Design, Construction and Characterization of Sealed Tube Medium Power CO2 Laser System
Abstract
:1. Introduction
2. Design Simulation
2.1. Carbon Dioxide (CO2) Laser Cavity
2.2. High-Tension Pump Source
3. Prototype Cooling System for Laser Tube
4. Results
4.1. Characterization of the Laser System
4.2. Penetration Rate of Output Beam through Different Materials
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Verdeyen, J.T. Laser Electronics; Prentice-Hall Englewood Cliffs: Hoboken, NJ, USA, 1995. [Google Scholar]
- Wang, C.K. Analysis and Applications of Carbon Dioxide Laser. J. Phys. Conf. Ser. 2020, 1634, 012138. [Google Scholar] [CrossRef]
- Fujimoto, J.; Ohta, T.; Nowak, K.M.; Suganuma, T.; Kameda, H.; Moriya, M.; Yokoduka, T.; Fujitaka, K.; Sumitani, A.; Mizoguchi, H. Development of the reliable 20 kW class pulsed carbon dioxide laser system for LPP EUV light source. In Extreme Ultraviolet (EUV) Lithography II; SPIE: San Jose, CA, USA, 2011; Volume 7969, pp. 880–890. [Google Scholar]
- Patel, C.K.N. Continuous-wave laser action on vibrational-rotational transitions of CO2. Phys. Rev. 1964, 136, A1187. [Google Scholar] [CrossRef] [Green Version]
- Patel, C.K.N. Selective Excitation Through Vibrational Energy Transfer and Optical Maser Action in N2-CO2. Phys. Rev. Lett. 1964, 13, 617. [Google Scholar] [CrossRef]
- Hanst, P.L.; Morreal, J.A. A Wavelength-Selective, Repetitively Pulsed CO2 Laser. Appl. Opt. 1969, 8, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Thiebeaux, C.; Delahaigue, A.; Courtois, D.; Jouve, P. Design of a low-pressure CW carbon dioxide laser. Infrared Phys. 1981, 21, 41–44. [Google Scholar] [CrossRef]
- Bilida, W.D.; Strohschein, J.D.; Seguin, H.J. High-power 24-channel radial array slab rf-excited carbon dioxide laser. In Gas and Chemical Lasers and Applications II; International Society for Optics and Photonics: San Jose, CA, USA, 1997; Volume 2987, pp. 13–21. [Google Scholar]
- Nath, A.K.; Reghu, T.; Paul, C.P.; Ittoop, M.O.; Bhargava, P. High-power transverse flow CW CO2 laser for material processing applications. Opt. Laser Technol. 2005, 37, 329–335. [Google Scholar] [CrossRef]
- Haberberger, D.; Tochitsky, S.; Joshi., C. Fifteen terawatt picosecond CO2 laser system. Opt. Express 2010, 18, 17865–17875. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Imran, T.; Munawar, R.; Bhatti, A.S. Development of Low-Cost Prototype N2 Laser System and Laser-Induced Fluorescence of Pyranine. J. Electr. Electron. Eng. 2022, 10, 47–56. [Google Scholar] [CrossRef]
- Products Made with Zemax Define Our World. Available online: https://www.zemax.com/ (accessed on 20 December 2021).
- Naeem, M.; Fatima, N.-U.-A.; Hussain, M.; Imran, T.; Bhatti, A.S. Design Simulation of Czerny–Turner Configuration-Based Raman Spectrometer Using Physical Optics Propagation Algorithm. Optics 2022, 3, 1–7. [Google Scholar] [CrossRef]
- Naeem, M.; Imran, T. Design and Simulation of Mach-Zehnder Interferometer by Using ZEMAX Optic Studio. Acta Sci. Appl. Phys. 2022, 2, 2–6. [Google Scholar]
- Naeem, M.; Imran, T.; Hussain, M.; Bhatti, A.S. Design Simulation and Data Analysis of an Optical Spectrometer. Optics 2022, 3, 304–312. [Google Scholar] [CrossRef]
- Available online: https://www.ni.com (accessed on 1 August 2021).
- Available online: https://www.multisim.com (accessed on 1 August 2021).
- Floyd, T.L. Electronic Devices: Conventional Current Version; Pearson: London, UK, 2012. [Google Scholar]
- Bondarev, A.V.; Fedorov, S.V.; Muravyova, E.A. Control systems with pulse width modulation in matrix converters. IOP Conf. Ser. Mater. Sci. Eng. 2018, 327, 052008. [Google Scholar] [CrossRef]
- Hussain, M.; Imran, T. Design and construction of prototype transversely excited atmospheric (TEA) nitrogen laser energized by a high voltage electrical discharge. J. King Saud Univ.-Sci. 2015, 27, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Imran, T. Experimental investigations of an efficient electric pump source for Blumlein-based TEA nitrogen laser. Int. J. Sci. Eng. Res. 2017, 8, 1214–1219. [Google Scholar]
- Hussain, M. Design and Fabrication of Prototype Transversely Excited Atmospheric (TEA) Nitrogen Laser. Ph.D. Thesis, COMSATS Institute of Information Technology Lahore-Pakistan, Lahore, India, 2012. [Google Scholar]
- Liu, Y.; Jiang, T.; Yang, Z.; Tai, Y.; Zhang, C. Design and Manufacture of a Pulse Driving Circuit for Semiconductor Laser. In Advancements in Mechatronics and Intelligent Robotics; Springer: Singapore, 2021; pp. 441–447. [Google Scholar]
- Botero, G.; Gomez, D.; Nisperuza, D.; Bastidas, A. Design and performance of a sealed CO2 laser for industrial applications. J. Phys.-Conf. Ser. 2011, 274, 012058. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Abas, N.; Kalair, A.R.; Mariun, N. A Model of a Repetitively Pulsed Sealed-off CO2 Laser. Lasers Eng. 2018, 40, 277–296. [Google Scholar]
- Aram, M.; Soltanmoradi, F.; Behjat, A. Investigation on parallel spark array pre-ionization TEA CO2 laser. In Atomic and Molecular Pulsed Lasers V; International Society for Optics and Photonics: Bellingham, WA, USA, 2004; Volume 5483, pp. 43–50. [Google Scholar]
- Radovanovic, M.; Milos Madic, M. Experimental investigations of CO2 laser cut quality: A review. Nonconv. Technol. Rev. 2011, 4, 35. [Google Scholar]
- Auwal, S.T.; Ramesh, S.; Yusof, F.; Manladan, S.M. A review on laser beam welding of copper alloys. Int. J. Adv. Manuf. Technol. 2018, 96, 475–490. [Google Scholar] [CrossRef]
- Madić, M.; Radovanović, M.; Nedić, B.; Gostimirović, M. CO2 laser cutting cost estimation: Mathematical model and application. Int. J. Laser Sci. Fundam. Theory Anal. Methods 2018, 1, 169–183. [Google Scholar]
- Mushtaq, R.T.; Wang, Y.; Rehman, M.; Khan, A.M.; Mia, M. State-Of-The-Art and Trends in CO2 Laser Cutting of Polymeric Materials—A Review. Materials 2020, 13, 3839. [Google Scholar] [CrossRef]
- Badoniya, P. CO2 laser cutting of different materials—A review. Int. Res. J. Eng. Technol. (IRJET) 2018, 5, 2103–2115. [Google Scholar]
Power | 40 W |
---|---|
Length | 70 cm |
Outer Cylinder Diameter | 5 cm |
Inner Cylinder Diameter | 2 cm |
Triggering Voltage | 9 kV |
Working Voltage | 10 kV |
Power Stability | ±5% |
Triggering Current | 5 mA |
Maximum Working Current | 20 mA |
Spot Diameter | 4 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naeem, M.; Imran, T.; Hussain, M.; Bhatti, A.S. Design, Construction and Characterization of Sealed Tube Medium Power CO2 Laser System. Instruments 2022, 6, 72. https://doi.org/10.3390/instruments6040072
Naeem M, Imran T, Hussain M, Bhatti AS. Design, Construction and Characterization of Sealed Tube Medium Power CO2 Laser System. Instruments. 2022; 6(4):72. https://doi.org/10.3390/instruments6040072
Chicago/Turabian StyleNaeem, Muddasir, Tayyab Imran, Mukhtar Hussain, and Arshad Saleem Bhatti. 2022. "Design, Construction and Characterization of Sealed Tube Medium Power CO2 Laser System" Instruments 6, no. 4: 72. https://doi.org/10.3390/instruments6040072
APA StyleNaeem, M., Imran, T., Hussain, M., & Bhatti, A. S. (2022). Design, Construction and Characterization of Sealed Tube Medium Power CO2 Laser System. Instruments, 6(4), 72. https://doi.org/10.3390/instruments6040072