Improving Cathode Testing with a High-Gradient Cryogenic Normal Conducting RF Photogun
Abstract
:1. Introduction
2. Materials and Methods
Photoguns | FERMI [32] | PEGASUS [7,33] | PITZ [34,35] | HZDR [36] /HZB [37] | Cornell [38] /ASU [39] | BNL [40,41] |
---|---|---|---|---|---|---|
Cavity type * | NCRF | NCRF | NCRF | SRF | - | SRF |
Cavity geometry * | 1.6 cell pillbox | 1.6 cell pillbox | 1.5 cell pillbox | 1.5 cell elliptical | - | Quarter wave |
Cathode assembly | Demountable Cu backplate | Demountable Cu backplate + load-lock | Demountable Cu backplate + load-lock | Cryogenic load-lock | Cryogenic load-lock | Cryogenic load-lock |
Design frequency | 2.998 GHz | 2.856 GHz | 1.3 GHz | 1.3 GHz | DC | 0.113 GHz |
Peak cathode field | 125 MV/m | 120 MV/m (Cu backplate) | 60 MV/m | 15–20 MV/m | 10 MV/m | 10–15 MV/m |
Min cathode T | ≥room T | ≥room T | ≥room T | 80 K | 35 K | 2 K |
2.1. CYBORG RF Theory and Simulation
2.2. Photoemission and Beamline Simulations
3. Results
3.1. Cooling and Gun Temperature Stability
3.2. RF FoM with Temperature Dependence
3.3. Beamline Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ASE | Anomolous skin effect |
BDR | Breakdown rate |
C3 | Cool Copper Collider |
CYBORG | CrYogenic Brightness-Optimized Radiofrequency Gun |
DC | Direct current |
FoM | Figures of merit |
ILC | International Linear Collider |
INFN | Istituto Nazionale di Fisica Nucleare |
LCLS | Linear Coherant Light Source |
MLI | Multi-layer insulation |
MTE | Mean transverse energy |
NC | Normal conducting |
NIST | National Institute of Standards and Technologies |
PFN | Pulse-forming network |
QE | Quantum efficiency |
RF | Radiofrequency |
RRR | Residual resistivity ratio |
SRF | Superconducting radiofrequency |
UCLA | University of California, Los Angeles |
UCXFEL | Ultra-compact Xray Free Electron Laser |
References
- Rosenzweig, J.B.; Majernik, N.; Robles, R.R.; Andonian, G.; Camacho, O.; Fukasawa, A.; Kogar, A.; Lawler, G.; Miao, J.; Musumeci, P.; et al. An ultra-compact X-ray free-electron laser. New J. Phys. 2020, 22, 093067. [Google Scholar] [CrossRef]
- Prat, E.; Abela, R.; Aiba, M.; Alarcon, A.; Alex, J.; Arbelo, Y.; Arrell, C.; Arsov, V.; Bacellar, C.; Beard, C.; et al. A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nat. Photonics 2020, 14, 748–754. [Google Scholar] [CrossRef]
- Yabashi, M.; Tanaka, H.; Tanaka, T.; Tomizawa, H.; Togashi, T.; Nagasono, M.; Ishikawa, T.; Harries, J.; Hikosaka, Y.; Hishikawa, A.; et al. Compact xfel and amo sciences: Sacla and scss. J. Phys. At. Mol. Opt. Phys. 2013, 46, 164001. [Google Scholar] [CrossRef]
- Vernieri, C.; Nanni, E.A.; Dasu, S.; Peskin, M.E.; Barklow, T.; Bartoldus, R.; Bhat, P.C.; Black, K.; Brau, J.E.; Breidenbach, M.; et al. A “Cool” route to the Higgs boson and beyond. The Cool Copper Collider. J. Instrum. 2023, 18, P07053. [Google Scholar] [CrossRef]
- Barklow, T.; Dong, S.; Emma, C.; Duris, J.; Huang, Z.; Naji, A.; Nanni, E.; Rosenzweig, J.; Sakdinawat, A.; Tantawi, S.; et al. XCC: An X-ray FEL-based γγ Collider Higgs Factory. arXiv 2022, arXiv:2203.08484. [Google Scholar] [CrossRef]
- Zewail, A.H. 4D Ultrafast Electron Diffraction, Crystallography, and Microscopy. Annu. Rev. Phys. Chem. 2006, 57, 65–103. [Google Scholar] [CrossRef]
- Musumeci, P.; Moody, J.; Scoby, C. Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory. Ultramicroscopy 2008, 108, 1450–1453. [Google Scholar] [CrossRef]
- Filippetto, D.; Musumeci, P.; Li, R.K.; Siwick, B.J.; Otto, M.R.; Centurion, M.; Nunes, J.P.F. Ultrafast electron diffraction: Visualizing dynamic states of matter. Rev. Mod. Phys. 2022, 94, 045004. [Google Scholar] [CrossRef]
- Hartemann, F.; Albert, F. Design of a 2 MeV Compton Scattering Gamma-Ray Source for DNDO Missions; Technical Report; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 2009. [Google Scholar] [CrossRef]
- Günther, B.S. Storage Ring-Based Inverse Compton X-ray Sources: Cavity Design, Beamline Development and X-ray Applications; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- Landahl, E.C. A Compact Compton Scattering X-ray Source for Cancer Detection, Diagnosis, and Treatment; University of California: Davis, CA, USA, 2002. [Google Scholar]
- Dowell, D.H. Sources of Emittance in RF Photocathode Injectors: Intrinsic Emittance, Space Charge Forces Due to Non-Uniformities, RF and Solenoid Effects. arXiv 2016, arXiv:1610.01242. [Google Scholar]
- Knill, C.J.; Douyon, S.; Kawahara, K.; Yamaguchi, H.; Wang, G.; Ago, H.; Moody, N.; Karkare, S. Effects of nonlinear photoemission on mean transverse energy from metal photocathodes. Phys. Rev. Accel. Beams 2023, 26, 093401. [Google Scholar] [CrossRef]
- Dowell, D.H.; Schmerge, J.F. Quantum efficiency and thermal emittance of metal photocathodes. Phys. Rev. ST Accel. Beams 2009, 12, 074201. [Google Scholar] [CrossRef]
- Dolgashev, V.A. Design Criteria for High-Gradient Radio-Frequency Linacs. Appl. Sci. 2023, 13, 849. [Google Scholar] [CrossRef]
- Rosenzweig, J.B.; Cahill, A.; Dolgashev, V.; Emma, C.; Fukasawa, A.; Li, R.; Limborg, C.; Maxson, J.; Musumeci, P.; Nause, A.; et al. Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode sources. Phys. Rev. Accel. Beams 2019, 22, 023403. [Google Scholar] [CrossRef]
- Cahill, A.D.; Rosenzweig, J.B.; Dolgashev, V.A.; Tantawi, S.G.; Weathersby, S. High gradient experiments with X-band cryogenic copper accelerating cavities. Phys. Rev. Accel. Beams 2018, 21, 102002. [Google Scholar] [CrossRef]
- Robles, R.R.; Camacho, O.; Fukasawa, A.; Majernik, N.; Rosenzweig, J.B. Versatile, high brightness, cryogenic photoinjector electron source. Phys. Rev. Accel. Beams 2021, 24, 063401. [Google Scholar] [CrossRef]
- Rosenzweig, J.; Cahill, A.; Carlsten, B.; Castorina, G.; Croia, M.; Emma, C.; Fukusawa, A.; Spataro, B.; Alesini, D.; Dolgashev, V.; et al. Ultra-high brightness electron beams from very-high field cryogenic radiofrequency photocathode sources. Nucl. Instruments Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2018, 909, 224–228. [Google Scholar] [CrossRef]
- Anisimov, P.; Simakov, E.; Xu, H. Emittance compensation in a high charge TOPGUN photoinjector. In Proceedings of the 14th International Particle Accelerator Conference, Venice, Italy, 7–12 May 2023; pp. 2747–2750. [Google Scholar] [CrossRef]
- Grudiev, A.; Calatroni, S.; Wuensch, W. New local field quantity describing the high gradient limit of accelerating structures. Phys. Rev. ST Accel. Beams 2009, 12, 102001. [Google Scholar] [CrossRef]
- Nordlund, K.; Djurabekova, F. Defect model for the dependence of breakdown rate on external electric fields. Phys. Rev. ST Accel. Beams 2012, 15, 071002. [Google Scholar] [CrossRef]
- Degiovanni, A.; Wuensch, W.; Giner Navarro, J. Comparison of the conditioning of high gradient accelerating structures. Phys. Rev. Accel. Beams 2016, 19, 032001. [Google Scholar] [CrossRef]
- Cultrera, L.; Karkare, S.; Lee, H.; Liu, X.; Bazarov, I.; Dunham, B. Cold electron beams from cryocooled, alkali antimonide photocathodes. Phys. Rev. ST Accel. Beams 2015, 18, 113401. [Google Scholar] [CrossRef]
- Vecchione, T.; Dowell, D.; Wan, W.; Feng, J.; Padmore, H. Quantum efficiency and transverse momentum from metals. In Proceedings of the 35th International Free-Electron Laser Conference (FEL2013), New York, NY, USA, 26–30 August 2013. 424p. [Google Scholar]
- Singer, W. SRF Cavity Fabrication and Materials. arXiv 2014, arXiv:1501.07142. [Google Scholar]
- Rao, T.; Dowell, D.H. An Engineering Guide To Photoinjectors. arXiv 2014, arXiv:1403.7539. [Google Scholar]
- Alesini, D.; Cardelli, F.; Castorina, G.; Croia, M.; Diomede, M.; Ferrario, M.; Gallo, A.; Giribono, A.; Spataro, B.; Vaccarezza, C.; et al. Design of a Full C-Band Injector for Ultra-High Brightness Electron Beam. In Proceedings of the 10th International Particle Accelerator Conference (IPAC’19), Melbourne, Australia, 19–24 May 2019; pp. 1979–1982. [Google Scholar] [CrossRef]
- Wang, C.; Tan, J.; Zhu, Z.; Huang, X.; Wang, L.; Fang, W.; Zhao, Z. Design and low-power RF test of a C-band cryogenic RF gun. Nucl. Instruments Methods Phys. Res. Sect. Accel. Spectrometers, Detect. Assoc. Equip. 2021, 1010, 165488. [Google Scholar] [CrossRef]
- Kostin, R.; Bice, D.; Jing, C.; Khabiboulline, T.; Posen, S. First High-Gradient Results of UED/UEM SRF Gun at Cryogenic Temperatures. In Proceedings of the 5th International Particle Accelerator Conference, Albuquerque, NM, USA, 7–12 August 2022; pp. 607–610. [Google Scholar] [CrossRef]
- Lucas, T.G.; Braun, H.H.; Craievich, P.; Fortunati, R.; Kirchgeorg, N.; Magazinik, A.; Pedrozzi, M.; Raguin, J.Y.; Reiche, S.; Schaer, M.; et al. Toward a brightness upgrade to the SwissFEL: A high gradient traveling-wave rf photogun. Phys. Rev. Accel. Beams 2023, 26, 103401. [Google Scholar] [CrossRef]
- D’Auria, G.; Bacescu, D.; Badano, L.; Cianciosi, F.; Craievich, P.; Danailov, M.; Penco, G.; Rumiz, L.; Trovo, M.; Turchet, A.; et al. The new photoinjector for the FERMI project. In Proceedings of the 2007 IEEE Particle Accelerator Conference (PAC), Albuquerque, NM, USA, 25–29 June 2007; pp. 974–976. [Google Scholar] [CrossRef]
- Li, R.K.; Musumeci, P. Single-Shot MeV Transmission Electron Microscopy with Picosecond Temporal Resolution. Phys. Rev. Appl. 2014, 2, 024003. [Google Scholar] [CrossRef]
- Krasilnikov, M.; Stephan, F.; Asova, G.; Grabosch, H.J.; Groß, M.; Hakobyan, L.; Isaev, I.; Ivanisenko, Y.; Jachmann, L.; Khojoyan, M.; et al. Experimentally minimized beam emittance from an L-band photoinjector. Phys. Rev. ST Accel. Beams 2012, 15, 100701. [Google Scholar] [CrossRef]
- Shu, G.; Qian, H.; Aftab, N.; Boonpornprasert, P.; Georgiev, G.; Good, J.; Gross, M.; Koschitzki, C.; Krasilnikov, M.; Lueangaramwong, A.; et al. Dark current studies of an L-band normal conducting RF gun. Nucl. Instruments Methods Phys. Res. Sect. Accel. Spectrometers, Detect. Assoc. Equip. 2021, 1010, 165546. [Google Scholar] [CrossRef]
- Neumann, A.; Böhlick, D.; Bürger, M.; Echevarria, P.; Frahm, A.; Glock, H.W.; Göbel, F.; Heling, S.; Janke, K.; Jankowiak, A.; et al. The BERLinPro SRF Photoinjector System—From First RF Commissioning to First Beam. In Proceedings of the 9th International Particle Accelerator Conference, Vancouver, Canada, 29 April–4 May 2018. [Google Scholar] [CrossRef]
- Xiang, R.; Schaber, J. Review of Recent Progress on Advanced Photocathodes for Superconducting RF Guns. Micromachines 2022, 13, 1241. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Liu, X.; Cultrera, L.; Dunham, B.; Kostroun, V.O.; Bazarov, I.V. A cryogenically cooled high voltage DC photoemission electron source. Rev. Sci. Instruments 2018, 89, 083303. [Google Scholar] [CrossRef]
- Gevorkyan, G.; Sarabia-Cardenas, C.; Kachwala, A.; Knill, C.; Hanks, T.J.; Bhattacharyya, P.; Li, W.H.; Cultrera, L.; Galdi, A.; Bazarov, I.; et al. A cryogenically cooled 200 kV DC photoemission electron gun for ultralow emittance photocathodes. Rev. Sci. Instruments 2023, 94, 091501. [Google Scholar] [CrossRef]
- Xin, T.; Ben-Zvi, I.; Brutus, J.C.; Folz, C.; Hayes, T.; Inacker, P.; Jing, Y.C.; Kayran, D.; Litvinenko, V.; Ma, J.; et al. Performance of 112 MHz SRF Gun at BNL. In Proceedings of the 19th International Conference on RF Superconductivity (SRF 2019), Dresden, Germany, 30 June–5 July 2019; p. FRCAB5. [Google Scholar] [CrossRef]
- Petrushina, I.; Litvinenko, V.N.; Jing, Y.; Ma, J.; Pinayev, I.; Shih, K.; Wang, G.; Wu, Y.H.; Altinbas, Z.; Brutus, J.C.; et al. High-Brightness Continuous-Wave Electron Beams from Superconducting Radio-Frequency Photoemission Gun. Phys. Rev. Lett. 2020, 124, 244801. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Podobedov, B. Resistive wall wakefields in the extreme anomalous skin effect regime. Phys. Rev. ST Accel. Beams 2009, 12, 044401. [Google Scholar] [CrossRef]
- Bass, J.; Pratt, W.P.; Schroeder, P.A. The temperature-dependent electrical resistivities of the alkali metals. Rev. Mod. Phys. 1990, 62, 645–744. [Google Scholar] [CrossRef]
- Nasr, M.; Nanni, E.; Breidenbach, M.; Weathersby, S.; Oriunno, M.; Tantawi, S. Experimental demonstration of particle acceleration with normal conducting accelerating structure at cryogenic temperature. Phys. Rev. Accel. Beams 2021, 24, 093201. [Google Scholar] [CrossRef]
- Reuter, G.; Sondheimer, E. The theory of the anomalous skin effect in metals. Proc. R. Soc. London. Ser. Math. Phys. Sci. 1948, 195, 336–364. [Google Scholar] [CrossRef]
- Chambers, R. Anomalous skin effect in metals. Nature 1950, 165, 239–240. [Google Scholar] [CrossRef]
- Ratzinger, U.; Wang, H. The anomalous skin effect and copper cavity operation at cryogenic conditions. arXiv 2023, arXiv:2211.00135. [Google Scholar]
- Gurzhi, R. Contribution to the theory of the skin effect in metals at low temperatures. Sov. Phys. JETP 1964, 20, 1228–1230. [Google Scholar]
- Lawler, G.; Bosco, F.; Rosenzweig, J. Improving Interface Physics Understanding in High-Frequency Cryogenic Normal Conducting Cavities. arXiv 2023, arXiv:2310.11578. [Google Scholar]
- Zheng, L.; Shao, J.; Du, Y.; Power, J.G.; Wisniewski, E.E.; Liu, W.; Whiteford, C.E.; Conde, M.; Doran, S.; Jing, C.; et al. Overestimation of thermal emittance in solenoid scans due to coupled transverse motion. Phys. Rev. Accel. Beams 2018, 21, 122803. [Google Scholar] [CrossRef]
- Zhao, Q.; Krasilnikov, M.; Isaev, I.; Qian, H.; Boonpornprasert, P.; Asova, G.; Chen, Y.; Good, J.; Gross, M.; Huck, H.; et al. Beam asymmetry studies with quadrupole field errors in the PITZ gun section. In Proceedings of the 38th International Free Electron Laser Conference (FEL2017), Santa Fe, NM, USA, 20–25 August 2017. [Google Scholar]
- Rosenzweig, J.B.; Andonian, G.; Agustsson, R.; Anisimov, P.M.; Araujo, A.; Bosco, F.; Carillo, M.; Chiadroni, E.; Giannessi, L.; Huang, Z.; et al. A high-flux compact X-ray free-electron laser for next-generation chip metrology needs. Preprints 2023, 2023111639. [Google Scholar] [CrossRef]
- Oist, Y.H.; Onna-son, O.; Bowden, G.B.; Dolgashev, V.A.; Guo, J.; Franzi, M.; Tantawi, S. Measurements of Copper RF Surface Resistance at Cryogenic Temperatures for Applications to X-Band and S-Band Accelerators. In Proceedings of the the Seventh International Particle Accelerator Conference, Busan, Republic of Korea, 8–13 May 2016; pp. 487–490. [Google Scholar] [CrossRef]
- Lawler, G.; Rosenzweig, J.; Fukasawa, A.; Parsons, J.; Majernik, N.; Montanez, N.; Williams, O.; Manwani, P.; Sakai, Y.; Bosco, F.; et al. Temperature stability in CrYogenic Brightness-Optimized Radiofrequency Gun (CYBORG). In Proceedings of the 14th International Particle Accelerator Conference, Venice, Italy, 7–12 May 2023; pp. 1425–1427. [Google Scholar] [CrossRef]
- Galdi, A.; Balajka, J.; DeBenedetti, W.J.I.; Cultrera, L.; Bazarov, I.V.; Hines, M.A.; Maxson, J.M. Reduction of surface roughness emittance of Cs3Sb photocathodes grown via codeposition on single crystal substrates. Appl. Phys. Lett. 2021, 118, 244101. [Google Scholar] [CrossRef]
- Cultrera, L. Improved Lifetime of a High Spin Polarization Superlattice Photocathode; Technical Report; Brookhaven National Lab. (BNL): Upton, NY, USA, 2021. [Google Scholar]
- Cultrera, L. Spin polarized electron beams production beyond III-V semiconductors. arXiv 2022, arXiv:2206.15345. [Google Scholar]
- Li, R.K.; Roberts, K.G.; Scoby, C.M.; To, H.; Musumeci, P. Nanometer emittance ultralow charge beams from rf photoinjectors. Phys. Rev. ST Accel. Beams 2012, 15, 090702. [Google Scholar] [CrossRef]
- Marx, D.; Giner Navarro, J.; Cesar, D.; Maxson, J.; Marchetti, B.; Assmann, R.; Musumeci, P. Single-shot reconstruction of core 4D phase space of high-brightness electron beams using metal grids. Phys. Rev. Accel. Beams 2018, 21, 102802. [Google Scholar] [CrossRef]
- Marx, D. Characterization of Ultrashort Electron Bunches at the Sinbad-Ares Linac; Technical Report; Deutsches Elektronen-Synchrotron: Hamburg, Germany, 2019. [Google Scholar]
- Xu, H.; Anisimov, P.; Barkley, W.; Simakov, E. C-band photoinjector radiofrequency cavity design for enhanced beam generation. In Proceedings of the 14th International Particle Accelerator Conference, Venice, Italy, 7–12 May 2023; pp. 2061–2063. [Google Scholar] [CrossRef]
- Alexander, A.; Anisimov, P.; Barkley, W.; Dimitrov, D.; Haynes, B.; Pavlenko, V.; Rai, D.; Simakov, E.; Tajima, T.; Xu, H.; et al. Update on the status of the C-band high gradient program at LANL. In Proceedings of the 14th International Particle Accelerator Conference, Venice, Italy, 7–12 May 2023; pp. 2057–2060. [Google Scholar] [CrossRef]
Parameter | 295 K | 95 K | 77 K | 45 K |
---|---|---|---|---|
[MHz] | 1 | 1 | ||
1 | 14,326 1 | 21,000 | 30,000 | |
Coupling | 1 | 1 | ||
Filling time [] | 1 | 1 | ||
Power [MW] for 120 MV/m | ||||
Energy [J] per 2 s pulse | ||||
Cathode field @ 0.5 MW | MV/m | MV/m | MV/m | MV/m |
Parameter | CYBORG Phase 1 | CYBORG Phase 2 |
---|---|---|
Cavity type | NCRF | - |
Cavity geometry | 0.5 cell re-entrant | - |
Cathode assembly | Demountable Cu backplate | Cryogenic load lock |
Design frequency | GHz | 5.700–5.720 GHz |
Peak cathode field | ≥120 MV/m | - |
Operating temperature | 300–95 K 1 | 300–77 K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawler, G.E.; Bosco, F.; Carillo, M.; Fukasawa, A.; Li, Z.; Majernik, N.; Sakai, Y.; Tantawi, S.; Williams, O.; Yadav, M.; et al. Improving Cathode Testing with a High-Gradient Cryogenic Normal Conducting RF Photogun. Instruments 2024, 8, 14. https://doi.org/10.3390/instruments8010014
Lawler GE, Bosco F, Carillo M, Fukasawa A, Li Z, Majernik N, Sakai Y, Tantawi S, Williams O, Yadav M, et al. Improving Cathode Testing with a High-Gradient Cryogenic Normal Conducting RF Photogun. Instruments. 2024; 8(1):14. https://doi.org/10.3390/instruments8010014
Chicago/Turabian StyleLawler, Gerard Emile, Fabio Bosco, Martina Carillo, Atsushi Fukasawa, Zenghai Li, Nathan Majernik, Yusuke Sakai, Sami Tantawi, Oliver Williams, Monika Yadav, and et al. 2024. "Improving Cathode Testing with a High-Gradient Cryogenic Normal Conducting RF Photogun" Instruments 8, no. 1: 14. https://doi.org/10.3390/instruments8010014
APA StyleLawler, G. E., Bosco, F., Carillo, M., Fukasawa, A., Li, Z., Majernik, N., Sakai, Y., Tantawi, S., Williams, O., Yadav, M., & Rosenzweig, J. (2024). Improving Cathode Testing with a High-Gradient Cryogenic Normal Conducting RF Photogun. Instruments, 8(1), 14. https://doi.org/10.3390/instruments8010014