Overview and Commissioning Status of the UCLA MITHRA Facility
Abstract
:1. Introduction
2. MITHRA Facility Infrastructure
2.1. Photoinjector Drive Laser
2.2. Terawatt Laser
2.3. Accelerator
3. First Experiments
3.1. Beam-Plasma Interactions
3.1.1. Large Plasma Device
3.1.2. Space Plasma
3.2. Dielectric Wakes and THz Radiation
3.3. Inverse Compton Scattering
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenzweig, J.B.; Cahill, A. Ultra-high brightness electron beams from very-high field cryogenic radiofrequency photocathode sources. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 909, 224–228. [Google Scholar] [CrossRef]
- Lawler, G. Cyborg Beamline Development Updates. In Proceedings of the 5th North American Particle Accelerator Conference, NAPAC2022, Albuquerque, NM, USA, 7–12 August 2022. [Google Scholar] [CrossRef]
- Fukasawa, A.; To, H.; Mahapatra, S.K.; Baumgartner, B.; Cahill, A.; Fitzmorris, K.; Li, R.; Musumeci, P.; Rosenzweig, J.B.; Spataro, B.; et al. Progress on the Hybrid Gun Project at UCLA. Phys. Procedia 2014, 52, 2–6. [Google Scholar] [CrossRef]
- Palmer, D.T.; Wang, X.J.; Miller, R.H.; Babzien, M.; Ben-Zvi, I.; Pellegrini, C.; Sheehan, J.; Skaritka, J.; Winick, H.; Woodle, M.; et al. Emittance studies of the BNL/SLAC/UCLA 1.6 cell photocathode RF gun. In Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167), Vancouver, BC, Canada, 16 May 1997; Volume 3, pp. 2687–2689. [Google Scholar] [CrossRef]
- O’Shea, B.; Rosenzweig, J. RF Design of the UCLA/INFN Hybrid SW/TW Photoinjector. AIP Conf. Proc. 2006, 877, 873–879. [Google Scholar] [CrossRef]
- Rosenzweig, J.B.; Valloni, A. Design and applications of an X-band hybrid photoinjector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2011, 657, 107–113. [Google Scholar] [CrossRef]
- Spataro, B.; Valloni, A. RF properties of a X-band hybrid photoinjector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2011, 657, 99–106. [Google Scholar] [CrossRef]
- Zhou, F.; Sheppard, J.C. Establishing Reliable Good Initial Quantum Efficiency and In-Situ Laser Cleaning for the Copper Cathodes in the RF Gun. 2016. SLAC-PUB-16439, Internal SLAC Publication. Available online: https://www.slac.stanford.edu/pubs/slacpubs/16250/slac-pub-16439.pdf (accessed on 10 November 2023).
- Lai, R.; Sievers, A.J. Determination of a charged-particle-bunch shape from the coherent far infrared spectrum. Phys. Rev. E 1994, 50, R3342–R3344. [Google Scholar] [CrossRef]
- Murokh, A.; Rosenzweig, J.B. Bunch length measurement of picosecond electron beams from a photoinjector using coherent transition radiation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1998, 410, 452–460. [Google Scholar] [CrossRef]
- Gekelman, W.; Pribyl, P. The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics. Rev. Sci. Instrum. 2016, 87, 025105. [Google Scholar] [CrossRef]
- Vogt, A.; Heber, B. Jovian electrons in the inner heliosphere-Proposing a new source spectrum based on 30 years of measurements. Astron. Astrophys. 2018, 613, A28. [Google Scholar] [CrossRef]
- Cook, A.M.; Tikhoplav, R. Observation of Narrow-Band Terahertz Coherent Cherenkov Radiation from a Cylindrical Dielectric-Lined Waveguide. Phys. Rev. Lett. 2009, 103, 095003. [Google Scholar] [CrossRef]
- Andonian, G.; Williams, O. Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides. Appl. Phys. Lett. 2011, 98, 202901. [Google Scholar] [CrossRef]
- Son, J.-H.; Oh, S.J.; Cheon, H. Potential clinical applications of terahertz radiation. J. Appl. Phys. 2019, 125, 190901. [Google Scholar] [CrossRef]
- O’Shea, F.H.; Williams, O. Single shot diffraction of picosecond 8.7-keV X-ray pulses. Phys. Rev. Spec. Top.-Accel. Beams 2012, 15, 020702. [Google Scholar] [CrossRef]
- Sakai, Y.; Gadjev, I. Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime. Phys. Rev. Accel. Beams 2017, 20, 060701. [Google Scholar] [CrossRef]
- Janssens, K.; Cotte, M. Using Synchrotron Radiation for Characterization of Cultural Heritage Materials. In Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications; Jaeschke, E.J., Khan, S., Schneider, J.R., Hastings, J.B., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 2457–2483. [Google Scholar]
Charge (nC) | Emittance (mm-mrad) | Energy Spread (%) | Bunch Length (μm) | Peak Current (A) |
---|---|---|---|---|
0.1 | 0.6 | 0.19 | 290 | 41 |
0.25 | 1.1 | 0.26 | 394 | 76 |
0.5 | 2.0 | 0.33 | 496 | 120 |
0.75 | 2.9 | 0.38 | 568 | 158 |
1 | 3.8 | 0.42 | 626 | 191 |
2 | 7.5 | 0.55 | 791 | 303 |
e-Beam | RF | Cathode Laser | Terawatt Laser |
---|---|---|---|
250 pC | 2856 MHz | 267 nm | 800 nm |
4.3 MeV | 20 MW | 150 μJ | 120 mJ |
56 keV (1.3%) | 2.5 μs | 2 ps | 35 fs |
1 Hz | 1 Hz | 10 Hz | 10 Hz |
e-Beam | Laser | Compton X-rays |
---|---|---|
250 pC | 800 nm | 1 × 108 photons/s |
30 MeV | 120 mJ | Epeak = 21 keV |
dE/E = 0.5% | 35 fs | θemission = 17 mrad |
σx,y = 20 µm | wx,y = 20 µm | - |
σz = 90 µm | ZR = 1.6 mm | - |
10 Hz | 10 Hz | 10 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, O.; Fukasawa, A.; Sakai, Y.; Andonian, G.; Bosco, F.; Carillo, M.; Manwani, P.; O’Tool, S.; Pan, J.; Yadav, M.; et al. Overview and Commissioning Status of the UCLA MITHRA Facility. Instruments 2023, 7, 54. https://doi.org/10.3390/instruments7040054
Williams O, Fukasawa A, Sakai Y, Andonian G, Bosco F, Carillo M, Manwani P, O’Tool S, Pan J, Yadav M, et al. Overview and Commissioning Status of the UCLA MITHRA Facility. Instruments. 2023; 7(4):54. https://doi.org/10.3390/instruments7040054
Chicago/Turabian StyleWilliams, Oliver, Atsushi Fukasawa, Yusuke Sakai, Gerard Andonian, Fabio Bosco, Martina Carillo, Pratik Manwani, Sean O’Tool, Jessica Pan, Monika Yadav, and et al. 2023. "Overview and Commissioning Status of the UCLA MITHRA Facility" Instruments 7, no. 4: 54. https://doi.org/10.3390/instruments7040054
APA StyleWilliams, O., Fukasawa, A., Sakai, Y., Andonian, G., Bosco, F., Carillo, M., Manwani, P., O’Tool, S., Pan, J., Yadav, M., & Rosenzweig, J. (2023). Overview and Commissioning Status of the UCLA MITHRA Facility. Instruments, 7(4), 54. https://doi.org/10.3390/instruments7040054