A High-Flux Compact X-ray Free-Electron Laser for Next-Generation Chip Metrology Needs
Abstract
:1. Introduction
2. The Ultracompact X-ray Free-Electron Laser: Background and Status
3. Recent Cryogenic Photoinjector Development
4. The Challenge of Ptychographic Laminography
5. Extending the UCXFEL to High-Flux Hard X-ray, High-Coherence Operation
Linear Accelerator Design Evolution
6. High-Gradient Accelerating Cavity Testing
7. Injection into the Booster Linac and BBU Effects
SRWF-Induced Emittance Dilution
8. IFEL Modulation and Beam Compression
8.1. Very-High-Frequency RF Devices for Bunch Compression
8.2. Long-Range BBU Effects after First Compression
8.3. Undulator Resistive Wall Wakefield Mitigation
9. X-ray Regenerative Amplifier FEL Performance
10. Conclusions and Outlook for Chip Metrology XFEL Development
- Engage with imaging community and industrial users to set photon flux and spectral quality demands for ptychographic laminography chip inspection;
- Examine advantages of cryo-emission through measurements at emerging UCLA infrastructure;
- Finalize high-brightness RF gun technical approach based on cryo-RF experimental results;
- Fabricate new C-band linear accelerator sections with optimized power distribution requiring quadrant symmetry;
- Perform high-gradient testing of two-cell structures and one-meter linac sections at room temperature to achieve 100 MeV/m gradients;
- Perform cost optimization of RF and linear accelerator systems based on preliminary engineering design to determine technical choice for industrialized instrument;
- Optimize alignment and mechanical stability systems as well as active correctors for orbits;
- Consider beamline layout and design, including transport magnet systems, vacuum systems, and advanced transverse and longitudinal beam diagnostic systems;
- Quantify pulse–pulse variation beam quality, stability, and reproducibility as is critically important for image reconstruction;
- Reexamine XRAFEL design for increased spectral brightness and consistency with optimized ptychographic application;
- Design short-period cryogenic undulator with strong focusing and beam/radiation diagnostic systems;
- Consider X-ray optics design and engineering development for both XRAFEL and ptychography systems;
- Industrialize accelerator and FEL technical approach, including RF, cryogenic systems. This is in progress at RadiaBeam in the context of the present collaboration;
- Address the role of end station and detector technology. Consider the design, development, and integration of the ptychographic laminography system for industrial-scale chip metrology with collaborators from imaging community and the semiconductor industry;
- Integrate algorithm and big data challenges from ptychographic laminography into system design;
- Perform preliminary cost analysis of developing a prototype XRAFEL for chip metrology, with fully capable end station for fast inspection in the industrial environment.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pellegrini, C.; Marinelli, A.; Reiche, S. The physics of X-ray free-electron lasers. Rev. Mod. Phys. 2016, 88, 015006. [Google Scholar] [CrossRef]
- Huang, Z.; Kim, K.J. Review of X-ray free-electron laser theory. Phys. Rev. Spec. Top.-Accel. Beams 2007, 10, 034801. [Google Scholar] [CrossRef]
- Pellegrini, C. X-ray free-electron lasers: From dreams to reality. Phys. Scr. 2016, 2016, 014004. [Google Scholar] [CrossRef]
- Miao, J.; Ishikawa, T.; Robinson, I.K.; Murnane, M.M. Beyond crystallography: Diffractive imaging using coherent X-ray light sources. Science 2015, 348, 530–535. [Google Scholar] [CrossRef]
- Robinson, I.; Harder, R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nat. Mater. 2009, 8, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Minitti, M.P.; Budarz, J.M.; Kirrander, A.; Robinson, J.S.; Ratner, D.; Lane, T.J.; Zhu, D.; Glownia, J.M.; Kozina, M.; Lemke, H.T.; et al. Imaging Molecular Motion: Femtosecond X-ray Scattering of an Electrocyclic Chemical Reaction. Phys. Rev. Lett. 2015, 114, 255501. [Google Scholar] [CrossRef]
- Altarelli, M.; Brinkmann, R.; Chergui, M.; Decking, W.; Dobson, B.; Düsterer, S.; Grübel, G.; Graeff, W.; Graafsma, H.; Hajdu, J.; et al. The European X-ray Free-Electron Laser; Technical Design Report; DESY XFEL Project Group: Hamburg, Germany, July 2007. [Google Scholar]
- Arthur, J.; Anfinrud, P.; Audebert, P.; Bane, K.; Ben-Zvi, I.; Bharadwaj, V.; Bionta, R.; Bolton, P. Linac Coherent Light Source (LCLS) Conceptual Design Report; SLAC-R-593; Stanford University: Stanford, CA, USA, 2002. [Google Scholar]
- LCLS-II Project Team. LCLS-II Conceptual Design Report; Technical report, Report LCLSII-1.1-DR-0001-R0; SLAC: Menlo Park, CA, USA, 2014. [Google Scholar]
- Zhang, M.; Guo, Z.; Mi, X.; Li, Z.; Liu, Y. Ultrafast Imaging of Molecular Dynamics Using Ultrafast Low-Frequency Lasers, X-ray Free Electron Lasers, and Electron Pulses. J. Phys. Chem. Lett. 2022, 13, 1668–1680. [Google Scholar] [CrossRef]
- Feldhaus, J.; Krikunova, M.; Meyer, M.; Möller, T.; Moshammer, R.; Rudenko, A.; Tschentscher, T.; Ullrich, J. AMO science at the FLASH and European XFEL free-electron laser facilities. J. Phys. B At. Mol. Opt. Phys. 2013, 46, 164002. [Google Scholar] [CrossRef]
- Barty, A.; Küpper, J.; Chapman, H.N. Molecular Imaging Using X-ray Free-Electron Lasers. Annu. Rev. Phys. Chem. 2013, 64, 415–435. [Google Scholar] [CrossRef]
- Maeda, Y.; Hironaka, Y.; Iwasaki, T.; Kawasaki, K.; Sakawa, Y.; Izumi, T.; Ota, M.; Egashira, S.; Nakagawa, Y.; Higashi, N.; et al. Observation of ultra-high energy density state with X-ray free electron laser SACLA. High Energy Density Phys. 2020, 36, 100813. [Google Scholar] [CrossRef]
- Huang, N.; Deng, H.; Liu, B.; Wang, D.; Zhao, Z. Features and futures of X-ray free-electron lasers. Innovation 2021, 2, 100097. [Google Scholar] [CrossRef]
- Yoshida, R.; Yamashige, H.; Miura, M.; Kimura, T.; Joti, Y.; Bessho, Y.; Kuramoto, M.; Yu, J.; Khakurel, K.; Tono, K.; et al. Extending the potential of X-ray free-electron lasers to industrial applications—An initiatory attempt at coherent diffractive imaging on car-related nanomaterials. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 244008. [Google Scholar] [CrossRef]
- Rosenzweig, J.; Majernik, N.; Robles, R.; Andonian, G.; Camacho, O.; Fukasawa, A.; Kogar, A.; Lawler, G.; Miao, J.; Musumeci, P.; et al. An ultra-compact X-ray free-electron laser. New J. Phys. 2020, 22, 093067. [Google Scholar] [CrossRef]
- Gondrom, S.; Zhou, J.; Maisl, M.; Reiter, H.; Kröning, M.; Arnold, W. X-ray computed laminography: An approach of computed tomography for applications with limited access. Nucl. Eng. Des. 1999, 190, 141–147. [Google Scholar] [CrossRef]
- Batey, D.J.; Van Assche, F.; Vanheule, S.; Boone, M.N.; Parnell, A.J.; Mykhaylyk, O.O.; Rau, C.; Cipiccia, S. X-ray Ptychography with a Laboratory Source. Phys. Rev. Lett. 2021, 126, 193902. [Google Scholar] [CrossRef] [PubMed]
- Pompili, R.; Alesini, D.; Anania, M.; Arjmand, S.; Behtouei, M.; Bellaveglia, M.; Biagioni, A.; Buonomo, B.; Cardelli, F.; Carpanese, M.; et al. Free-electron lasing with compact beam-driven plasma wakefield accelerator. Nature 2022, 605, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Feng, K.; Ke, L.; Yu, C.; Xu, Y.; Qi, R.; Chen, Y.; Qin, Z.; Zhang, Z.; Fang, M.; et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 2021, 595, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Labat, M.; Cabadağ, J.C.; Ghaith, A.; Irman, A.; Berlioux, A.; Berteaud, P.; Blache, F.; Bock, S.; Bouvet, F.; Briquez, F.; et al. Seeded free-electron laser driven by a compact laser plasma accelerator. Nat. Photonics 2023, 17, 150–156. [Google Scholar] [CrossRef]
- Rosenzweig, J.B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; et al. The GALAXIE all-optical FEL project. AIP Conf. Proc. 2012, 1507, 493–498. [Google Scholar] [CrossRef]
- Peralta, E.; Soong, K.; England, R.; Colby, E.; Wu, Z.; Montazeri, B.; McGuinness, C.; McNeur, J.; Leedle, K.; Walz, D.; et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 2013, 503, 91–94. [Google Scholar] [CrossRef]
- Shiloh, R.; Illmer, J.; Chlouba, T.; Yousefi, P.; Schönenberger, N.; Niedermayer, U.; Mittelbach, A.; Hommelhoff, P. Electron phase-space control in photonic chip-based particle acceleration. Nature 2021, 597, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Cahill, A.; Rosenzweig, J.; Dolgashev, V.A.; Tantawi, S.G.; Weathersby, S. High gradient experiments with X-band cryogenic copper accelerating cavities. Phys. Rev. Accel. Beams 2018, 21, 102002. [Google Scholar] [CrossRef]
- Bosco, F.; Camacho, O.; Carillo, M.; Chiadroni, E.; Faillace, L.; Fukasawa, A.; Giribono, A.; Giuliano, L.; Majernik, N.; Mostacci, A.; et al. Fast models for the evaluation of self-induced field effects in linear accelerators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1056, 168642. [Google Scholar] [CrossRef]
- Robles, R.R.; Camacho, O.; Fukasawa, A.; Majernik, N.; Rosenzweig, J.B. Versatile, high brightness, cryogenic photoinjector electron source. Phys. Rev. Accel. Beams 2021, 24, 063401. [Google Scholar] [CrossRef]
- Rosenzweig, J.; Cahill, A.; Dolgashev, V.; Emma, C.; Fukasawa, A.; Li, R.; Limborg, C.; Maxson, J.; Musumeci, P.; Nause, A.; et al. Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode sources. Phys. Rev. Accel. Beams 2019, 22, 023403. [Google Scholar] [CrossRef]
- Lawler, G.; Fukasawa, A.; Li, Z.; Majernik, N.; Rosenzweig, J.; Suraj, A.; Yadav, M. RF Testbed for Cryogenic Photoemission Studies. In Proceedings of the 12th International Particle Accelerator Conference (IPAC’21), Virtual, 24–28 May 2021; JACoW Publishing: Geneva, Switzerland, 2021; pp. 2810–2813. [Google Scholar] [CrossRef]
- Lawler, G.; Rosenzweig, J. Temperature Stability in CrYogenic Brightness-Optimized Radiofrequency Gun (CYBORG). In Proceedings of the 14th International Particle Accelerator Conference (IPAC’23), Venice, Italy, 7–12 May 2023; JACoW Publishing: Geneva, Switzerland, 2023; pp. 1407–1409. [Google Scholar] [CrossRef]
- Lawler, G.; Fukasawa, A.; Li, Z.; Mostacci, A.; Parsons, J.; Rosenzweig, J.; Simakov, E.; Spataro, B.; Tajima, T.; Tantawi, S. Design of a High-Power RF Breakdown Test for a Cryocooled C-Band Copper Structure. In Proceedings of the 4th North American Particle Accelerator Conference (NAPAC’22), Albuquerque, NM, USA, 7–12 August 2022; JACoW Publishing: Geneva, Switzerland, 2022; pp. 516–518. [Google Scholar] [CrossRef]
- Lawler, G.; Rosenzweig, J. Effects of Bulk Material Properties on RF Surface Resistivity. In Proceedings of the 14th International Particle Accelerator Conference (IPAC’23), Venice, Italy, 7–12 May 2023; JACoW Publishing: Geneva, Switzerland, 2023; pp. 1404–1406. [Google Scholar] [CrossRef]
- Lawler, G.; Bosco, F.; Rosenzweig, J. Improving Interface Physics Understanding in High-Frequency Cryogenic Normal Conducting Cavities. arXiv 2023, arXiv:2310.11578. [Google Scholar]
- Vecchione, T.; Dowell, D.; Wan, W.; Feng, J.; Padmore, H.A. Quantum efficiency and transverse momentum from metals. In Proceedings of the FEL2013, New York, NY, USA, 19–26 August 2013; JACoW: Geneva, Switzerland, 2013; p. 424. [Google Scholar]
- Xu, H.; Anisimov, P.M.; Barkley, W.C.; Bustos, G.R.; Simakov, E.I. C-band photoinjector radiofrequency cavity design for enhanced beam generation. In Proceedings of the 14th International Particle Accelerator Conference (IPAC’23), Venice, Italy, 7–12 May 2023; JACoW Publishing: Geneva, Switzerland, 2023; pp. 2061–2063. [Google Scholar] [CrossRef]
- Anisimov, P.; Xu, H.; Simakov, E.I. Emittance compensation in a high charge TOPGUN photoinjector. In Proceedings of the 14th International Particle Accelerator Conference (IPAC’23), Venice, Italy, 7–12 May 2023; JACoW Publishing: Geneva, Switzerland, 2023; pp. 2747–2750. [Google Scholar] [CrossRef]
- Simakov, E.I.; Alexander, A.M.; Anisimov, P.M.; Barkley, W.; Dimitrov, D.; Haynes, W.B.; Pavlenko, V.; Rai, D.; Tajima, T.; Xu, H.; et al. Update on the status of the C-band high gradient program at LANL. In Proceedings of the 14th International Particle Accelerator Conference (IPAC’23), Venice, Italy, 7–12 May 2023; JACoW Publishing: Geneva, Switzerland, 2023; pp. 2057–2060. [Google Scholar] [CrossRef]
- Majernik, N.; Suraj, A.; Fukasawa, A.; Rosenzweig, J.B. Multi-start foil wound solenoids for multipole suppression. In Proceedings of the 12th International Particle Accelerator Conference (IPAC’21), Campinas, Brazil, 24–28 May 2021. [Google Scholar]
- Selvamanickam, V. 2—High temperature superconductor (HTS) wires and tapes. In High Temperature Superconductors (HTS) for Energy Applications; Melhem, Z., Ed.; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2012; pp. 34–68. [Google Scholar] [CrossRef]
- Metrology Gaps in the Semiconductor Ecosystem: First Steps toward Establishing the CHIPS R&D Metrology Program. Available online: https://www.nist.gov/system/files/documents/2023/06/05 (accessed on 20 November 2023).
- Strategic Opportunities for, U.S. Semiconductor Manufacturing. Available online: https://nvlpubs.nist.gov/nistpubs/CHIPS/NIST.CHIPS.1000.pdf (accessed on 20 November 2023).
- A Strategy for the CHIPS for America Fund. Available online: https://www.nist.gov/chips/implementation-strategy (accessed on 20 November 2023).
- Servanton, G.; Clement, L.; Lepinay, K.; Lorut, F.; Pantel, R.; Pofelski, A.; Bicais, N. Advanced TEM Characterization for the Development of 28-14nm nodes based on fully-depleted Silicon-on-Insulator Technology. J. Phys. Conf. Ser. 2013, 471, 012026. [Google Scholar] [CrossRef]
- Holler, M.; Odstrčil, M.; Guizar-Sicairos, M.; Lebugle, M.; Frommherz, U.; Lachat, T.; Bunk, O.; Raabe, J.; Aeppli, G. LamNI—An instrument for X-ray scanning microscopy in laminography geometry. J. Synchrotron Radiat. 2020, 27, 730–736. [Google Scholar] [CrossRef]
- Holler, M.; Guizar-Sicairos, M.; Tsai, E.H.R.; Dinapoli, R.; Müller, E.; Bunk, O.; Raabe, J.; Aeppli, G. High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature 2017, 543, 402–406. [Google Scholar] [CrossRef]
- Holler, M.; Odstrcil, M.; Guizar-Sicairos, M.; Lebugle, M.; Müller, E.; Finizio, S.; Tinti, G.; David, C.; Zusman, J.; Unglaub, W.; et al. Three-dimensional imaging of integrated circuits with macro-to nanoscale zoom. Nat. Electron. 2019, 2, 464–470. [Google Scholar] [CrossRef]
- Holler, M.; Guizar-Sicairos, M.; Raabe, J. State-of-the-art high-resolution 3D X-ray microscopy for imaging of integrated circuits. Electron. Device Fail. Anal. 2021, 3, 13–19. [Google Scholar] [CrossRef]
- Graves, W.S.; Kärtner, F.X.; Moncton, D.E.; Piot, P. Intense Superradiant X Rays from a Compact Source Using a Nanocathode Array and Emittance Exchange. Phys. Rev. Lett. 2012, 108, 263904. [Google Scholar] [CrossRef]
- Nanni, E.; Graves, W.; Moncton, D. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent X-ray generation. Phys. Rev. Accel. Beams 2018, 21, 014401. [Google Scholar] [CrossRef]
- Singleton, M.; Rosenzweig, J.; Tang, J.; Huang, Z. An Ultra-Compact X-ray Regenerative Amplifier Free-Electron Laser. Instruments 2024, 8, 2. [Google Scholar] [CrossRef]
- Kang, I.; Jiang, Y.; Holler, M.; Guizar-Sicairos, M.; Levi, A.F.J.; Klug, J.; Vogt, S.; Barbastathis, G. Accelerated deep self-supervised ptycho-laminography for three-dimensional nanoscale imaging of integrated circuits. Optica 2023, 10, 1000–1008. [Google Scholar] [CrossRef]
- Robles, R.; Rosenzweig, J. Compression of ultra-high brightness beams for a compact X-ray free-electron laser. Instruments 2019, 3, 53. [Google Scholar] [CrossRef]
- Vernieri, C.; Nanni, E.A.; Dasu, S.; Peskin, M.E.; Barklow, T.; Bartoldus, R.; Bhat, P.C.; Black, K.; Brau, J.E.; Breidenbach, M.; et al. A “Cool” route to the Higgs boson and beyond. The Cool Copper Collider. J. Instrum. 2023, 18, P07053. [Google Scholar] [CrossRef]
- Faillace, L.; Agustsson, R.; Behtouei, M.; Bosco, F.; Bruhwiler, D.; Camacho, O.; Carillo, M.; Fukasawa, A.; Gadjev, I.; Giribono, A.; et al. High field hybrid photoinjector electron source for advanced light source applications. Phys. Rev. Accel. Beams 2022, 25, 063401. [Google Scholar] [CrossRef]
- Nasr, M.; Nanni, E.; Breidenbach, M.; Weathersby, S.; Oriunno, M.; Tantawi, S. Experimental demonstration of particle acceleration with normal conducting accelerating structure at cryogenic temperature. Phys. Rev. Accel. Beams 2021, 24, 093201. [Google Scholar] [CrossRef]
- Farkas, Z.; Hogg, H.; Loew, G.; Wilson, P.B. SLED: A method of doubling SLAC’s energy. In Proceedings of the 9th International Conference on High-Energy Accelerators, SLAC, Stanford, CA, USA, 2–7 May 1974; p. 576. [Google Scholar]
- Kim, D.; Simakov, E.; Li, Z. Study of HOM couplers for the C-band accelerating structure. In Proceedings of the 14th International Particle Accelerator Conference, Venice, Italy, 7–12 May 2023; p. TUPL136. [Google Scholar]
- Gorelov, D.; Fleming, R.L.; Lewellen, J.W.; Middendorf, M.E.; Perez, D.; Schneider, M.E.; Simakov, E.I.; Tajima, T. Status of the C-Band Engineering Research Facility (CERF-NM) Test Stand Development at LANL. In Proceedings of the 2021 Particle Accelerator Conference (IPAC’21), Campinas, Brazil, 24–28 May 2021. [Google Scholar]
- Simakov, E.I.; Alexander, A.M.; Gorelov, D.V.; Hall, T.W.; Middendorf, M.E.; Rai, D.; Tajima, T.; Zuboraj, M.R.A. Update on the status of C-band research and facilities at LANL. In Proceedings of the 2022 North Americal Particle Accelerator Conference, Albuquerque, NM, USA, 6–12 August 2022. [Google Scholar]
- Schneider, M.; Dolgashev, V.; Lewellen, J.W.; Tantawi, S.G.; Nanni, E.A.; Zuboraj, M.; Fleming, R.; Gorelov, D.; Middendorf, M.; Simakov, E.I. High gradient off-axis coupled C-band Cu and CuAg accelerating structures. Appl. Phys. Lett. 2022, 121, 254101. [Google Scholar] [CrossRef]
- Serafini, L.; Rosenzweig, J.B. Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: A theory of emittance compensation. Phys. Rev. E 1997, 55, 7565. [Google Scholar] [CrossRef]
- Rosenzweig, J.; Serafini, L. Transverse particle motion in radio-frequency linear accelerators. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1994, 49, 1599–1602. [Google Scholar] [CrossRef] [PubMed]
- van der Geer, S.B.; de Loos, M.J. Applications of the General Particle Tracer code. In Proceedings of the Proc. 1997 Particle Accelerator Conference, Vancouver, BC, Canada, 12–16 May 1997; Volume 2, pp. 2577–2579. [Google Scholar] [CrossRef]
- Ferrario, M.; Serafini, L.; Tazzioli, F. Multi-bunch dynamics in accelerating structures including interaction with higher order modes. In Proceedings of the International Conference on Particle Accelerators, Washington, DC, USA, 17–20 May 1993; Volume 5, pp. 3279–3281. [Google Scholar] [CrossRef]
- Ferrario, M.; Serafini, L.; Tazzioli, F. Higher Order Modes Interaction with Multi-bunch Trains in Accelerating Structures. In Proceedings of the EPAC, London, UK, 27 June–1 July 1994; pp. 1132–1134. [Google Scholar]
- Lawson, J.D. Radiation from a ring charge passing through a resonator. Part. Accel. 1990, 25, 107–112. [Google Scholar]
- Gluckstern, R.L. High-frequency behavior of the longitudinal impedance for a cavity of general shape. Phys. Rev. D 1989, 39, 2773–2779. [Google Scholar] [CrossRef] [PubMed]
- Heifets, S.A.; Kheifets, S.A. High-frequency limit of the longitudinal impedance of an array of cavities. Phys. Rev. D 1989, 39, 960–970. [Google Scholar] [CrossRef] [PubMed]
- Bane, K. Wakefields of sub-picosecond electron bunches. Int. J. Mod. Phys. A—IJMPA 2007, 22, 3736–3758. [Google Scholar] [CrossRef]
- Zholents, A.A. Current-Enhanced SASE Using an Optical Laser and Its Application to the LCLS; SLAC-PUB-10713; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2004. [Google Scholar] [CrossRef]
- Bane, K.; Stupakov, G. Dechirper wakefields for short bunches. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 820, 156–163. [Google Scholar] [CrossRef]
- Robles, R.; Rosenzweig, J.; van der Geer, S. Three-Dimensional Radiative Effects in the Compression of Ultra-Short Electron Micro-Bunches. In Proceedings of the International Particle Accelerator Conference (IPAC’21), Online, 24–28 May 2021; JACoW Publishing: Geneva, Switzerland, 2021; pp. 1577–1580. [Google Scholar] [CrossRef]
- Behtouei, M.; Spataro, B.; Faillace, L.; Carillo, M.; Leggieri, A.; Palumbo, L.; Migliorati, M. Relativistic versus Nonrelativistic Approaches to a Low Perveance High Quality Matched Beam for a High Efficiency Ka-Band Klystron. Instruments 2021, 5, 33. [Google Scholar] [CrossRef]
- Spataro, B.; Behtouei, M.; Di Paolo, F.; Leggieri, A. A low-perveance electron gun for a high-efficiency Ka-band klystron. Eur. Phys. J. Plus 2022, 137, 769. [Google Scholar] [CrossRef]
- Ivanov, O.A.; Lobaev, M.A.; Vikharev, A.L.; Gorbachev, A.M.; Isaev, V.A.; Hirshfield, J.L.; Gold, S.H.; Kinkead, A.K. Active Microwave Pulse Compressor Using an Electron-Beam Triggered Switch. Phys. Rev. Lett. 2013, 110, 115002. [Google Scholar] [CrossRef]
- Ivanov, O.A.; Vikharev, A.A.; Gorbachev, A.M.; Isaev, V.A.; Lobaev, M.A.; Vikharev, A.L.; Kuzikov, S.V.; Hirshfield, J.L.; LaPointe, M.A. Active quasioptical Ka-band rf pulse compressor switched by a diffraction grating. Phys. Rev. ST Accel. Beams 2009, 12, 093501. [Google Scholar] [CrossRef]
- CST Studio Suite. Available online: https://www.3ds.com/products-services/simulia/products/cst-studio-suitel (accessed on 20 November 2023).
- Bane, K.L.; Gluckstern, R.L. The Transverse wake field of a detuned X band accelerator structure. Part. Accel. 1993, 42, 123–169. [Google Scholar]
- Thompson, K.; Adolphsen, C.; Bane, K. Multibunch beam break-up in detuned structures. In Proceedings of the International Conference on Particle Accelerators, Washington, DC, USA, 17–20 May 1993; Volume 5, pp. 3342–3344. [Google Scholar] [CrossRef]
- Majernik, N.; Rosenzweig, J.B. Design of Comb Fabricated Halbach Undulators. Instruments 2019, 3, 58. [Google Scholar] [CrossRef]
- Majernik, N.; Rosenzweig, J. Halbach undulators using right triangular magnets. Phys. Rev. Accel. Beams 2019, 22, 092401. [Google Scholar] [CrossRef]
- Stupakov, G.; Bane, K.L.; Emma, P.; Podobedov, B. Resistive wall wakefields of short bunches at cryogenic temperatures. Phys. Rev. Spec. Top.—Accel. Beams 2015, 18, 1–6. [Google Scholar] [CrossRef]
- Huang, Z.; Ruth, R.D. Fully Coherent X-ray Pulses from a Regenerative-Amplifier Free-Electron Laser. Phys. Rev. Lett. 2006, 96, 144801. [Google Scholar] [CrossRef]
- Margraf, R.; Robles, R.; Halavanau, A.; Kryzywinski, J.; Li, K.; MacArthur, J.; Osaka, T.; Sakdinawat, A.; Sato, T.; Sun, Y.; et al. Low-loss stable storage of 1.2 Angstrom X-ray pulses in a 14 m Bragg cavity. Nat. Photonics 2023, 17, 878–882. [Google Scholar] [CrossRef]
- O’Shea, F.H.; Marcus, G.; Rosenzweig, J.B.; Scheer, M.; Bahrdt, J.; Weingartner, R.; Gaupp, A.; Grüner, F. Short period, high field cryogenic undulator for extreme performance X-ray free electron lasers. Phys. Rev. Spec. Top.—Accel. Beams 2010, 13, 070702. [Google Scholar] [CrossRef]
- Pound, B.A.; Candler, R.; Crisp, S.; Ody, A.; Musumeci, P.; Rosenzweig, J. Focusing of a relativistic electron beam with a microfabricated quadrupole magnet. Phys. Rev. Accel. Beams 2023, 26, 042401. [Google Scholar] [CrossRef]
- Marcus, G.; Halavanau, A.; Huang, Z.; Krzywinski, J.; MacArthur, J.; Margraf, R.; Raubenheimer, T.; Zhu, D. Refractive Guide Switching a Regenerative Amplifier Free-Electron Laser for High Peak and Average Power Hard X Rays. Phys. Rev. Lett. 2020, 125, 254801. [Google Scholar] [CrossRef]
- Halavanau, A.; Fuller, F.; Kroll, T.; Lutman, A.; Aquila, A.; Decker, F.J.; Pellegrini, C.; Welke, N.; Ash, R.; Bergmann, U.; et al. Population inversion X-ray Laser Oscillator at LCLS. In Proceedings of the Optica High-brightness Sources and Light-driven Interactions Congress, Budapest, Hungary, 23–25 March 2022; Optica Publishing Group: Washington, DC, USA, 2022; p. EF5A.2. [Google Scholar] [CrossRef]
- Kharitonov, K.; Mehrjoo, M.; Ruiz-Lopez, M.; Keitel, B.; Kreis, S.; Gang, S.G.; Pan, R.; Marras, A.; Correa, J.; Wunderer, C.B.; et al. Single-shot ptychography at a soft X-ray free-electron laser. Sci. Rep. 2022, 12, 14430. [Google Scholar] [CrossRef] [PubMed]
- Helfen, L.; Myagotin, A.; Rack, A.; Pernot, P.; Mikulík, P.; Di Michiel, M.; Baumbach, T. Synchrotron-radiation computed laminography for high-resolution three-dimensional imaging of flat devices. Phys. Status Solidi A 2007, 204, 2760–2765. [Google Scholar] [CrossRef]
- Odstrčil, M.; Holler, M.; Raabe, J.; Guizar-Sicairos, M. Alignment methods for nanotomography with deep subpixel accuracy. Opt. Express 2019, 27, 36637–36652. [Google Scholar] [CrossRef] [PubMed]
- Liddle, J.A.; Gallatin, G.M. Lithography, metrology and nanomanufacturing. Nanoscale 2011, 3, 2679–2688. [Google Scholar] [CrossRef]
Parameter | Units | 1 μm Value | 3 μm Value |
---|---|---|---|
Modulator peak magnetic field | T | 0.265 | 0.477 |
Modulator laser peak power | MW | 200 | 80 |
Modulator laser waist size | mm | 0.5 | 0.5 |
Final chicane bend angle | degrees | 0.855 | 1.66 |
Parameter | Units | Value |
---|---|---|
Energy | GeV | 2.44 |
Energy spread | % | 0.03 |
Normalized transverse emittance | nm-rad | 75 |
Peak current | kA | 4.0 |
Undulator parameter, K | 0.501 | |
Undulator period | mm | 6.5 |
Undulator length | m | 4.0 |
Fundamental FEL wavelength | Å | 1.783 |
Photon energy | keV | 6.95 |
Diamond (220) bandwidth | meV | 141 |
Cavity round-trip length (time) | m (ns) | 12 (40) |
Number of electron bunches in an RF pulse | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenzweig, J.B.; Andonian, G.; Agustsson, R.; Anisimov, P.M.; Araujo, A.; Bosco, F.; Carillo, M.; Chiadroni, E.; Giannessi, L.; Huang, Z.; et al. A High-Flux Compact X-ray Free-Electron Laser for Next-Generation Chip Metrology Needs. Instruments 2024, 8, 19. https://doi.org/10.3390/instruments8010019
Rosenzweig JB, Andonian G, Agustsson R, Anisimov PM, Araujo A, Bosco F, Carillo M, Chiadroni E, Giannessi L, Huang Z, et al. A High-Flux Compact X-ray Free-Electron Laser for Next-Generation Chip Metrology Needs. Instruments. 2024; 8(1):19. https://doi.org/10.3390/instruments8010019
Chicago/Turabian StyleRosenzweig, James B., Gerard Andonian, Ronald Agustsson, Petr M. Anisimov, Aurora Araujo, Fabio Bosco, Martina Carillo, Enrica Chiadroni, Luca Giannessi, Zhirong Huang, and et al. 2024. "A High-Flux Compact X-ray Free-Electron Laser for Next-Generation Chip Metrology Needs" Instruments 8, no. 1: 19. https://doi.org/10.3390/instruments8010019
APA StyleRosenzweig, J. B., Andonian, G., Agustsson, R., Anisimov, P. M., Araujo, A., Bosco, F., Carillo, M., Chiadroni, E., Giannessi, L., Huang, Z., Fukasawa, A., Kim, D., Kutsaev, S., Lawler, G., Li, Z., Majernik, N., Manwani, P., Maxson, J., Miao, J., ... Yadav, M. (2024). A High-Flux Compact X-ray Free-Electron Laser for Next-Generation Chip Metrology Needs. Instruments, 8(1), 19. https://doi.org/10.3390/instruments8010019