, A.G.; Patel, P.K.; Freeman, R.R.; Van Woerkom, L.D.; Castaneda, C.M. Use of GafChromic film to diagnose laser generated proton beams. Rev. Sci. Instrum. 2008, 79, 053501. [Google Scholar] [CrossRef]
- Curry, C.B.; Dunning, C.A.S.; Gauthier, M.; Chou, H.-G.J.; Fiuza, F.; Glenn, G.D.; Tsui, Y.Y.; Bazalova-Carter, M.; Glenzer, S.H. Optimization of radiochromic film stacks to diagnose high-flux laser-accelerated proton beams. Rev. Sci. Instrum. 2020, 91, 093303. [Google Scholar] [CrossRef]
- Green, J.S.; Borghesi, M.; Brenner, C.M.; Carroll, D.C.; Dover, N.P.; Foster, P.S.; Gallegos, P.; Green, S.; Kirby, D.; Kirkby, K.J.; et al. Scintillator-based ion beam profiler for diagnosing laser-accelerated ion beams. Laser Accel. Electrons, Protons, Ions Med. Appl. Laser-Gener. Second. Sources Radiat. Part 2011, 8079, 807919. [Google Scholar] [CrossRef]
- Schwind, K.M.; Aktan, E.; Prasad, R.; Cerchez, M.; Eversheim, D.; Willi, O.; Aurand, B. An online beam profiler for laser-accelerated protons. Rev. Sci. Instrum. 2019, 90. [Google Scholar] [CrossRef]
- Huault, M.; De Luis, D.; Apiñaniz, J.I.; De Marco, M.; Salgado, C.; Gordillo, N.; Gutiérrez Neira, C.; Pérez-Hernández, J.A.; Fedosejevs, R.; Gatti, G.; et al. A 2D scintillator-based proton detector for high repetition rate experiments. High Power Laser Sci. Eng. 2019, 7, 8–13. [Google Scholar] [CrossRef]
- Metzkes, J.; Zeil, K.; Kraft, S.D.; Karsch, L.; Sobiella, M.; Rehwald, M.; Obst, L.; Schlenvoigt, H.-P.; Schramm, U. An online, energy-resolving beam profile detector for laser-driven proton beams. Rev. Sci. Instrum. 2016, 87. [Google Scholar] [CrossRef] [PubMed]
- Dover, N.P.; Nishiuchi, M.; Sakaki, H.; Alkhimova, M.A.; Faenov, A.Y.; Fukuda, Y.; Kiriyama, H.; Kon, A.; Kondo, K.; Nishitani, K.; et al. Scintillator-based transverse proton beam profiler for laser-plasma ion sources. Rev. Sci. Instrum. 2017, 88. [Google Scholar] [CrossRef]
- Hesse, M.; Ebert, T.; Zimmer, M.; Scheuren, S.; Schaumann, G.; Roth, M. Spatially resolved online particle detector using scintillators for laser-driven particle sources. Rev. Sci. Instrum. 2021, 92, 093302. [Google Scholar] [CrossRef]
- Manuel, M.J.-E.; Tang, H.; Russell, B.K.; Willingale, L.; Maksimchuk, A.; Green, J.S.; Alfonso, E.L.; Jaquez, J.; Carlson, L.; Neely, D.; et al. Enhanced spatial resolution of Eljen-204 plastic scintillators for use in rep-rated proton diagnostics. Rev. Sci. Instrum. 2020, 91, 103301. [Google Scholar] [CrossRef]
- Avrigeanu, M.; Avrigeanu, V. Assessment of deuteron-induced reaction mechanisms at low and medium energies. In EPJ Web Conference; EDP Sciences: Les Ulis, France, 2010; Volume 2. [Google Scholar] [CrossRef]
- Boselli, M.; Diaz-Torres, A. Unambiguous separation of low-energy fusion processes of weakly bound nuclei. J. Phys. G Nucl. Part. Phys. 2014, 41, 094001. [Google Scholar] [CrossRef]
- Wang, H.; Otsu, H.; Chiga, N.; Kawase, S.; Takeuchi, S.; Sumikama, T.; Koyama, S.; Sakurai, H.; Watanabe, Y.; Nakayama, S.; et al. Enhancement of element production by incomplete fusion reaction with weakly bound deuteron. Commun. Phys. 2019, 2, 78. [Google Scholar] [CrossRef]
- Storm, M.; Jiang, S.; Wertepny, D.; Orban, C.; Morrison, J.; Willis, C.; McCary, E.; Belancourt, P.; Snyder, J.; Chowdhury, E.; et al. Fast neutron production from lithium converters and laser driven protons. Phys. Plasmas 2013, 20, 053106. [Google Scholar] [CrossRef]
- Petrov, G.M.; Higginson, D.P.; Davis, J.; Petrova, T.B.; McGuffey, C.; Qiao, B.; Beg, F.N. Generation of energetic (>15 MeV) neutron beams from proton- and deuteron-driven nuclear reactions using short pulse lasers. Plasma Phys. Control Fusion 2013, 55, 105009. [Google Scholar] [CrossRef]
- Ye, T.; Watanabe, Y.; Ogata, K. Analysis of deuteron breakup reactions on 7Li for energies up to 100 MeV. Phys. Rev. C 2009, 80, 014604. [Google Scholar] [CrossRef]
- Parfenova, Y.L.; Zhukov, M.V. Study of deuteron breakup in light targets at intermediate energies. Eur. Phys. J. A 2001, 12, 191–197. [Google Scholar] [CrossRef]
- Brown, D.A.; Chadwick, M.B.; Capote, R.; Kahler, A.C.; Trkov, A.; Herman, M.W.; Sonzogni, A.A.; Danon, Y.; Carlson, A.D.; Dunn, M.; et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nucl. Data Sheets 2018, 148, 1–142. [Google Scholar] [CrossRef]
- Koning, A.J.; Rochman, D.; Sublet, J.-C.; Dzysiuk, N.; Fleming, M.; van der Marck, S. TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology. Nucl. Data Sheets 2019, 155, 1–55. [Google Scholar] [CrossRef]
- Shinsuke, N.; Iwamoto, O.; Watanabe, Y.; Ogata, K. JENDL/DEU-2020: Deuteron nuclear data library for design studies of accelerator-based neutron sources. J. Nucl. Sci. Technol. 2021, 58, 805–821. [Google Scholar] [CrossRef]
- Hermanne, A.; Tarkanyi, F.; Takacs, S. Activation cross sections for production of 7Be by proton and deuteron induced reactions on 9Be: Protons up to 65MeV and deuterons up to 50MeV. Appl. Radiat. Isot. 2014, 90, 203–207. [Google Scholar] [CrossRef]
- Generalov, L.N.; Abramovich, S.N.; Selyankina, S.M. Activation measurements of the integral cross sections of reactions 7Li(p,n0+n1)7Be(gs), 6Li(d,n0+n1)7Be(gs), 7Li(d,2n)7Be(gs), 65Cu(p,n)65Zn, 65Cu(d,2n)65Zn, 63Cu(d,g)65Zn. Bull. Russ. Acad. Sci. Phys. 2017, 81, 644–657. [Google Scholar] [CrossRef]
- Osetinskij, G.M.; Sikora, B.; Tyke, Y.; Fryshchin, B. The investigation of Li-7(d,n)Be-8 reaction. Jt. Inst. Nucl. Res. Dubna Rep. 1970, 5143. [Google Scholar]
- Koning, A.J.; Rochman, D. Modern Nuclear Data Evaluation with the TALYS Code System. Nucl. Data Sheets 2012, 113, 2841–2934. [Google Scholar] [CrossRef]
- Nelson, C.E.; Purser, F.O.; Von Behren, P.; Newson, H.W. Neutron spectra from deuteron and proton bombardment of thick lithium targets: Potential for neutron therapy. Phys. Med. Biol. 1978, 23, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, M.; Itoga, T.; Kawata, N.; Hirabayashi, N.; Oishi, T.; Yamauchi, T.; Baba, M.; Sugimoto, M.; Muroga, T. Measurement of Neutron Emission Spectra in Li(d,xn) Reaction with Thick and Thin Targets for 40-MeV Deuterons. Fusion Sci. Technol. 2005, 48, 1320–1328. [Google Scholar] [CrossRef]
- Ménard, S.; Mirea, M.; Clapier, F.; Pauwels, N.; Proust, J.; Donzaud, C.; Guillemaud-Mueller, D.; Lhenry, I.; Mueller, A.C.; Scarpaci, J.A.; et al. Fast neutron forward distributions from C, Be, and U thick targets bombarded by deuterons. Phys. Rev. ST Accel. Beams 1999, 2, 033501. [Google Scholar] [CrossRef]
- Fischer, U.; Simakov, S.P.; Konobeyev, A.; Pereslavtsev, P.; Wilson, P. Neutronics and nuclear data for the IFMIF neutron source. Fusion Eng. Des. 2002, 63–64, 493–500. [Google Scholar] [CrossRef]
- Fischer, U.; Avrigeanu, M.; Pereslavtsev, P.; Simakov, S.P.; Schmuck, I. Evaluation and validation of d–Li cross section data for the IFMIF neutron source term simulation. J. Nucl. Mater. 2007, 367–370, 1531–1536. [Google Scholar] [CrossRef]
- Zimmer, M. Laser Driven Neutron Sources—A Compact Approach to Non-Destructive Material Analysis. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2020. [Google Scholar]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM – The stopping and range of ions in matter (2010). Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Bolton, P.R.; Borghesi, M.; Brenner, C.; Carroll, D.C.; De Martinis, C.; Fiorini, F.; Flacco, A.; Floquet, V.; Fuchs, J.; Gallegos, P.; et al. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams. Phys. Med. 2014, 30, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Kleinschmidt, A.; Bagnoud, V.; Deppert, O.; Favalli, A.; Frydrych, S.; Hornung, J.; Jahn, D.; Schaumann, G.; Tebartz, A.; Wagner, F.; et al. Intense, directed neutron beams from a laser-driven neutron source at PHELIX. Phys. Plasmas 2018, 25, 3–8. [Google Scholar] [CrossRef]
- Lewis, B.J.; Smith, M.B.; Ing, H.; Andrews, H.R.; Machrafi, R.; Tomi, L.; Matthews, T.J.; Veloce, L.; Shurshakov, V.; Tchernykh, I.; et al. Review of bubble detector response characteristics and results from space. Radiat. Prot. Dosim. 2011, 150, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Ing, H.; Noulty, R.A.; McLean, T.D. Bubble detectors—A maturing technology. Radiat. Meas. 1997, 27, 1–11. [Google Scholar] [CrossRef]
- Skripov, V.P. Metastable Liquids; J. Wiley & Sons: Hoboken, NJ, USA, 1974; p. 128. [Google Scholar]
- Bell, C.R.; Oberle, N.P.; Rohsenow, W.; Todreas, N.; Tso, C. Radiation-Induced Boiling in Superheated Water and Organic Liquids. Nucl. Sci. Eng. 1974, 53, 458–465. [Google Scholar] [CrossRef]
- Rosenstock, W.; Schulze, J.; Köble, T.; Kruzinski, G.; Thesing, P.; Jaunich, G.; Kronholz, H.L. Estimation of Neutron Energy Spectra with Bubble Detectors: Potential and Limitations. Radiat. Prot. Dosim. 1995, 61, 133–136. [Google Scholar] [CrossRef]
- Ing, H. Neutron measurements using bubble detectors—Terrestrial and space. Radiat. Meas. 2001, 33, 275–286. [Google Scholar] [CrossRef]
- Plesset, M.S.; Zwick, S.A. The Growth of Vapor Bubbles in Superheated Liquids. J. Appl. Phys. 1954, 25, 493–500. [Google Scholar] [CrossRef]
- Knoll, G.F. Radiation Detection and Measurement; John Wiley & Sons: Hoboken, NJ, USA, 2000; Volume 3, p. 860. [Google Scholar]
- Kouzes, R.T.; Lintereur, A.T.; Siciliano, E.R. Progress in alternative neutron detection to address the helium-3 shortage. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 784, 172–175. [Google Scholar] [CrossRef]
- Berger, M.J.; Hubbell, J.H.; Seltzer, S.M.; Chang, J.; Coursey, J.S.; Sukumar, R.; Zucker, D.S.; Olsen, K. XCOM: Photon Cross Sections Database. In NIST Standard Reference Database 8 (XGAM); NIST: Gaitherburg, MD, USA, 2010; pp. 87–3597. [Google Scholar] [CrossRef]
- Hongwei, Y. The N-P Scattering Cross Section from 90 Kev To 1.8 Mev. Ph.D. Thesis, University of Kentucky, Lexington, Kentucky, 2015. [Google Scholar]
- Lee, J.; Nishiyama, J.; Hori, J.-I.; Kimura, R.; Sako, T.; Yamada, A.; Sano, T. Neutron total cross section measurements of polyethylene using time-of-flight method at KURNS-LINAC. J. Nucl. Sci. Technol. 2020, 57, 1–8. [Google Scholar] [CrossRef]
- Rinar, P. Neutron Interaction with Matter. In Passive Nondestructive Assay of Nuclear Materials; U.S. Nuclear Regulatory Commission: Rockville, MD, USA, 1991; p. 357. [Google Scholar]
- Campbell, N.; Francis, V. A theory of valve and circuit noise. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 1946, 93, 45–52. [Google Scholar]
- Zhong, G.Q.; Li, K.; Hu, L.Q.; Cao, H.R.; Zhou, R.J.; Lin, S.Y.; Hong, B.; Huo, Z.P.; Zhang, H.; Xiao, M.; et al. Development of a wide-range neutron flux monitoring system in EAST. J. Instrum. 2020, 15, P05011. [Google Scholar] [CrossRef]
- Treffert, F.; Curry, C.B.; Quevedo, H.J.; Roth, M.; Schoenwaelder, C.; Zimmer, M.; Glenzer, S.H.; Gauthier, M. Absolute flux calibration of neutron time-of-flight detectors using high energy neutron beams at LANSCE. 2022. In preparation. [Google Scholar]
- Glebov, V.Y.; Meyerhofer, D.D.; Sangster, T.C.; Stoeckl, C.; Roberts, S.; Barrera, C.A.; Celeste, J.R.; Cerjan, C.J.; Dauffy, L.S.; Eder, D.C.; et al. Development of nuclear diagnostics for the National Ignition Facility (invited). Rev. Sci. Instrum. 2006, 77, 10E715. [Google Scholar] [CrossRef]
- Guler, N.; Volegov, P.; Favalli, A.; Merrill, F.E.; Falk, K.; Jung, D.; Tybo, J.L.; Wilde, C.H.; Croft, S.; Danly, C.; et al. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility. J. Appl. Phys. 2016, 120, 154901. [Google Scholar] [CrossRef]
- Hooker, C.J.; Blake, S.; Chekhlov, O.; Clarke, R.J.; Collier, J.L.; Divall, E.J.; Ertel, K.; Foster, P.S.; Hawkes, S.J.; Holligan, P.; et al. Commissioning the Astra Gemini petawatt Ti:sapphire laser system. In Proceedings of the 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science, San Jose, CA, USA, 4–9 May 2008; pp. 1–2. [Google Scholar] [CrossRef]
- Papadopoulos, D.N.; Zou, J.P.; Le Blanc, C.; Chériaux, G.; Georges, P.; Druon, F.; Mennerat, G.; Ramirez, P.; Martin, L.; Fréneaux, A.; et al. The Apollon 10 PW laser: Experimental and theoretical investigation of the temporal characteristics. High Power Laser Sci. Eng. 2016, 4, e34. [Google Scholar] [CrossRef]
- Burdonov, K.; Fazzini, A.; Lelasseux, V.; Albrecht, J.; Antici, P.; Ayoul, Y.; Beluze, A.; Cavanna, D.; Ceccotti, T.; Chabanis, M.; et al. Characterization and performance of the Apollon Short-Focal-Area facility following its commissioning at 1 PW level. Matter Radiat. Extrem. 2021, 6, 064402. [Google Scholar] [CrossRef]
- Huault, M.; Zeraouli, G.; Ajates, J.G.; Apiñaniz, J.; García, E.; Hernández, I.; Malko, S.; Méndez, C.; Perez, J.A.; Pisonero, J.D.; et al. Commissioning experiments of VEGA-2 at Centro de Láseres Pulsados (CLPU). In Frontiers in Optics 2017; Optical Society of America, Optica: Washington, DC, USA, 2017; p. FM2B.4. [Google Scholar] [CrossRef]
- Glenzer, S.H.; Fletcher, L.B.; Galtier, E.; Nagler, B.; Alonso-Mori, R.; Barbrel, B.; Brown, S.B.; Chapman, D.A.; Chen, Z.; Curry, C.B.; et al. Matter under extreme conditions experiments at the Linac Coherent Light Source. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 092001. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treffert, F.; Curry, C.B.; Ditmire, T.; Glenn, G.D.; Quevedo, H.J.; Roth, M.; Schoenwaelder, C.; Zimmer, M.; Glenzer, S.H.; Gauthier, M. Towards High-Repetition-Rate Fast Neutron Sources Using Novel Enabling Technologies. Instruments 2021, 5, 38. https://doi.org/10.3390/instruments5040038
Treffert F, Curry CB, Ditmire T, Glenn GD, Quevedo HJ, Roth M, Schoenwaelder C, Zimmer M, Glenzer SH, Gauthier M. Towards High-Repetition-Rate Fast Neutron Sources Using Novel Enabling Technologies. Instruments. 2021; 5(4):38. https://doi.org/10.3390/instruments5040038
Chicago/Turabian StyleTreffert, Franziska, Chandra B. Curry, Todd Ditmire, Griffin D. Glenn, Hernan J. Quevedo, Markus Roth, Christopher Schoenwaelder, Marc Zimmer, Siegfried H. Glenzer, and Maxence Gauthier. 2021. "Towards High-Repetition-Rate Fast Neutron Sources Using Novel Enabling Technologies" Instruments 5, no. 4: 38. https://doi.org/10.3390/instruments5040038
APA StyleTreffert, F., Curry, C. B., Ditmire, T., Glenn, G. D., Quevedo, H. J., Roth, M., Schoenwaelder, C., Zimmer, M., Glenzer, S. H., & Gauthier, M. (2021). Towards High-Repetition-Rate Fast Neutron Sources Using Novel Enabling Technologies. Instruments, 5(4), 38. https://doi.org/10.3390/instruments5040038