High Harmonic Generation Seeding Echo-Enabled Harmonic Generation toward a Storage Ring-Based Tender and Hard X-ray-Free Electron Laser
Abstract
:1. Introduction
2. Results
2.1. SR-Based EEHG FEL Seeded with High Harmonic Generation
2.2. SASE Background Removal via Two-Frequency Crab-Cavity Scheme
2.3. Other FEL Options for Large-Sized SR
3. Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.; Penn, G.; Yu, L.H.; Smaluk, V.; Shaftan, T. Optimization of Echo-Enabled Harmonic Generation toward coherent EUV and soft X-ray free-electron laser at NSLS-II. Sci. Rep. 2022, 12, 9437. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Penn, G.; Smaluk, V.; Huang, X.; Yu, L.H.; Shaftan, T. Toward fully coherent soft X-ray free-electron laser via echo-enabled harmonic generation in 4th generation synchrotron light sources. Rev. Sci. Instrum. 2022, 93, 113101. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Penn, G.; Yu, L.H.; Huang, X.; Smaluk, V.; Shaftan, T. Twin-pulse seeding enables pump-probe capabilities in the EUV to soft X-ray spectrum at synchrotron light sources. Sci. Rep. 2023, 13, 5261. [Google Scholar] [CrossRef] [PubMed]
- Bonifacio, R.; Pellegrini, C.; Narducci, L.M. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 1984, 50, 373. [Google Scholar] [CrossRef]
- Nuhn, H.D.; Tatchyn, R.; Winick, H.; Fisher, A.S.; Gallardo, J.C.; Pellegrini, C. Short wavelength FELs on large storage rings. Nucl. Instrum. Methods A 1992, 319, 89–96. [Google Scholar] [CrossRef]
- Zhao, Z.T. Storage ring light sources. Rev. Accel. Sci. Technol. 2010, 3, 57. [Google Scholar] [CrossRef]
- Mitri, S.D.; Cornacchia, M. Operating synchrotron light sources with a high gain free electron laser. New J. Phys. 2015, 17, 113006. [Google Scholar] [CrossRef]
- Wang, X.; Feng, C.; Liu, T.; Zhang, Z.; Tsai, C.Y.; Wu, J.; Yang, C.; Zhao, Z. Angular dispersion enhanced prebunch for seeding ultrashort and coherent EUV and soft X-ray free-electron laser in storage rings. J. Synchrotron Radiat. 2019, 26, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Jiang, B.; Feng, C.; Huang, D.; Zhang, Q.; Wang, K. Lattice design for angular dispersion enhanced microbunching in storage rings. J. Instrum. 2021, 16, 03004. [Google Scholar] [CrossRef]
- Zhang, X.; Lytle, A.L.; Popmintchev, T.; Zhou, X.; Kapteyn, H.C.; Murnane, M.M.; Cohen, O. Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light. Nat. Phys. 2007, 3, 270–275. [Google Scholar] [CrossRef]
- Ding, C.; Xiong, W.; Fan, T.; Hickstein, D.D.; Popmintchev, T.; Zhang, X.; Walls, M.; Murnane, M.M.; Kapteyn, H.C. High flux coherent super-continuum soft X-ray source driven by a single-stage, 10mJ, Ti:sapphire amplifier-pumped OPA. Opt. Express 2014, 22, 6194. [Google Scholar] [CrossRef] [PubMed]
- Saule, T.; Heinrich, S.; Schötz, J.; Lilienfein, N.; Högner, M.; DeVries, O.; Plötner, M.; Weitenberg, J.; Esser, D.; Schulte, J.; et al. High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4 MHz pulse repetition rate. Nat. Commun. 2019, 10, 458. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, L.H.; Smaluk, V.; Shaftan, T.; Huang, X. Toward a fully coherent tender and hard X-ray free-electron laser via cascaded EEHG in fourth-generation synchrotron light sources. J. Synchrotron Radiat. 2023, 30, 861–875. [Google Scholar] [CrossRef] [PubMed]
- Penco, G.; Perosa, G.; Allaria, E.; Badano, L.; Bencivenga, F.; Brynes, A.; Callegari, C.; Capotondi, F.; Caretta, A.; Cinquegrana, P.; et al. Nonlinear harmonics of a seeded free-electron laser as a coherent and ultrafast probe to investigate matter at the water window and beyond. Phys. Rev. A 2022, 105, 053524. [Google Scholar] [CrossRef]
- Feng, C.; Zhao, Z. A Storage Ring Based Free-Electron Laser for Generating Ultrashort Coherent EUV and X-ray Radiation. Sci. Rep. 2017, 7, 4724. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Deng, H.; Zhang, M.; Wang, X.; Chen, S.; Liu, T.; Zhou, K.; Gu, D.; Wang, Z.; Jiang, Z.; et al. Coherent extreme ultraviolet free-electron laser with echo-enabled harmonic generation. Phys. Rev. Accel. Beams 2019, 22, 050703. [Google Scholar] [CrossRef]
- Stupakov, G. Using the Beam-Echo Effect for Generation of Short-Wavelength Radiation. Phys. Rev. Lett. 2009, 102, 074801. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; Stupakov, G. Echo-enabled harmonic generation free electron laser. Phys. Rev. Spec. Top.-Accel. Beams 2009, 12, 030702. [Google Scholar] [CrossRef]
- Molo, R.; Bakr, M.; Höner, M.; Huck, H.; Khan, S.; Nowaczyk, A.; Schick, A.; Ungelenk, P.; Zeinalzadeh, M. Echo-enabled harmonic generation at delta. In Proceedings of the IPAC2011, San Sebastián, Spain, 4–9 September 2011; p. 3074. [Google Scholar]
- Evain, C.; Loulergue, A.; Nadji, A.; Filhol, J.M.; Couprie, M.E.; Zholents, A.A. Soft X-ray femtosecond coherent undulator radiation in a storage ring. New J. Phys. 2012, 14, 023003. [Google Scholar] [CrossRef]
- Khan, S.; Bahnsen, F.; Cramm, S.; Döring, S.; Grewe, J.; Höner, M.; Huck, H.; Huck, M.; Molo, R.; Plucinski, L.; et al. Generation of Ultrashort and Coherent Synchrotron Radiation Pulses at DELTA. Synchrotron Radiat. News 2013, 26, 25–29. [Google Scholar] [CrossRef]
- Khan, S. Ultrashort high-brightness pulses from storage rings. Nucl. Instrum. Methods A 2017, 865, 95. [Google Scholar] [CrossRef]
- Willmott, P. An Introduction to Synchrotron Radiation: Techniques and Applications, 2nd ed.; Wiley: Hoboken, NJ, USA, 2019; ISBN-10 1119280397. [Google Scholar]
- Xie, M. Design optimization for an X-ray free electron laser driven by SLAC linac. In Proceedings of the LINAC 1995 Particle Accelerator Conference, Dallas, TX, USA, 1–5 May 1995. [Google Scholar]
- Giannessi, L. Seeding and Harmonic Generation in Free-Electron Lasers, Synchrotron Light Sources and Free-Electron Lasers; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- XUUS—High Harmonic Generation Source for EUV and Soft X-ray in KMLabs Inc. Available online: https://www.kmlabs.com/product/xuus (accessed on 1 November 2023).
- Yu, L.H. Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 1991, 44, 5178. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.H.; Ben-Zvi, I. High-gain harmonic generation of soft x-rays with the “fresh bunch” technique. Nucl. Instrum. Methods Phys. Res. Sect. A 1997, 393, 96. [Google Scholar] [CrossRef]
- Yu, L.H.; Babzien, M.; Ben-Zvi, I.; DiMauro, L.F.; Doyuran, A.; Graves, W.; Johnson, E.; Krinsky, S.; Malone, R.; Pogorelsky, I.; et al. High-Gain Harmonic-Generation Free-Electron Laser. Science 2000, 289, 932–934. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.H.; Shaftan, T. Towards coherent X-ray free-electron lasers. Nat. Photonics 2019, 13, 513–515. [Google Scholar] [CrossRef]
- Khan, S.; Büsing, B.; Held, A.; Mai, C.; Krishnan, A.R.; Salah, W.; Vijayan, V.; Usfoo, Z. SPEED: Worldwide first EEHG implementation at a storage ring. In Proceedings of the 14th International Particle Accelerator Conference (IPAC’23), Paper MOPM032. Venice, Italy, 7–12 May 2023. [Google Scholar] [CrossRef]
- Ackermann, S.; Azima, A.; Bajt, S.; Bödewadt, J.; Curbis, F.; Dachraoui, H.; Delsim-Hashemi, H.; Drescher, M.; Düsterer, S.; Faatz, B.; et al. Generation of Coherent 19- and 38-nm Radiation at a Free-Electron Laser Directly Seeded at 38 nm. Phys. Rev. Lett. 2013, 111, 114801. [Google Scholar] [CrossRef]
- Maltezopoulos, T.; Mittenzwey, M.; Azima, A.; Bödewadt, J.; Dachraoui, H.; Rehders, M.; Lechner, C.; Schulz, M.; Wieland, M.; Laarmann, T.; et al. A high-harmonic generation source for seeding a free-electron laser at 38 nm. Appl. Phys. B 2014, 115, 45–54. [Google Scholar] [CrossRef]
- Schroer, C.G.; Roehlsberger, R.; Weckert, E.; Wanzenberg, R.; Agapov, I.; Brinkmann, R.; Leemans, W. PETRA IV Conceptual Design Report; DESY: Hamburg, Germany, 2019. [Google Scholar] [CrossRef]
- Raimondi, P.; Huang, X.; Kim, J.; Safranek, J.; Rabedeau, T. Advanced storage ring lattice options based on hybrid six-bend achromat for Stanford Synchrotron Radiation Lightsource upgrade. Phys. Rev. Accel. Beams 2023, 1061, 169137. [Google Scholar] [CrossRef]
- Zholents, A. A new possibility for production of subpicosecond X-ray pulses using a time dependent radio frequency orbit deflection. Nucl. Instrum. Methods Phys. Res. Sect. A 2015, 798, 111. [Google Scholar] [CrossRef]
- Huang, X.; Hettel, B.; Rabedeau, T.; Safranek, J.; Sebek, J.; Tian, K.; Wootton, K.P.; Zholents, A. Beam dynamics issues for the two-frequency crab cavity short pulse scheme. Phys. Rev. Accel. Beams 2019, 22, 090703. [Google Scholar] [CrossRef]
- Margraf, R.; Robles, R.; Halavanau, A.; Krzywinski, J.; Li, K.; MacArthur, J.; Osaka, T.; Sakdinawat, A.; Sato, T.; Sun, Y.; et al. Low-loss Stable Storage of X-ray Free Electron Laser Pulses in a 14 m Rectangular Bragg Cavity. Res. Sq. 2023; preprint. [Google Scholar] [CrossRef]
- Kim, K.; Shvyd’ko, Y.; Reiche, R. A proposal for an X-ray free-electron laser oscillator with an energy-recovery linac. Phys. Rev. Lett. 2008, 100, 244802. [Google Scholar] [CrossRef]
- Kim, K.; Shvyd’ko, Y. Tunable optical cavity for an x-ray free-electron-laser oscillator. Phys. Rev. Spec. Top.-Accel. Beams 2009, 12, 030703. [Google Scholar] [CrossRef]
- Shvyd’ko, Y. X-ray Optics—High-Energy-Resolution Applications; Springer: Berlin/Heidelberg, Germany, 2004; Volume 98. [Google Scholar]
- Kolodziej, T.; Stoupin, S.; Grizolii, W.; Krzywinski, J.; Shi, X.; Kim, K.J.; Qian, J.; Assoufid, L.; Shvyd’ko, Y. Efficiency and coherence preservation studies of Be refractive lenses for XFELO application. JSR 2018, 25, 354. [Google Scholar] [CrossRef]
- Shvyd’ko, Y.; Stoupin, S.; Blank, V.; Terentyev, S. Near-100% Bragg reflectivity of X-rays. Nat. Photonics 2011, 5, 539. [Google Scholar] [CrossRef]
- Margraf, R.; Robles, R.; Halavanau, A.; Kryzywinski, J.; Li, K.; MacArthur, J.; Osaka, T.; Sakdinawat, A.; Sato, T.; Sun, Y.; et al. Low-loss stable storage of 1.2 Å X-ray pulses in a 14 m Bragg cavity. Nat. Photonics 2023, 17, 878–882. [Google Scholar] [CrossRef]
- Allaria, E.; De Ninno, G. A step towards cavity-based X-ray free electron lasers. Nat. Photonics 2023, 17, 841–842. [Google Scholar] [CrossRef]
- Li, C.; Feng, C.; Jiang, B. Extremely bright coherent synchrotron radiation production in a diffraction-limited storage ring using an angular dispersion-induced microbunching scheme. Phys. Rev. Accel. Beams 2020, 23, 110701. [Google Scholar] [CrossRef]
- Wang, X.; Feng, C.; Tsai, C.-Y.; Zeng, L.; Zhao, Z. Obliquely incident laser and electron beam interaction in an undulator. Phys. Rev. Accel. Beams 2019, 22, 070701. [Google Scholar] [CrossRef]
- Zholents, A.; Zolotorev, M. Attosecond X-ray pulses produced by ultra short transverse slicing via laser electron beam interaction. New J. Phys. 2008, 10, 025005. [Google Scholar] [CrossRef]
- Xiang, D.; Wan, W. Generating ultrashort coherent soft X-ray radiation in storage rings using angular-modulated electron beams. Phys. Rev. Lett. 2010, 104, 084803. [Google Scholar] [CrossRef]
EEHG | λ1seed | λ2seed | λr,min | Eph | Cost | Photon per Pulse | Photon/s | Spectral Width | Coherent Length | Pulse Width in FWHM | Spectral Tunability | Repetition Rate | Output Power in Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
nm | nm | nm | eV | $ | m | s | nm | kHz | W | ||||
single-beamline | 256 | 256 | 1.28 | 973 | 1000 k | 2.00 × 1010 | 2.00 × 1014 | 4.30 × 10−6 | 1.28 × 10−4 | 1.00 × 10−12 | 1.25–50 | 1.00 × 101 | 3.00 × 10−2 |
HHG seeded EEHG | 256 | 28.49 | 1.016 | 1219 | 1300 k | 1.02 × 1010 | 5.11 × 1013 | 1.03 × 10−3 | 1.28 × 10−7 | 3.00 × 10−15 | 0.341–1.016 | 5.00 × 100 | 9.97× 10−3 |
256 | 28.49 | 0.341 | 3627 | 1300 k | 1.44 × 109 | 7.18 × 1012 | 3.46 × 10−4 | 1.28 × 10−7 | 3.00 × 10−15 | 5.00 × 100 | 4.16 × 10−3 | ||
Cascaded EEHG | 256 | 12.8 | 0.128 | 9727 | 2000 k | 1.10 × 108 | 1.10 × 1011 | 4.30 × 10−7 | 1.28 × 10−4 | 1.00 × 10−12 | 0.125–0.5 | 1.00 × 100 | 2.00 × 10−4 |
FEL Option at Eph = 10 keV | Prebunch (Cascaded EEHG) | SASE | XFELO |
---|---|---|---|
Ring Size | Medium-SR | Large-SR | Large-SR |
Photon energy range (keV) | 0.1–10 | 0.1–10 | 10 |
Peak Power (MW) | 170 | 100–300 | 0.1–1 |
Average Power (mW) | 0.1–3 | up to 1000 | <10 |
Spectral Bandwidth (eV) | 0.01–5 | ~7–17 | 0.003–0.01 |
Pulse Duration in RMS (ps) | 0.01–1 | >1 | >1 |
Stability | Excellent | Poor | Excellent |
Longitudinal Coherence | Good | Poor | Excellent |
Transverse Mode | Defined by Electron Beam Size | Defined by Gain Guiding | Defined by Optical Cavity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Yu, L.; Smaluk, V.; Shaftan, T. High Harmonic Generation Seeding Echo-Enabled Harmonic Generation toward a Storage Ring-Based Tender and Hard X-ray-Free Electron Laser. Instruments 2024, 8, 35. https://doi.org/10.3390/instruments8020035
Yang X, Yu L, Smaluk V, Shaftan T. High Harmonic Generation Seeding Echo-Enabled Harmonic Generation toward a Storage Ring-Based Tender and Hard X-ray-Free Electron Laser. Instruments. 2024; 8(2):35. https://doi.org/10.3390/instruments8020035
Chicago/Turabian StyleYang, Xi, Lihua Yu, Victor Smaluk, and Timur Shaftan. 2024. "High Harmonic Generation Seeding Echo-Enabled Harmonic Generation toward a Storage Ring-Based Tender and Hard X-ray-Free Electron Laser" Instruments 8, no. 2: 35. https://doi.org/10.3390/instruments8020035
APA StyleYang, X., Yu, L., Smaluk, V., & Shaftan, T. (2024). High Harmonic Generation Seeding Echo-Enabled Harmonic Generation toward a Storage Ring-Based Tender and Hard X-ray-Free Electron Laser. Instruments, 8(2), 35. https://doi.org/10.3390/instruments8020035