Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Standards and Stock Solution Preparation
2.2. Portable Mass Spectrometer Utilized for Spectral Determination
2.3. Spray-Based, Ambient Ionization Methods
3. Results and Discussion
3.1. Case Study: Observations Made during Authentic Synthetic Cannabinoid Evidence Screening via FCSI-MS
3.2. Comparison of MeOH and ACN-Based Spray Solvent Systems for Spray-Based Ambient Ionization Methods Employed for Cannabinoid-Class Evidence Types
3.3. Relation of Experimental Observations to Physicochemical Aspects Related to PSI-MS of Cannabinoids
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- May, B.; Naqi, H.A.; Tipping, M.; Scott, J.; Husbands, S.M.; Blagbrough, I.S.; Pudney, C.R. Synthetic cannabinoid receptor agonists detection using fluorescence spectral Fingerprinting. Anal. Chem. 2019, 91, 12971–12979. [Google Scholar] [CrossRef]
- Mensah, E.; Tabrizchi, R.; Daneshtalab, N. Pharmacognosy and effects of cannabinoids in the vascular system. ACS Pharmacol. Transl. Sci. 2022, 5, 1034–1049. [Google Scholar] [CrossRef] [PubMed]
- Bills, B.; Manicke, N. Using sesame seed oil to preserve and preconcentrate cannabinoids for paper spray mass spectrometry. J. Am. Soc. Mass Spectrom. 2020, 31, 675–684. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Gul, W.; Wanas, A.S.; Radwan, M.M. Synthetic cannabinoids: Analysis and metabolites. Life Sci. 2014, 97, 78–90. [Google Scholar] [CrossRef]
- Kumar, S.; Baggi, T.R. Analytical methods for herbal products containing synthetic cannabinoids: A review. Forensic Chem. 2022, 27, 100396. [Google Scholar] [CrossRef]
- Dou, Q.; Liu, W.; Xiang, P.; Zhao, J. Quantitative analysis of three synthetic cannabinoids MDMB-4en-PINACA, ADB-BUTINACA, and ADB-4en-PINACA by thermal-assisted carbon fiber ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2023, 34, 2316–2322. [Google Scholar] [CrossRef] [PubMed]
- Castaneto, M.S.; Gorelick, D.A.; Desrosiers, N.A.; Hartman, R.L.; Pirard, S.; Huestis, M.A. Synthetic cannabinoids: Epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend. 2014, 144, 12–41. [Google Scholar] [CrossRef]
- Brown, H.M.; McDaniel, T.J.; Fedick, P.W.; Mulligan, C.C. The current role of mass spectrometry in forensics and future prospects. Anal. Methods 2020, 12, 3974–3997. [Google Scholar] [CrossRef]
- Evans-Nguyen, K.; Stelmack, A.R.; Clowser, P.C.; Holtz, J.M.; Mulligan, C.C. Fieldable mass spectrometry for forensic science, homeland security and defense applications. Mass Spectrom. Rev. 2021, 40, 628–646. [Google Scholar] [CrossRef]
- Umebachi, R.; Saito, T.; Aoki, H.; Namera, A.; Nakamoto, A.; Kawamura, M.; Inokuchi, S. Detection of synthetic cannabinoids using GC-EI-MS, positive GC-CI-MS, and negative GC-CI-MS. Int. J. Legal Med. 2017, 131, 143–152. [Google Scholar] [CrossRef]
- Akutsu, M.; Sugie, K.-I.; Saito, K. Analysis of 62 synthetic cannabinoids by gas chromatography-mass spectrometry with photoionization. Forensic Toxicol. 2017, 35, 94–103. [Google Scholar] [CrossRef]
- Gerace, E.; Seganti, F.; Di Corcia, D.; Vincenti, M.; Salomone, A. GC-MS identification and quantification of the synthetic cannabinoid MDMB-4en- PINACA in cannabis-derived material seized in the Turin metropolitan area (Italy). Curr. Pharm. Des. 2022, 28, 2618–2621. [Google Scholar] [CrossRef]
- Grabenauer, M.; Krol, W.L.; Wiley, J.L.; Thomas, B.F. Analysis of synthetic cannabinoids using high-resolution mass spectrometry and mass defect filtering: Implications for nontargeted screening of designer drugs. Anal. Chem. 2012, 84, 5574–5581. [Google Scholar] [CrossRef]
- Mulet, C.T.; Tarifa, A.; DeCaprio, A.P. Comprehensive analysis of synthetic cannabinoids and metabolites in oral fluid by online solid-phase extraction coupled to liquid chromatography-triple quadrupole-mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 7937–7953. [Google Scholar] [CrossRef]
- Lorensen, M.D.B.B.; Hayat, S.Y.; Wellner, N.; Bjarholt, N.; Janfelt, C. Leaves of cannabis sativa and their trichomes studied by DESI and MALDI mass spectrometry imaging for their contents of cannabinoids and flavonoids. Phytochem. Anal. 2023, 34, 269–279. [Google Scholar] [CrossRef]
- Musah, R.A.; Domin, M.A.; Walling, M.A.; Shepard, J.R.E. Rapid identification of synthetic cannabinoids in herbal samples via direct analysis in real time mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 1109–1114. [Google Scholar] [CrossRef]
- Lesiak, A.D.; Musah, R.A.; Domin, M.A.; Shepard, J.R.E. DART-MS as a preliminary screening method for “Herbal Incense”: Chemical analysis of synthetic cannabinoids. J. Forensic Sci. 2014, 59, 337–343. [Google Scholar] [CrossRef]
- Habala, L.; Valentová, J.; Pechová, I.; Fuknová, M.; Devínsky, F. DART—LTQ ORBITRAP as an expedient tool for the identification of synthetic cannabinoids. Leg. Med. 2016, 20, 27–31. [Google Scholar] [CrossRef]
- Li, L.-H.; Hsieh, H.-Y.; Hsu, C.-C. Clinical application of ambient ionization mass spectrometry. Mass Spectrom. 2017, 6, S0060. [Google Scholar] [CrossRef]
- Pirro, V.; Jarmusch, A.K.; Vincenti, M.; Cooks, R.G. Direct drug analysis from oral fluid using medical swab touch spray mass spectrometry. Anal. Chim. Acta 2015, 861, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Almeida de Paula, C.C.; Lordeiro, R.A.; Piccin, E.; Augusti, R. Paper spray mass spectrometry applied to the detection of cocaine in simulated samples. Anal. Methods 2015, 7, 9145–9149. [Google Scholar] [CrossRef]
- Steiner, R.R.; Larson, R.L. Validation of the direct analysis in real time source for use in forensic drug screening. J. Forensic Sci. 2009, 54, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Lawton, Z.E.; Traub, A.; Fatigante, W.L.; Mancias, J.; O’Leary, A.E.; Hall, S.E.; Wieland, J.R.; Oberacher, H.; Gizzi, M.C.; Mulligan, C.C. Analytical validation of a portable mass spectrometer featuring interchangeable, ambient ionization sources for high throughput forensic evidence screening. J. Am. Soc. Mass Spectrom. 2017, 28, 1048–1059. [Google Scholar] [CrossRef] [PubMed]
- Venter, A.; Nefliu, M.; Cooks, G.R. Ambient desorption ionization mass spectrometry. Trends Anal. Chem. 2008, 27, 284–290. [Google Scholar] [CrossRef]
- Ma, Q.; Bai, H.; Li, W.; Wang, C.; Cooks, R.G.; Ouyang, Z. Rapid analysis of synthetic cannabinoids using a miniature mass spectrometer with ambient ionization capability. Talanta 2015, 142, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Parasecolo, L.; Dabija, L.G.; Shouk, R.; Shouk, D.; Augusti, R.; Ifa, D.R. Application of sandpaper spray ionization mass spectrometry to comprehensively examine maple leaves infected with distinct fungi. J. Mass Spectrom. 2024, 59, e5000. [Google Scholar] [CrossRef] [PubMed]
- Fatigante, W.L.; Mukta, S.; Lawton, Z.E.; Bruno, A.M.; Traub, A.; Gasa, A.J.; Stelmack, A.R.; Wilson-Frank, C.R.; Mulligan, C.C. Filter cone spray ionization coupled to a portable MS system: Application to on-site forensic evidence and environmental sample analysis. J. Am. Soc. Mass Spectrom. 2020, 31, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.M.; McDaniel, T.J.; West, C.P.; Bondzie, E.H.; Aldeman, M.R.; Molnar, B.T.; Mulligan, C.C.; Fedick, P.W. Characterization and optimization of a rapid, automated 3D-printed cone spray ionization-mass spectrometry (3D-PCSI-MS) methodology. Int. J. Mass Spectrom. 2022, 474, 116781. [Google Scholar] [CrossRef]
- Brown, H.M.; McDaniel, T.J.; Doppalapudi, K.; Mulligan, C.C.; Fedick, P.W. Rapid, in-situ detection of chemical warfare agent simulants and hydrolysis products in bulk soils by low-cost 3D-printed cone spray ionization mass spectrometry. Analyst 2021, 146, 3127–3136. [Google Scholar] [CrossRef]
- Fedick, P.W.; Fatigante, W.L.; Lawton, Z.E.; O’Leary, A.E.; Hall, S.E.; Bain, R.M.; Aryton, S.T.; Ludwig, J.A.; Mulligan, C.C. A low-cost, simplified platform of interchangeable, ambient ionization sources for rapid, forensic evidence screening on portable mass spectrometric instrumentation. Instruments 2018, 2, 5. [Google Scholar] [CrossRef]
- Snyder, D.T.; Pulliam, C.J.; Ouzang, Z.; Cooks, G.R. Miniature and fieldable mass spectrometers: Recent advances. Anal. Chem. 2016, 88, 2–29. [Google Scholar] [CrossRef]
- Stelmack, A.R.; Mukta, S.; Fatigante, W.L.; Clowser, P.C.; Holtz, J.M.; Mulligan, C.C. Assessing the environmental ruggedness of paper spray ionization (PSI) coupled to a portable mass spectrometer operated under field conditions. Int. J. Mass Spectrom. 2022, 472, 116776. [Google Scholar] [CrossRef]
- McDaniel, T.J.; Holtz, J.M.; Bondzie, E.H.; Overfelt, M.; Fedick, P.W.; Mulligan, C.C. Rapid screening of high priority N-nitrosamines in pharmaceutical, forensic, and environmental samples with paper spray ionization and filter cone spray ionization-mass spectrometry. Rapid Commun. Mass Spectrom. 2023, 37, e9493. [Google Scholar] [CrossRef]
- Bondzie, E.H.; Adehinmoye, A.; Molnar, B.T.; Fedick, P.W.; Mulligan, C.C. Application of a modified 3D-PCSI-MS ion source to on-site, trace evidence processing via integrated vacuum collection. J. Am. Mass Spectrom. 2024, 35, 82–89. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Manicke, N.E.; Lin, J.-M.; Cooks, R.G.; Ouyang, Z. Development, characterization, and application of paper spray ionization. Anal. Chem. 2010, 82, 2463–2471. [Google Scholar] [CrossRef]
- McBride, E.M.; Mach, P.M.; Dhummakupt, E.S.; Dowling, S.; Carmany, D.O.; Demond, P.S.; Rizzo, G.; Manicke, N.E.; Glaros, T. Paper spray ionization: Applications and perspectives. TrAC Trends Anal. Chem. 2019, 118, 722–730. [Google Scholar] [CrossRef]
- Ikonomou, M.G.; Blades, A.T.; Kebarle, P. Electrospray mass spectrometry of methanol and water solutions suppression of electric discharge with SF6 gas. J. Am. Soc. Mass Spectrom. 1991, 2, 497–505. [Google Scholar] [CrossRef]
- Badu-Tawiah, A.K.; Eberlin, L.S.; Ouyang, Z.; Cooks, R.G. Chemical aspects of the extractive methods of ambient ionization mass spectrometry. Annu. Rev. Phys. Chem. 2013, 64, 481–505. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.; Kim, B.; Kim, S. Optimization and application of paper-based spray ionization mass spectrometry for analysis of natural organic matter. Anal. Chem. 2018, 90, 12027–12034. [Google Scholar] [CrossRef]
- Sans, M.; Krieger, A.; Wygant, B.R.; Garza, K.Y.; Mullins, C.B.; Eberlin, L.S. Spatially controlled molecular analysis of biological samples using nanodroplet arrays and direct droplet aspiration. J. Am. Soc. Mass Spectrom. 2020, 31, 418–428. [Google Scholar] [CrossRef]
- Unsihuay, D.; Qiu, J.; Swaroop, S.; Nagornov, K.O.; Kozhinov, A.N.; Tsybin, Y.O.; Kuang, S.; Laskin, J. Imaging of triglycerides in tissues using nanospray desorption electrospray ionization (Nano-DESI) mass spectrometry. Int. J. Mass Spectrom. 2020, 448, 116269. [Google Scholar] [CrossRef]
- Eberlin, L.S.; Ferreira, C.R.; Dill, A.L.; Ifa, D.R.; Cheng, L.; Cooks, R.G. Nondestructive, histologically compatible tissue imaging by desorption electrospray ionization mass spectrometry. ChemBioChem 2011, 12, 2129–2132. [Google Scholar] [CrossRef]
- Bills, B.J.; Kinkade, J.; Ren, G.; Manicke, N.E. The impacts of paper properties on matrix effects during paper spray mass spectrometry analysis of prescription drugs, fentanyls and synthetic Cannabinoids. Forensic Chem. 2018, 11, 15–22. [Google Scholar] [CrossRef]
- Zhang, C.; Manicke, N.E. Development of a paper spray mass spectrometry cartridge with integrated solid phase extraction for bioanalysis. Anal. Chem. 2015, 87, 6212–6219. [Google Scholar] [CrossRef]
- Damon, D.E.; Davis, K.M.; Moreira, C.R.; Capone, P.; Cruttenden, R.; Badu-Tawiah, A.K. Direct biofluid analysis using hydrophobic paper spray mass spectrometry. Anal. Chem. 2016, 88, 1878–1884. [Google Scholar] [CrossRef]
- Borden, S.A.; Saatchi, A.; Palaty, J.; Gill, C.G. A Direct mass spectrometry method for cannabinoid quantitation in urine and oral fluid utilizing reactive paper spray ionization. Analyst 2022, 147, 3109–3117. [Google Scholar] [CrossRef]
- Hall, S.E.; O’Leary, A.E.; Lawton, Z.E.; Mulligan, C.C. Trace level screening of chemicals related to clandestine desomorphine production with ambient sampling, portable mass spectrometry. J. Chem. 2017, 2017, 8571928. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, W.; Zhang, X.; Han, X.; Wang, T.; Zhang, Z. A Silica coated paper substrate: Development and its application in paper spray spectrometry for rapid analysis of pesticides in milk. Analyst 2015, 140, 8048–8056. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, W.; Manicke, N.E.; Cooks, R.G.; Ouyang, Z. Silica coated paper substrate for paper-spray analysis of therapeutic drugs in dried blood spots. Anal. Chem. 2012, 84, 931–938. [Google Scholar] [CrossRef]
- Rossini, E.L.; Kulyk, D.S.; Ansu-Gyeabourh, E.; Sahraeian, T.; Pezza, H.R.; Badu-Tawiah, A.K. Direct analysis of doping agents in raw urine using hydrophopic paper spray mass spectrometry. J. Am. Soc. Mass Spectrom. 2020, 31, 1212–1222. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, H.; Liu, J.; Zhang, Z.; McLuckey, M.N.; Ouyang, Z. Analysis of biological sample using paper spray mass spectrometry: An investigation of the impacts by the substrate, solvents and elution methods. Chromatographia 2013, 76, 1339–1346. [Google Scholar] [CrossRef]
- Riboni, N.; Quaranta, A.; Motwani, H.V.; Osterlund, N.; Graslund, A.; Bianchi, F.; Ilag, L.L. Solvent assisted paper spray ionization mass spectrometry (SAPSI-MS) for the analysis of biomolecules and biofluids. Sci. Rep. 2019, 9, 10296. [Google Scholar] [CrossRef]
- Taylor, G. Disintegration of water drops in an electric field. Proc. R. Soc. A 1964, 280, 383–397. [Google Scholar] [CrossRef]
- Tsai, C.W.; Tipple, C.A.; Yost, R.A. Application of paper spray ionization for explosive analysis. Rapid Commun. Mass Spectrom. 2017, 31, 1565–1572. [Google Scholar] [CrossRef]
- Smith, J.N.; Flagan, R.C.; Beauchamp, J.L. Droplet evaporation and discharge dynamics in electrospray ionization. J. Phys. Chem. 2002, 106, 9957–9967. [Google Scholar] [CrossRef]
- Henriksen, T.; Juhler, R.K.; Svensmark, B.; Chec, N.B. The relative influence of acidity and polarity on responsiveness of small organic molecules to analysis with negative ion electrospray ionization mass spectrometry (ESI-MS). J. Am. Soc. Mass Spectrom. 2005, 16, 446–455. [Google Scholar] [CrossRef]
- Kwan, V.; O’Dwyer, R.; Laur, D.; Tan, J.; Consta, S. Relation between ejection mechanism and ion abundance in electric double layer of droplets. J. Phys. Chem. 2021, 14, 2954–2966. [Google Scholar] [CrossRef]
- Kebarle, P.; Verkerk, U.H. A Brief Overview of the Mechanisms Involved in Electrospray Mass Spectrometry. Available online: https://application.wiley-vch.de/books/sample/3527323511_c01.pdf (accessed on 5 March 2022).
- Mulligan, C.C.; O’Leary, A.E. Assessing the Probative Value of Physical Evidence at Crime Scenes with Ambient Mass Spectrometry and Portable Instrumentation, Technical Report for NIJ Grant No. 2011-DN-BX-K552; Doc. No. 248884; National Institute of Justice: Washington, DC, USA, 2015; pp. 1–128. Available online: https://www.ojp.gov/library/publications/accessing-probative-value-physical-evidence-crime-scenes-ambient-mass (accessed on 29 May 2024).
- Mulligan, C.C.; Wieland, J.R.; Gizzi, M.C. Analytical Validation and Impact Assessment of On-Site Evidence Screening via Ambient Sampling, Portable Mass Spectrometry, Technical Summary for NIJ Grant No. 2015-IJ-CX-K011; Doc. No. 251910; National Institute of Justice: Washington, DC, USA, 2018; pp. 1–10. Available online: https://www.ojp.gov/library/publications/analytical-validation-and-impact-assessment-site-evidence-screening-ambient (accessed on 29 May 2024).
- Mulligan, C.C.; Driskell, J.D.; Kim, J.-H.; Wieland, J.R. Coupling Raman Spectroscopy with Ambient Sampling, Portable Mass Spectrometry for On-site, High-Throughput Evidence Confirmation on a Single Instrumental Platform, Technical Summary for NIJ Grant No. 2017-R2-CX-0022; Doc. No. 255670; National Institute of Justice: Washington, DC, USA, 2020; pp. 1–20. Available online: https://www.ojp.gov/ncjrs/virtual-library/abstracts/coupling-raman-spectroscopy-ambient-sampling-portable-mass (accessed on 29 May 2024).
Compound | MW (g/mol) | Precursor Ion (m/z) | MS2 Transitions (m/z) | Formula Loss * | CE (eV) ‡ |
---|---|---|---|---|---|
Δ9-THC | 314.469 | 315 | 193 (100%) | C9H14 | 0.420 |
259 (49%) | C4H8 | ||||
123 (23%) | C12H16O2 | ||||
HU-210 | 386.567 | 387 | 243 (100%) | C9H20O | 0.421 |
201 (30%) | C13H14O | ||||
(C8)-CP 47,497 | 332.519 | 333 | 247 (100%) | C6H14 | 0.402 |
XLR-11 | 329.459 | 330 | 125 (100%) | C13H16FN | 0.368 |
232 (48%) | C7H14 | ||||
312 (31%) | H2O | ||||
JWH-018 | 341.454 | 342 | 155 (100%) | C13H17N | 0.431 |
214 (29%) | C10H8 | ||||
ADB-Fubinaca | 382.439 | 383 | 338 (100%) | CH3NO | 0.457 |
253 (14%) | C6H14N2O | ||||
AB-Fubinaca | 368.412 | 369 | 324 (100%) | CH3NO | 0.470 |
351 (38%) | H2O | ||||
253 (11%) | C5H12N2O |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukta, S.; Bondzie, E.H.; Bell, S.E.; Deberry, C.; Mulligan, C.C. Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence. Instruments 2024, 8, 34. https://doi.org/10.3390/instruments8020034
Mukta S, Bondzie EH, Bell SE, Deberry C, Mulligan CC. Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence. Instruments. 2024; 8(2):34. https://doi.org/10.3390/instruments8020034
Chicago/Turabian StyleMukta, Shahnaz, Ebenezer H. Bondzie, Sara E. Bell, Chase Deberry, and Christopher C. Mulligan. 2024. "Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence" Instruments 8, no. 2: 34. https://doi.org/10.3390/instruments8020034
APA StyleMukta, S., Bondzie, E. H., Bell, S. E., Deberry, C., & Mulligan, C. C. (2024). Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence. Instruments, 8(2), 34. https://doi.org/10.3390/instruments8020034