Performance Study of Virtual Frisch Grid CdZnTeSe Detectors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schlesinger, T.E.; Toney, J.E.; Yoon, H.; Lee, E.Y.; Brunett, B.A.; Franks, L.; James, R.B. Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R 2001, 32, 103–189. [Google Scholar] [CrossRef]
- Yang, G.; James, R.B. CdTe and Related Compounds; Physics, Defects, Hetero- and Nano-Structures, Crystal Growth, Surfaces and Applications Part II; Triboulet, R., Siffert, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 214–238. [Google Scholar]
- Barthelmy, S.D.; Barbier, L.M.; Cummings, J.R.; Fenimore, E.E.; Gehrels, N.; Hullinger, D.; Krimm, H.A.; Markwardt, C.B.; Palmer, D.M.; Parsons, A.; et al. The burst alert telescope (BAT) on the SWIFT midex mission. Space Sci. Rev. 2005, 120, 143–164. [Google Scholar] [CrossRef] [Green Version]
- Krawczynski, H.S.; Stern, D.; Harrison, F.A.; Kislat, F.F.; Zajczyk, A.; Beilicke, M.; Hoormann, J.; Qingzhen, G.; Endsley, R.; Ingram, A.R.; et al. X-ray polarimetry with the Polarization Spectroscopic Telescope Array (PolSTAR). Astropart. Phys. 2016, 75, 8–28. [Google Scholar] [CrossRef] [Green Version]
- Slomka, P.J.; Miller, R.J.H.; Hu, L.H.; Germano, G.; Berman, D.S. Solid-State Detector SPECT Myocardial Perfusion Imaging. J. Nucl. Med. 2019, 60, 1194–1204. [Google Scholar] [CrossRef]
- Jing, W.; Chi, L. Recent advances in cardiac SPECT instrumentation and imaging methods. Phys. Med. Biol. 2019, 64, 06TR01. [Google Scholar]
- Santarelli, M.F.; Giovannetti, G.; Hartwig, V.; Celi, S.; Positano, V.; Landini, L. The Core of Medical Imaging: State of the Art and Perspectives on the Detectors. Electronics 2021, 10, 1642. [Google Scholar] [CrossRef]
- Carini, G.A.; Bolotnikov, A.E.; Camarda, G.S.; James, R.B. High-resolution X-ray mapping of CdZnTe detectors. Nucl. Instrum. Methods Phys. Res. A 2007, 579, 120–124. [Google Scholar] [CrossRef]
- Amman, M.; Lee, J.S.; Luke, P.N. Electron trapping nonuniformity in high-pressure-Bridgman-grown CdZnTe. J. Appl. Phys. 2002, 92, 3198–3206. [Google Scholar] [CrossRef] [Green Version]
- Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Yang, G.; Hossain, A.; Kim, K.; James, R.B. Characterization and evaluation of extended defects in CZT crystals for gamma-ray detectors. J. Cryst. Growth 2013, 379, 46–56. [Google Scholar] [CrossRef]
- Awadalla, S.A.; Mackenzie, J.; Chen, H.; Redden, B.; Bindley, G.; Duff, M.C.; Burger, A.; Groza, M.; Buliga, V.; Bradley, J.P.; et al. Characterization of detector-grade CdZnTe crystals grown by traveling heater method (THM). J. Cryst. Growth 2010, 312, 507–513. [Google Scholar] [CrossRef]
- Zhang, N.; Yeckel, A.; Burger, A.; Cui, Y.; Lynn, K.G.; Derby, J.J. Anomalous segregation during electrodynamic gradient freeze growth of cadmium zinc telluride. J. Cryst. Growth 2011, 325, 10–19. [Google Scholar] [CrossRef]
- Hitomi, K.; Tada, T.; Onodera, T.; Kim, S.Y.; Xu, Y.; Shoji, T.; Ishii, K. TlBr Capacitive Frisch Grid Detectors. IEEE Trans. Nucl. Sci. 2013, 60, 1156–1161. [Google Scholar] [CrossRef]
- Datta, A.; Becla, P.; Motakef, S. Novel Electrodes and Engineered Interfaces for Halide-Semiconductor Radiation Detectors. Sci. Rep. 2019, 9, 9933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, K.; Toyoda, K.; Kase, H.; Takagi, T.; Tabata, K.; Terao, T.; Morii, H.; Koike, A.; Aoki, T.; Nogami, M.; et al. Bias Polarity Switching-Type TlBr X-Ray Imager. IEEE Trans. Nucl. Sci. 2021, 68, 2435–2439. [Google Scholar] [CrossRef]
- Datta, A.; Fiala, J.; Becla, P.; Motakef, S. Stable room-temperature thallium bromide semiconductor radiation detectors. Appl. Phys. Lett. Mater. 2017, 5, 106109. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Matei, L.; Jung, H.J.; McCall, K.M.; Chen, M.; Stoumpos, C.C.; Liu, Z.; Peters, J.A.; Chung, D.Y.; Wessels, B.W.; et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Comm. 2018, 9, 1609. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Petryk, M.; Liu, Z.; Chica, D.G.; Hadar, I.; Leak, C.; Ke, W.; Spanopoulos, I.; Lin, W.; Chung, D.Y.; et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photonics 2021, 15, 36–42. [Google Scholar] [CrossRef]
- Zhang, B.B.; Wang, F.; Zhang, H.; Xio, B.; Sun, Q.; Guo, J.; Hafsia, A.B.; Shao, A.; Xu, Y.; Zhou, J. Defect proliferation in CsPbBr3 crystal induced by ion migration. Appl. Phys. Lett. 2020, 116, 063505. [Google Scholar] [CrossRef]
- Rudolph, P. Fundamental studies on Bridgman growth of CdTe. Prog. Crystal Growth Charact. 1994, 29, 275–381. [Google Scholar] [CrossRef]
- Johnson, C.J. Recent progress in lattice matched substrates for HgCdTe epitaxy. SPIE Proc. 1989, 56, 1106. [Google Scholar]
- Brill, G.; Chen, Y.; Amritraj, P.M.; Sarney, W.; Chandlerhorowitz, D.; Dhar, N.K. Molecular beam epitaxial growth and characterization of Cd-based II–VI wide-bandgap compounds on Si substrates. J. Electron. Mat. 2005, 34, 655–661. [Google Scholar] [CrossRef]
- Tanaka, A.; Masa, Y.; Seto, S.; Kawasaki, T. Zinc and selenium co-doped CdTe substrates lattice matched to HgCdTe. J. Cryst. Growth 1989, 94, 166–170. [Google Scholar] [CrossRef]
- Chang, C.Y.; Tseng, B.H. Crystal growth of CdTe alloyed with Zn, Se and S. Mater. Sci. Eng. B 1997, 49, 1–4. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Zazvorka, J.; Dedic, V.; Franc, J.; James, R.B. Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications. Sci. Rep. 2019, 9, 1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleppinger, J.W.; Chaudhuri, S.K.; Roy, U.N.; James, R.B.; Mandal, K.C. Growth of Cd0.9Zn0.1Te1–ySey Single Crystals for Room-Temperature Gamma Ray Detection. IEEE Trans. Nucl. Sci. 2021, 68, 2429–2434. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Gul, R.; Yang, G.; Zazvorka, J.; Dedic, V.; Franc, J.; James, R.B. Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Sci. Rep. 2019, 9, 7303. [Google Scholar] [CrossRef] [Green Version]
- Herraiz, L.M.; Brana, A.F.; Plaza, J.L. Vertical Gradient Freeze Growth of two inches Cd1−xZnxTe1−ySey ingots with different Se content. J. Cryst. Growth 2021, 573, 126219. [Google Scholar]
- Hwang, S.; Yu, H.; Bolotnikov, A.E.; James, R.B.; Kim, K. Anomalous Te inclusion size and distribution in CdZnTeSe. IEEE Trans. Nucl. Sci. 2019, 66, 2329–2332. [Google Scholar] [CrossRef]
- Gul, R.; Roy, U.N.; Camarda, G.S.; Hossain, A.; Yang, G.; Vanier, P.; Lordi, V.; Varley, J.; James, R.B. A comparison of point defects in Cd1−xZnxTe1−ySey crystals grown by Bridgman and traveling heater methods. J. Appl. Phys. 2017, 121, 125705. [Google Scholar] [CrossRef]
- Yakimov, A.; Smith, D.; Choi, J.; Araujo, S. Growth and characterization of detector-grade CdZnTeSe by horizontal Bridgman technique. Proc. SPIE 2019, 11114, 111141N. [Google Scholar]
- Franc, J.; Moravec, P.; Dedic, V.; Roy, U.; Elhadidy, H.; Minarik, P.; Sima, V. Microhardness study of Cd1−x ZnxTe1-ySey crystals for X-ray and gamma ray detectors. Mater. Today Comm. 2020, 24, 101014. [Google Scholar]
- Park, B.; Kim, Y.; Seo, J.; Byun, J.; Dedic, V.; Franc, J.; Bolotnikov, A.E.; James, R.B.; Kim, K. Bandgap engineering of Cd1− xZnxTe1− ySey (0<x<0.27, 0<y<0.026). Nucl. Instrum. Methods Phys. Res. A 2022, 1036, 166836. [Google Scholar]
- Chaudhuri, S.K.; Kleppinger, J.W.; Karadavut, O.M.; Nag, R.; Mandal, K.C. Quaternary Semiconductor Cd1− xZnxTe1−ySey for High-Resolution, Room-Temperature Gamma-Ray Detection. Crystals 2021, 11, 827. [Google Scholar] [CrossRef]
- Znamenshchykov, Y.; Pashchenko, M.; Kononov, O.; Volobuev, V.; Kurbatov, D.; Opanasyuk, A. Effect of Thermal Annealing on the Structural and Substructural Properties of Cd1−xZnxTe1-ySey Thick Polycrystalline Films. In Proceedings of the IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP), Odesa, Ukraine, 5–11 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Byun, J.; Seo, J.; Seo, J.; Park, B. Growth and characterization of detector-grade CdMnTeSe. Nucl. Engr. Technol. 2022, in press. [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; James, R.B. Optimization of selenium in CdZnTeSe quaternary compound for radiation detector applications. Appl. Phys. Lett. 2021, 118, 152101. [Google Scholar] [CrossRef]
- Duff, M.C.; Hunter, D.B.; Burger, A.; Groza, M.; Buliga, V.; Black, D.R. Effect of surface preparation technique on the radiation detector performance of CdZnTe. Appl. Surf. Sci. 2008, 254, 2889. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; James, R.B. Characterization of large-volume Frisch grid detector fabricated from as-grown CdZnTeSe. Appl. Phys. Lett. 2019, 115, 242102. [Google Scholar] [CrossRef]
- Jo, W.J.; Kim, H.S.; Ha, J.H.; Jeong, M. Optimization of shielding electrode lengths of virtual Frisch-grid CdZnTe radiation detector for gamma-ray detection. Curr. Appl. Phys. 2015, 15, s51–s56. [Google Scholar] [CrossRef]
- Cola, R.; Farella, I.; Auricchio, N.; Caroli, E. Investigation of the electric field distribution in x-ray detectors by Pockels effect. J. Opt. A Pure Appl. Opt. 2006, 8, S467–S472. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Yang, G.; James, R.B. Impact of selenium addition to the cadmium-zinc-telluride matrix for producing high energy resolution X-and gamma-ray detectors. Sci. Rep. 2021, 11, 10338. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, U.N.; Camarda, G.S.; Cui, Y.; James, R.B. Performance Study of Virtual Frisch Grid CdZnTeSe Detectors. Instruments 2022, 6, 69. https://doi.org/10.3390/instruments6040069
Roy UN, Camarda GS, Cui Y, James RB. Performance Study of Virtual Frisch Grid CdZnTeSe Detectors. Instruments. 2022; 6(4):69. https://doi.org/10.3390/instruments6040069
Chicago/Turabian StyleRoy, Utpal N., Giuseppe S. Camarda, Yonggang Cui, and Ralph B. James. 2022. "Performance Study of Virtual Frisch Grid CdZnTeSe Detectors" Instruments 6, no. 4: 69. https://doi.org/10.3390/instruments6040069
APA StyleRoy, U. N., Camarda, G. S., Cui, Y., & James, R. B. (2022). Performance Study of Virtual Frisch Grid CdZnTeSe Detectors. Instruments, 6(4), 69. https://doi.org/10.3390/instruments6040069