Carbon Nanotubes Grown Using Solid Polymer Chemical Vapor Deposition in a Fluidized Bed Reactor with Iron(III) Nitrate, Iron(III) Chloride and Nickel(II) Chloride Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Methods and Equipment
2.2. Experimental Method
2.3. Purification Method
2.4. Analytical Method
3. Results
3.1. Carbon Nanotubes (CNT) Preparation
3.2. CNT Purification
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Dokania, A.K.; Chen, Z.; Rupesinghe, N.; Wirth, T.; Bachmann, P.K. Improved field emission of CNTs on heated substrate for medical X-ray imaging application. In Proceedings of the Technical Digest of the 25th International Vacuum Nanoelectronics Conference, Jeju Island, Korea, 9–13 July 2012; pp. 124–125. [Google Scholar]
- Jiang, J.; Li, L.; Liu, Y.; Liu, S.; Xu, M.; Zhu, J. Uniform implantation of CNTs on total activated carbon surfaces: A smart engineering protocol for commercial supercapacitor applications. Nanotechnology 2017, 28. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Bates, A.; Lee, S.C.; Lee, D.H.; Park, S. A review of the application of CNTs in PEM fuel cells. Int. J. Green Energy 2015, 12, 787–809. [Google Scholar] [CrossRef]
- Deng, J.; Wang, X.J. Application of CNTs functional layer in AC plasma display panels. J. Univ. Electron. Sci. Technol. China 2016, 45, 151–154. [Google Scholar]
- Ma, L.; Dong, X.; Chen, M.; Zhu, L.; Wang, C.; Yang, F.; Dong, Y. Fabrication and water treatment application of carbon nanotubes (CNTs)-based composite membranes: A review. Membranes 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Szymanski, L.; Kolacinski, Z.; Raniszewski, G.; Gryska, E. CNTs synthesis on steel strip a in microwave plasma reactor for medical application. In Proceedings of the 15th International Conference on Nanotechnology (IEEE-NANO 2015), Rome, Italy, 27–30 July 2015; pp. 1062–1065. [Google Scholar]
- Li, L.; Yang, H.; Zhou, D.; Zhou, Y. Progress in application of CNTs in lithium-ion batteries. J. Nanomater. 2014, 2014. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, X.; Yang, Y.; Liu, J.; Lie, J. The removal and inhibitory effect of CNTs on model viruses. Mater. Sci. Forum 2013, 743–744, 402–408. [Google Scholar] [CrossRef]
- Lin, Z.G.; Gao, F.; Li, K.; Wang, Z.; Jahan, M. Using natural cotton fibers to synthesize carbon nanotubes and electromagnetic wave absorption properties. Mater. Sci. Eng. B 2017, 24, 61–68. [Google Scholar]
- Zhao, T.; Ji, X.; Jin, W.; Yang, W.; Li, T. Hydrogen storage capacity of single-walled carbon nanotube prepared by a modified arc discharge. Fuller. Nanotub. Carbon Nanostruct. 2017, 25, 355–358. [Google Scholar] [CrossRef]
- Ci, L.; Wei, B.; Liang, J.; Xu, C.; Wu, D. Preparation of carbon nanotubules by the floating catalyst method. J. Mater. Sci. Lett. 1999, 18, 797–799. [Google Scholar] [CrossRef]
- Chen, C.C.; Chen, S.W. Nickel and copper deposition on Al2O3 and SiC particulates by using the chemical vapor deposition-fluidized bed reactor technique. J. Mater. Sci. 1997, 32, 4429–4435. [Google Scholar] [CrossRef]
- Yen, Y.W.; Chen, S.W. Ni and Cu deposition on fine alumina particles by using the chemical vapor deposition-circulation fluidized bed reactor. J. Mater. Sci. 2000, 35, 1439–1444. [Google Scholar] [CrossRef]
- Qian, W.; Liu, T.; Wang, Z.; Wei, F.; Li, Z.; Luo, G.; Li, Y. Production of hydrogen and carbon nanotubes from methane decomposition in a two-stage fluidized bed reactor. Appl. Catal. A 2004, 260, 223–228. [Google Scholar]
- Chung, Y.H.; Jou, S. Carbon nanotubes from catalytic pyrolysis of polypropylene. Mater. Chem. Phys. 2005, 92, 256–259. [Google Scholar] [CrossRef]
- Yen, Y.W.; Huang, M.D.; Lin, F.J. Synthesize carbon nanotubes by a novel method using chemical vapor deposition-fluidized bed reactor from solid-stated polymers. Diam. Relat. Mater. 2008, 17, 567–570. [Google Scholar] [CrossRef]
- Jianh, Z.; Song, R.; Bo, W.; Lu, J.; Tang, T. Polypropylene as a carbon source for the synthesis of multi-walled carbon nanotubes via catalytic combustion. Carbon 2007, 45, 449–458. [Google Scholar]
- Cesano, F.; Bertarione, S.; Scarano, D.; Spoto, G.; Zecchina, A. Designing of carbon nanofilaments-based composites for innovative applications. Diam. Relat. Mater. 2009, 18, 979–983. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Q.; Luo, G.; Huang, J.Q.; Zhao, M.Q.; Wei, E. Coupled process of plastics pyrolysis and chemical vapor deposition for controllable synthesis of vertically aligned carbon nanotube arrays. Appl. Phys. A 2010, 100, 533–540. [Google Scholar] [CrossRef]
- Mishra, N.; Das, G.; Ansaldo, A.; Genovese, A.; Malerba, M.; Povia, M.; Ricci, D.; Fabrizio, E.M.D.; Zitti, E.F.D.; Sharon, M.; et al. Pyrolysis of waste Polypropylene for the synthesis of Carbon nanotubes. J. Anal. Appl. Pyrolysis 2012, 94, 91–98. [Google Scholar] [CrossRef]
- Jagadale, P.; Sharon, M.; Kalita, G.; Mahmad, N.; Sharon, N.M.M. Carbon nano material synthesis from polyethylene by chemical vapour deposition. Adv. Mater. Phys. Chem. 2012, 2, 1–10. [Google Scholar] [CrossRef]
- Jinyong, L.; Yafei, Z. A simple purification for single-walled carbon nanotubes. Phys. E 2005, 28, 309–312. [Google Scholar]
- Ramesh, P.; Okazaki, T.; Sugai, T.; Kimura, J.; Kishi, N.; Sato, K.; Ozeki, Y.; Shinohara, H. Purification and characterization of double-wall carbon nanotubes synthesized by catalytic chemical vapor deposition on mesoporous silica. Chem. Phys. Lett. 2006, 418, 408–412. [Google Scholar] [CrossRef]
- Jain, S.M.; Cesano, F.; Scarano, D.; Edvinsson, T. Resonance Raman and IR spectroscopy of aligned carbon nanotube arrays with extremely narrow diameters prepared with molecular catalysts on steel substrates. Phys. Chem. Chem. Phys. 2017, 19, 30667–30674. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Diameter (nm) | ID/IG | Note |
---|---|---|---|
Fe(NO3)3 | 60~100 | 0.99 | Most of the products are carbon tube with a large diameter. It is difficult to find CNTs. |
FeCl3 | 40~80 | 0.95 | Most of the products are carbon tube with a large diameter. Only a few of them are mixed with multi-wall CNTs. |
NiCl2 | 30~40 | 0.89 | CNTs with symmetric tube-walls were obtain. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Chang, J.; Amatosa, T.A.; Guo, Y.; Lin, F.; Yen, Y. Carbon Nanotubes Grown Using Solid Polymer Chemical Vapor Deposition in a Fluidized Bed Reactor with Iron(III) Nitrate, Iron(III) Chloride and Nickel(II) Chloride Catalysts. Inventions 2018, 3, 18. https://doi.org/10.3390/inventions3010018
Wang C, Chang J, Amatosa TA, Guo Y, Lin F, Yen Y. Carbon Nanotubes Grown Using Solid Polymer Chemical Vapor Deposition in a Fluidized Bed Reactor with Iron(III) Nitrate, Iron(III) Chloride and Nickel(II) Chloride Catalysts. Inventions. 2018; 3(1):18. https://doi.org/10.3390/inventions3010018
Chicago/Turabian StyleWang, Chuhsuan, Jingshiun Chang, Teodoro A. Amatosa, Yizhen Guo, Fujen Lin, and Yeewen Yen. 2018. "Carbon Nanotubes Grown Using Solid Polymer Chemical Vapor Deposition in a Fluidized Bed Reactor with Iron(III) Nitrate, Iron(III) Chloride and Nickel(II) Chloride Catalysts" Inventions 3, no. 1: 18. https://doi.org/10.3390/inventions3010018
APA StyleWang, C., Chang, J., Amatosa, T. A., Guo, Y., Lin, F., & Yen, Y. (2018). Carbon Nanotubes Grown Using Solid Polymer Chemical Vapor Deposition in a Fluidized Bed Reactor with Iron(III) Nitrate, Iron(III) Chloride and Nickel(II) Chloride Catalysts. Inventions, 3(1), 18. https://doi.org/10.3390/inventions3010018