Novel Ultrafast Lu2O3:Yb Ceramics for Future HEP Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Basic Research Needs Study on HEP Detector Research and Development. 2019. Available online: https://science.osti.gov/hep/Community-Resources/Reports (accessed on 9 August 2022).
- Abusalma, F.; Ambrose, D.; Artikov, A.; Bernstein, R.; Blazey, G.C.; Bloise, C.; Boi, S.; Bolton, T.; Bono, J.; Bonventre, R.; et al. Expression of Interest for Evolution of the Mu2e Experiment. arXiv 2018, arXiv:1802.02599. [Google Scholar]
- Zhu, R.-Y. Fast Crystal Scintillators for GHz Hard X-Ray Imaging. 2016. Available online: http://www.hep.caltech.edu/~zhu/talks/ryz_160803_X-Ray_imaging.pdf (accessed on 9 August 2022).
- Hu, C.; Zhang, L.; Zhu, R.-Y.; Chen, A.; Wang, Z.; Ying, L.; Yu, Z. Ultrafast Inorganic Scintillators for Gigahertz Hard X-Ray Imaging. IEEE Trans. Nucl. Sci. 2018, 65, 2097–2104. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, L.; Zhu, R.-Y.; Chen, J.; Ding, D.; Wang, Y.; Zhang, M. Spatial Resolution of an Inorganic Crystal-Based Hard X-Ray Imager. IEEE Trans. Nucl. Sci. 2020, 67, 1014–1019. [Google Scholar] [CrossRef]
- van Pieterson, L.; Heeroma, M.; de Heer, E.; Meijerink, A. Charge Transfer Luminescence of Yb3+. J. Lumin. 2000, 91, 177–193. [Google Scholar] [CrossRef]
- Greskovich, C.; Duclos, S. Ceramic Scintillators. Annu. Rev. Mater. Sci. 1997, 27, 69–88. [Google Scholar] [CrossRef]
- Takaichi, K.; Yagi, H.; Shirakawa, A.; Ueda, K.; Hosokawa, S.; Yanagitani, T.; Kaminskii, A.A. Lu2O3:Yb3+ Ceramics—A Novel Gain Material for High-Power Solid-State Lasers. Phys. Status Solidi (A) 2005, 202, R1–R3. [Google Scholar] [CrossRef]
- Kim, W.; Baker, C.; Villalobos, G.; Frantz, J.; Shaw, B.; Lutz, A.; Sadowski, B.; Kung, F.; Hunt, M.; Sanghera, J.; et al. Synthesis of High Purity Yb3+-Doped Lu2O3 Powder for High Power Solid-State Lasers. J. Am. Ceram. Soc. 2011, 94, 3001–3005. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Yagi, H.; Yanagitani, T. Optical and Scintillation Properties of Transparent Ceramic Yb:Lu2O3 with Different Yb Concentrations. Opt. Mater. 2014, 36, 1044–1048. [Google Scholar] [CrossRef]
- Liu, Z.; Toci, G.; Pirri, A.; Patrizi, B.; Feng, Y.; Wei, J.; Wu, F.; Yang, Z.; Vannini, M.; Li, J. Fabrication, Microstructures, and Optical Properties of Yb:Lu2O3 Laser Ceramics from Co-Precipitated Nano-Powders. J. Adv. Ceram. 2020, 9, 674–682. [Google Scholar] [CrossRef]
- Yin, D.; Ma, J.; Liu, P.; Yao, B.; Wang, J.; Dong, Z.; Kong, L.B.; Tang, D. Submicron-grained Yb:Lu2O3 Transparent Ceramics with Lasing Quality. J. Am. Ceram. Soc. 2019, 102, 2587–2592. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Kurosawa, S.; Watanabe, K.; Yagi, H.; Yanagitani, T.; Jary, V.; Futami, Y.; Yokota, Y.; Yoshikawa, A.; et al. Ultrafast Transparent Ceramic Scintillators Using the Yb3+ Charge Transfer Luminescence in RE2O3 Host. Appl. Phys. Express 2011, 4, 126402. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, L.; Zhu, R.-Y. Gamma-Ray Induced Radiation Damage Up to 340 Mrad in Various Scintillation Crystals. IEEE Trans. Nucl. Sci. 2016, 63, 612–619. [Google Scholar] [CrossRef]
- Hu, C.; Yang, F.; Zhang, L.; Zhu, R.-Y.; Kapustinsky, J.; Mocko, M.; Nelson, R.; Wang, Z. Neutron-Induced Radiation Damage in LYSO, BaF2, and PWO Crystals. IEEE Trans. Nucl. Sci. 2020, 67, 1086–1092. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, L.; Zhu, R.-Y.; Li, J.; Jiang, B.; Kapustinsky, J.; Mocko, M.; Nelson, R.; Li, X.; Wang, Z. Hadron-Induced Radiation Damage in LuAG:Ce Scintillating Ceramics. IEEE Trans. Nucl. Sci. 2022, 69, 181–186. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, L.; Zhu, R.-Y.; Kapustinsky, J.; Nelson, R.; Wang, Z. Proton Induced Radiation Damage in Fast Crystal Scintillators. Nucl. Instrum. Methods Phys. Res. A 2016, 824, 726–728. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Zhang, L.; Zhu, R.-Y.; Kapustinsky, J.; Nelson, R.; Wang, Z. Proton-Induced Radiation Damage in Fast Crystal Scintillators. IEEE Trans. Nucl. Sci. 2017, 64, 665–672. [Google Scholar] [CrossRef]
- Hu, C.; Yang, F.; Zhang, L.; Zhu, R.-Y.; Kapustinsky, J.; Nelson, R.; Wang, Z. Proton-Induced Radiation Damage in BaF2, LYSO, and PWO Crystal Scintillators. IEEE Trans. Nucl. Sci. 2018, 65, 1018–1024. [Google Scholar] [CrossRef]
- Rodnyi, P.A. Physical Processes in Inorganic Scintillators; Rodnyi, P.A., Ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9780138743352. [Google Scholar]
ID | Dimension (mm3) | Composition |
---|---|---|
RMD-2 | Φ9 × 1.5 | Lu2O3 |
RMD-3 | Φ9 × 1 | Lu2O3 |
RMD-5 | Φ9 × 1.5 | (Lu,Y)2O3 |
RMD-6 | Φ9 × 1.5 | (Lu,Y)2O3 |
RMD-7 | Φ9 × 2 | (Lu,Y)2O3 |
RMD-8 | Φ9 × 1 | Lu2O3 |
RMD-9 | Φ9 × 2 | (Lu,Y)2O3 |
BaF2 | BaF2:Y | ZnO:Ga | Lu2O3:Yb | YAP:Yb | YAG:Yb | β-Ga2O3 | PWO | LYSO:Ce | LuAG:Ce | YAP:Ce | GAGG:Ce | LuYAP:Ce | YSO:Ce | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Density (g/cm3) | 4.89 | 4.89 | 5.67 | 9.42 | 5.35 | 4.56 | 5.94 | 8.28 | 7.4 | 6.76 | 5.35 | 6.5 | 7.2 6 | 4.44 |
Melting points (°C) | 1280 | 1280 | 1975 | 2490 | 1870 | 1940 | 1725 | 1123 | 2050 | 2060 | 1870 | 1850 | 1930 | 2070 |
X0 (cm) | 2.03 | 2.03 | 2.51 | 0.81 | 2.59 | 3.53 | 2.51 | 0.89 | 1.14 | 1.45 | 2.59 | 1.63 | 1.37 | 3.10 |
RM (cm) | 3.1 | 3.1 | 2.28 | 1.72 | 2.45 | 2.76 | 2.20 | 2.00 | 2.07 | 2.15 | 2.45 | 2.20 | 2.01 | 2.93 |
λI (cm) | 30.7 | 30.7 | 22.2 | 18.1 | 23.1 | 25.2 | 20.9 | 20.7 | 20.9 | 20.6 | 23.1 | 21.5 | 19.5 | 27.8 |
Zeff | 51.0 | 51.0 | 27.7 | 67.3 | 32.8 | 29.3 | 27.8 | 73.6 | 63.7 | 58.7 | 32.8 | 50.6 | 57.1 | 32.8 |
dE/dX (MeV/cm) | 6.52 | 6.52 | 8.34 | 11.6 | 7.91 | 7.01 | 8.82 | 10.1 | 9.55 | 9.22 | 7.91 | 8.96 | 9.82 | 6.57 |
λpeak 1 (nm) | 300 220 | 300 220 | 380 | 370 | 350 | 350 | 380 | 425 420 | 420 | 520 | 370 | 540 | 385 | 420 |
Refractive Index 2 | 1.50 | 1.50 | 2.1 | 2.0 | 1.96 | 1.87 | 1.97 | 2.20 | 1.82 | 1.84 | 1.96 | 1.92 | 1.94 | 1.78 |
Normalized Light Yield 1,3 | 42 4.8 | 1.7 4.8 | 6.6 4 | 0.95 | 0.19 4 | 0.36 4 | 6.5 0.5 | 1.6 0.4 | 100 | 35 5 48 5 | 9 32 | 190 | 16 15 | 80 |
Total Light yield (ph/MeV) | 13,000 | 2000 | 2000 4 | 280 | 57 4 | 110 4 | 2100 | 130 | 30,000 | 25,000 5 | 12,000 | 58,000 | 10,000 | 24,000 |
Decay time 1 (ns) | 600 0.5 | 600 0.5 | <1 | 1.1 4 | 1.5 | 4 | 148 6 | 30 10 | 40 | 820 50 | 191 25 | 570 130 | 1485 36 | 75 |
LY in 1st ns (photons/MeV) | 1200 | 1200 | 610 4 | 170 | 28 4 | 24 4 | 43 | 5.3 | 740 | 240 | 391 | 400 | 125 | 318 |
LY in 1st ns /Total LY (%) | 9.2 | 60 | 31 | 61 | 49 | 22 | 2.0 | 4.3 | 2.5 | 1.0 | 3.3 | 0.7 | 1.3 | 1.3 |
40 keV Att. Leng. (1/e, mm) | 0.106 | 0.106 | 0.407 | 0.127 | 0.314 | 0.439 | 0.394 | 0.111 | 0.185 | 0.251 | 0.314 | 0.319 | 0.214 | 0.334 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Zhang, L.; Zhu, R.-Y.; Pandian, L.S.; Wang, Y.; Glodo, J. Novel Ultrafast Lu2O3:Yb Ceramics for Future HEP Applications. Instruments 2022, 6, 67. https://doi.org/10.3390/instruments6040067
Hu C, Zhang L, Zhu R-Y, Pandian LS, Wang Y, Glodo J. Novel Ultrafast Lu2O3:Yb Ceramics for Future HEP Applications. Instruments. 2022; 6(4):67. https://doi.org/10.3390/instruments6040067
Chicago/Turabian StyleHu, Chen, Liyuan Zhang, Ren-Yuan Zhu, Lakshmi Soundara Pandian, Yimin Wang, and Jarek Glodo. 2022. "Novel Ultrafast Lu2O3:Yb Ceramics for Future HEP Applications" Instruments 6, no. 4: 67. https://doi.org/10.3390/instruments6040067
APA StyleHu, C., Zhang, L., Zhu, R. -Y., Pandian, L. S., Wang, Y., & Glodo, J. (2022). Novel Ultrafast Lu2O3:Yb Ceramics for Future HEP Applications. Instruments, 6(4), 67. https://doi.org/10.3390/instruments6040067