Prediction of Heat Transfer during Condensation in Non-Circular Channels
Abstract
:1. Introduction
2. Prediction Methods
2.1. Theoretical
2.2. Correlations
2.2.1. The Shah Correlation
- Fluid is a hydrocarbon, Regime is I and pr < 0.4
- Fluid is hydrocarbon and Regime is III
- ReLT < 100
2.2.2. Correlations for Flattened Tubes
3. Data Analysis
3.1. Data Collection
3.2. Correlations Evaluated
3.3. Calculation Methodology
3.4. Results of Data Analysis
4. Discussion
4.1. Channels Other Than Flattened Tubes
4.2. Flattened Tubes
4.3. Effect of Weber Number
4.4. Accuracy of Various Correlations
4.5. Effect of Channel Shape
4.6. Effect of Various Parameters
4.7. Complexity of Correlations
4.8. Design Recommendations
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
Nomenclature | |
Ar | Aspect ratio, width/height, (-) |
Bo | Bond number = , (-) |
D | Inside diameter of tube, m |
DHP | Equivalent diameter based on perimeter with heat transfer, defined by Equation (24), m |
DHYD | Hydraulic equivalent diameter, m |
FrLT | Froude number = , (-) |
G | Total mass flux (liquid + vapor), kg m−2s−1 |
g | Acceleration due to gravity, m s−2 |
h | Heat transfer coefficient, W m−2 K−1 |
hI | Heat transfer coefficient Regime I of the Shah correlation, W m−2 K−1 |
hLO | Heat transfer coefficient assuming liquid phase flowing alone in the tube, Wm−2 K−1 |
hLT | Heat transfer coefficient with total mass flowing as liquid, W m−2 K−1 |
hNu | Heat transfer coefficient given by Equation (2), the Nusselt equation, W m−2 K−1 |
hTP | Two-phase heat transfer coefficient, W m−2 K−1 |
Jg | Dimensionless vapor velocity defined by Equation (11) |
k | Thermal conductivity, W m−1 K−1 |
MAD | Mean absolute deviation, (-) |
N | Number of data points, (-) |
pr | Reduced pressure, (-) |
Pr | Prandtl number, (-) |
ReLO | Reynolds number assuming liquid phase flowing alone, = G (1 – x)DμL−1, (-) |
ReGO | Reynolds number assuming vapor phase flowing alone, = G xDμL−1, (-) |
ReLT | Reynolds number for all mass flowing as liquid = GDμL−1, (-) |
TSAT | Saturation temperature, C |
Tw | Wall temperature, C |
ΔT | = (Tw – TSAT), degree C |
WeGT | Weber number for all mass flowing as vapor, defined by Equation (18), (-) |
x | Vapor quality, (-) |
Xtt | Martinelli parameter (-) |
Z | Shah’s correlating parameter defined by Equation (8), (-) |
Greek | |
δavg | Average deviation, defined by Equation (24), (-) |
δm | Mean absolute deviation, defined by Equation (23), (-) |
μ | Dynamic viscosity, Pa. s |
ρ | Density, kg m−3 |
∑ | Mathematical symbol for summation |
σ | Surface tension, Nm−1 |
Subscripts | |
G | Vapor |
L | Liquid |
round | Round tube |
Appendix A
References
- Kim, S.; Mudawar, I. Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow. Int. J. Heat Mass Transf. 2013, 56, 238–250. [Google Scholar] [CrossRef]
- Dorao, C.A.; Fernandino, M. Simple and general correlation for heat transfer during flow condensation inside plain pipes. Int. J. Heat Mass Transf. 2008, 122, 290–305. [Google Scholar] [CrossRef]
- Shah, M.M. Improved correlation for heat transfer during condensation in conventional and mini/micro channels. Int. J. Refrig. 2018, 98, 222–237. [Google Scholar] [CrossRef]
- Wang, H.S.; Rose, J.W. A theory of film condensation in horizontal noncircular section microchannels. ASME J. Heat Transf. 2005, 127, 1096–1105. [Google Scholar] [CrossRef]
- Wang, H.S.; Rose, J.W. Film condensation in horizontal microchannels: Effect of channel shape. Int. J. Therm. Sci. 2006, 45, 1205–1212. [Google Scholar] [CrossRef]
- Wang, H.S.; Rose, J.W. Theory of heat transfer during condensation in microchannels. Int. J. Heat Mass Transf. 2011, 54, 2525–2534. [Google Scholar] [CrossRef]
- Wen, J.; Gu, X.; Wang, S.; Li, Y.; Tu, J. Numerical investigation on condensation heat transfer and pressure drop characteristics of R134a in horizontal flattened tubes. Int. J. Refrig. 2018, 85, 441–461. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Sherif, S.A. A numerical study of condensation heat transfer and pressure drop in horizontal round and flattened minichannels. Int. J. Therm. Sci. 2016, 106, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.J.; Newell, T.A.; Chato, J.C.; Infante Ferreira, C.A. Refrigerant charge, pressure drop, and condensation heat transfer in flattened tubes. Int. J. Refrig. 2003, 16, 442–451. [Google Scholar] [CrossRef]
- Kim, N.H.; Lee, E.J.; Byun, H.W. Condensation heat transfer and pressure drop in flattened smooth tubes having different aspect ratio. Exp. Therm. Fluid Sci. 2013, 46, 245–253. [Google Scholar] [CrossRef]
- Darzi, M.; Akhavan-Behabadi, M.A.; Sadoughi, M.K.; Razi, P. Experimental study of horizontal flattened tubes performance on condensation of R600a vapor. Int. Commun. Heat Mass Transf. 2015, 62, 18–25. [Google Scholar] [CrossRef]
- Kaewon, J.; Naphattharanum, N.; Binmud, R.; Wongwises, S. Condensation heat transfer characteristic of R134a flowing inside mini circular and flattened tubes. Int. J. Heat Mass Transf. 2016, 102, 86–97. [Google Scholar] [CrossRef]
- Solanki, A.K.; Kumar, R. Condensation heat transfer and pressure drop characteristics of R-134a inside the flattened tubes at high mass flux and different saturation temperature. Exp. Heat Transf. 2018, 129, 535–548. [Google Scholar] [CrossRef]
- Del Col, D.; Bortolin, S.; Cavallini, A.; Matkovic, M. Effect of cross sectional shape during condensation in a single square minichannel. Int. J. Heat Mass Transf. 2011, 54, 3909–3920. [Google Scholar] [CrossRef]
- Matkovic, M.; Cavallini, A.; Del Col, D.; Rossetto, L. Experimental study on condensation heat transfer inside a single circular minichannel. Int. J. Heat Mass Transf. 2009, 52, 2311–2323. [Google Scholar] [CrossRef]
- Kandlikar, S.G. Fundamental issues related to flow boiling in minichannels and microchannels. Exp. Therm. Fluid Sci. 2002, 26, 389–407. [Google Scholar] [CrossRef]
- Shah, M.M. Applicability of correlations for boiling/condensing in macrochannels to minichannels. Heat Mass Transf. Res. J. 2018, 2, 22–32. [Google Scholar]
- Da Riva, E.; Del Col, D.; Garimella, S.V.; Cavallini, A. The importance of turbulence during condensation in a horizontal circular minichannel. Int. J. Heat Mass Transf. 2012, 55, 3470–3481. [Google Scholar] [CrossRef] [Green Version]
- Rohsenow, W.M.; Webber, J.H.; Ling, A.T. Effect of vapor velocity on laminar and turbulent film condensation. Transf. ASME 1956, 78, 1637–1643. [Google Scholar]
- Kim, S.M.; Mudawar, I. Theoretical model for annular flow condensation in rectangular micro-channels. Int. J. Heat Mass Transf. 2012, 55, 958–970. [Google Scholar] [CrossRef]
- Kharangate, C.R.; Mudawar, I. Review of computational studies on boiling and condensation. Int. J. Heat Mass Transf. 2017, 108, 1164–1196. [Google Scholar] [CrossRef]
- Dobson, M.K.; Chato, J.C. Condensation in smooth horizontal tubes. J. Heat Transf. 1998, 120, 193–213. [Google Scholar] [CrossRef]
- Thome, J.R.; Hajal, J.E.; Cavallini, A. Condensation in horizontal tubes, part 2: New heat transfer model based on flow regimes. Int. J. Heat Mass Transf. 2003, 46, 3365–3387. [Google Scholar] [CrossRef]
- Cavallini, A.; Del Col, D.; Doretti, L.; Matkovic, M.; Rossetto, L.; Zilio, C. Condensation in horizontal smooth tubes: A new heat transfer model for heat exchanger design. Heat Transf. Eng. 2006, 27, 31–38. [Google Scholar] [CrossRef]
- Shah, M.M. An improved and extended general correlation for heat transfer during condensation in plain tubes. HVAC R Res. 2009, 15, 889–913. [Google Scholar] [CrossRef]
- Shah, M.M. General correlation for heat transfer during condensation in plain tubes: Further development and verification. ASHRAE Transf. 2013, 119, 3–11. [Google Scholar]
- Awad, M.M.; Dalkilic, A.S.; Wongwises, S. A critical review on condensation heat transfer in microchannels and minichannels. J. Nanotechnol. Sci. Med. 2014, 5, 010904. [Google Scholar] [CrossRef]
- Del Col, D.; Bortolin, S.; Das Riva, E. Predicting methods and numerical modeling of condensation in microchannels. In Encyclopedia of Two-Phase Heat Transfer and Fluid Flow II—Special Topics and Applications; Volume 3: Special Topics in Condensation; World Scientific Publication Co.: Hackensack, NJ, USA, 2015; pp. 37–84. [Google Scholar]
- Jige, D.; Inoue, N.; Koyama, S. Condensation of refrigerants in a multiport tube with rectangular minichannels. Int. J. Refrig. 2016, 67, 202–213. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kariya, K.; Miyara, A. An experimental study and development of new correlation for condensation heat transfer coefficient of refrigerant inside a multiport minichannel with and without fins. Int. J. Heat Mass Transf. 2018, 116, 50–60. [Google Scholar] [CrossRef]
- Keinath, B.L.; Garimella, S. High-pressure condensing refrigerant flows through microchannels, part ii: Heat transfer models. Heat Transf. Eng. 2018. [Google Scholar] [CrossRef]
- Shah, M.M. A general correlation for heat transfer during film condensation inside pipes. Int. J. Heat Mass Transf. 1979, 22, 547–556. [Google Scholar] [CrossRef]
- Shah, M.M. A new correlation for heat transfer during condensation in horizontal mini/micro channels. Int. J. Refrig. 2016, 64, 187–202. [Google Scholar] [CrossRef]
- Shah, M.M. Comprehensive correlations for heat transfer during condensation in conventional and mini/micro channels in all orientations. Int. J. Refrig. 2016, 67, 22–41. [Google Scholar] [CrossRef]
- McAdams, W.H. Heat Transmission, 3rd ed.; McGraw Hill: New York, NY, USA, 1954. [Google Scholar]
- Akers, W.W.; Deans, H.A.; Crosser, O.K. Condensing heat transfer within horizontal tubes. Chem. Eng. Prog. Symp. Ser. 1959, 59, 171–176. [Google Scholar]
- Ananiev, E.P.; Boyko, I.D.; Kruzhilin, G.I. Heat transfer in the presence of steam condensation in horizontal tubes. Int. Dev. Heat Transf. 1961, 2, 290–295. [Google Scholar]
- Moser, K.W.; Webb, R.L.; Na, B. A new equivalent Reynolds number model for condensation in smooth tubes. J. Heat Transf. 1998, 120, 410–416. [Google Scholar] [CrossRef]
- Dong, T.; Yang, Z. Measurement and modeling of R141b condensation heat transfer in silicon rectangular microchannels. J. Micromech. Microeng. 2008, 18, 085012. [Google Scholar] [CrossRef]
- Fronk, B.M.; Garimella, S. Condensation of ammonia and high-temperature-glide ammonia/water zeotropic mixtures in minichannels—Part I: Measurements. Int. J. Heat Mass Transf. 2016, 101, 1343–1356. [Google Scholar] [CrossRef]
- Garimella, S.; Agarwal, A.; Fronk, B.M. Condensation heat transfer in rectangular microscale geometries. Int. J. Heat Mass Transf. 2016, 100, 98–110. [Google Scholar] [CrossRef]
- Nakashita, K. Study on Condensation of Pure Refrigerant R134a in Multi-Port Extruded Tubes. Ph.D. Thesis, Kyushu University, Fukuoka, Japan, 2002. (In Japanese). [Google Scholar]
- Al-Zaidi, A.H.; Mahmoud, M.M.; Karayiannis, T.G. Condensation flow patterns and heat transfer in horizontal microchannels. Exp. Therm. Fluid Sci. 2018, 90, 153–173. [Google Scholar] [CrossRef]
- Liu, N.; Xiao, H.; Li, J. Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze(E) and R22 in minichannels. Appl. Therm. Eng. 2016, 102, 63–72. [Google Scholar] [CrossRef]
- Park, J.E.; Vakili-Farhani, F.; Thome, J.R. Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze(E) versus R134a and R236fa. Exp. Therm. Fluid Sci. 2011, 35, 442–454. [Google Scholar] [CrossRef]
- Agarwal, A.; Bandhauer, T.M.; Garimella, S. Measurement and modeling of condensation heat transfer in non-circular microchannels. Int. J. Refrig. 2010, 33, 1169–1179. [Google Scholar] [CrossRef]
- Belchí, A.L.; Gómez, F.I.; Cascales, J.R.G.; García, F.V. Condensing two-phase pressure drop and heat transfer coefficient of propane in a horizontal multiport mini-channel tube: Experimental measurements. Int. J. Refrig. 2016, 68, 59–75. [Google Scholar] [CrossRef]
- Shin, J.S.; Kim, M.H. An experimental study of flow condensation heat transfer inside circular and rectangular mini-channels. In Proceedings of the Second International Conference on Microchannels and Minichannels, Rochester, NY, USA, 17–19 June 2004; pp. 633–640. [Google Scholar]
- Liu, N.; Li, J.M.; Wang, H.S. Heat transfer and pressure drop during condensation of R152a in circular and square microchannels. Exp. Therm. Fluid Sci. 2013, 47, 60–66. [Google Scholar] [CrossRef]
- Del Col, D.; Bortalato, M.; Bortolin, S. Comprehensive experimental investigation of two-phase heat transfer and pressure drop with propane in a minichannel. Int. J. Refrig. 2014, 47, 66–84. [Google Scholar] [CrossRef]
- Derby, M.; Lee, H.J.; Peles, Y.; Jensen, M.K. Condensation heat transfer in square, triangular, and semi-circular mini-channels. Int. J. Heat Mass Transf. 2012, 55, 187–197. [Google Scholar] [CrossRef]
- Cavallini, A.; Col, D.D.; Doretti, L.; Matkovic, M.; Rosetto, L.; Zilio, C. Condensation heat transfer and pressure gradient inside multiport minichannels. Heat Transf. Eng. 2005, 26, 45–55. [Google Scholar] [CrossRef]
- Koyama, S.; Kuwahara, K.; Nakashita, K. Condensation of refrigerant in a multi-port channel. In Proceedings of the First International Conference on Microchannels and Minichannels, Rochester, NY, USA, 24–25 April 2003; pp. 193–205. [Google Scholar]
- Al-Hajri, E.; Shooshtari, A.H.; Dessiatoun, S.; Ohadi, M.M. Performance characterization of R134a and R245fa in a high aspect ratio microchannel condenser. Int. J. Refrig. 2013, 36, 588–600. [Google Scholar] [CrossRef]
- Wang, W.W.; Radcliff, T.D.; Christensen, R.N. A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition. Exp. Therm. Fluid Sci. 2002, 26, 473–485. [Google Scholar] [CrossRef]
Parameter | Data Range |
---|---|
Fluids | R-22, R-32, R-134a, R-141b, R-236fa, R-245fa, R-410A, R-152a, R-1234ze(E), propane, carbon dioxide, FC-72, isobutane, HFE-7100, ammonia (15 fluids) |
Geometry | square, rectangle, semi-circle, triangle, barrel shaped, N-insert, W-insert, single and multi channels. All sides cooled or one side insulated. |
Orientation | Horizontal, vertical down |
Aspect Ratio, width/height | 0.14 to 4.0 |
DHYD, mm | 0.067 to 1.46 |
Reduced pressure | 0.0449 to 0.7738 |
G, kg m−2 s−1 | 48 to 1000 |
x, % | 0.01 to 0.99 |
WeGT | 5 to 4195 |
ReLT | 52 to 16,987 |
Number of data sources | 22 |
Number of data sets | 42(41 horizontal, 1 vertical down) |
Source | Channel Type | DHYD (DHP) mm | AR | Fluid | pr | G Kg. m−2s−1 | ReLT | WeGT | N | Deviation % Mean Absolute Average | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Shah [3] | Kim and Mudawar [1] | Ananiev et al. [37] | Kim et al. [10] | Solanki and Kumar [13] | Wen et al. [7] | Dorao and Fern-andino [2] | ||||||||||
Dong and Yang [39] | Multi, rect., H | 0.114 (0.133) | 0.4 | R-141b | 0.0449 | 200 | 87 | 35 | 20 | 38.4 | 40.4 | 39.9 | 98.0 | 84.8 | 12.7 | 17.7 |
32.5 | 29.7 | 36.2 | 96.0 | 81.3 | 2.1 | 10.1 | ||||||||||
0.092 (0.104) | 0.3 | 200 | 68 | 28 | 11 | 20.7 | 28.2 | 22.0 | 98.5 | 45.8 | 11.9 | 7.0 | ||||
16.6 | 10.6 | 22.0 | 98.5 | 45.8 | 11.9 | −10.8 | ||||||||||
0.067 (0.08) | 0.5 | 200 | 52 | 20 | 12 | 14.9 | 24.1 | 9.6 | 16.2 | 26.2 | 30.9 | 26.9 | ||||
−14.2 | −14.5 | −9.6 | 15.9 | 26.2 | −30.9 | −26.9 | ||||||||||
Fronk and Garimella [40] | Single, sq., H | 0.1 | 1 | CO2 | 0.6871 | 600 | 803 | 114 | 14 | 25.7 | 30.2 | 29.5 | 24.5 | 93.4 | 24.7 | 24.7 |
0.7738 | 904 | 150 | −25.7 | −30.2 | −29.5 | −24.5 | 93.4 | −24.7 | −24.7 | |||||||
Garimella et al. [41] | Rect., multi, H | 0.10 | 1 | R-134a | 0.1889 | 600 | 371 | 118 | 10 | 71.2 | 74.1 | 73.7 | 67.6 | 40.5 | 71.6 | 71.6 |
0.4128 | 800 | 646 | 196 | −71.2 | −74.1 | −73.7 | −67.6 | −40.5 | −71.6 | −71.6 | ||||||
0.15 | 3 | 0.1889 | 300 | 245 | 49 | 5 | 75.4 | 83.4 | 81.1 | 86.8 | 43.1 | 79.0 | 80.8 | |||
−75.4 | −83.4 | −81.1 | −86.8 | −43.1 | −79.0 | −80.8 | ||||||||||
0.16 | 4 | 0.2494 | 600 | 593 | 188 | 8 | 75.5 | 77.8 | 77.7 | 85.4 | 21.0 | 73.0 | 75.9 | |||
0.4128 | 800 | 1033 | 313 | −75.5 | −77.8 | −77.7 | −85.4 | −21.0 | −73.0 | −75.9 | ||||||
Nakashita [42] | Multi, Rect., H | 0.76 | Un-known | R-134a | 0.4128 | 100 | 614 | 32 | 18 | 21.0 | 29.8 | 35.0 | 40.7 | 80.1 | 37.3 | 37.3 |
400 | 2454 | 519 | −4.0 | −21.7 | −29.6 | −11.6 | 68.6 | −22.8 | −22.8 | |||||||
1.06 | 100 | 856 | 23 | 19 | 11.5 | 23.9 | 28.1 | 29.7 | 83.9 | 29.4 | 29.4 | |||||
400 | 3421 | 372 | 3.1 | −15.3 | −16.0 | −4.9 | 79.1 | −18.7 | −18.7 | |||||||
Jige et al. [29] | Multi, rect., H | 0.85 | 0.69 | R-1234ze | 0.210 | 100 | 508 | 27 | 37 | 17.6 | 26.7 | 30.3 | 41.2 | 63.9 | 32.7 | 32.0 |
0.3499 | 400 | 2598 | 424 | −6.5 | −21.5 | −26.0 | 6.5 | 48.2 | −30.8 | −28.7 | ||||||
R-32 | 0.4271 | 100 | 893 | 26 | 33 | 20.7 | 32.4 | 32.3 | 38.5 | 96.3 | 33.3 | 33.9 | ||||
0.6780 | 400 | 4752 | 563 | 4.5 | −3.2 | −15.3 | 7.8 | 90.4 | −11.7 | −18.0 | ||||||
R-134a | 0.2494 | 100 | 524 | 26 | 53 | 21.5 | 27.4 | 35.2 | 31.8 | 55.0 | 34.7 | 34.0 | ||||
0.4128 | 400 | 2745 | 445 | −13.3 | −21.2 | −31.7 | −0.1 | 39.7 | −29.9 | −27.8 | ||||||
Rahman et al. [30] | Multi, rect., H | 0.81 | 0.5 | R-134a | 0.2176 | 50 | 235 | 7 | 47 | 25.9 | 37.9 | 52.5 | 29.3 | 28.0 | 54.9 | 52.3 |
200 | 940 | 111 | −22.3 | −37.9 | −52.9 | −21.5 | −18.2 | −54.9 | −52.3 | |||||||
Al-Zaidi [43] | Multi, rect. H | 0.57 (0.67) | 0.4 | HFE-7100 | 0.0455 | 48 | 91 | 10 | 36 | 25.9 | 21.2 | 16.0 | 18.5 | 16.2 | 46.9 | 42.8 |
126 | 240 | 69 | 25.9 | −0.5 | −15.2 | 18.0 | 13.9 | −46.9 | −42.8 | |||||||
Liu et al. [44] | Square, H | 0.952 | 1 | R-1234ze | 0.210 | 200 | 1138 | 124 | 18 | 19.9 | 18.0 | 17.8 | 24.0 | 104.8 | 17.9 | 17.9 |
0.2733 | 800 | 5136 | 1983 | −2.7 | −11.3 | −8.5 | 9.3 | 104.8 | −12.3 | −2.3 | ||||||
R-22 | 0.3062 | 350 | 2399 | 292 | 12 | 8.6 | 9.7 | 6.9 | 17.2 | 118.2 | 7.7 | 7.7 | ||||
500 | 3426 | 526 | 4.5 | −3.3 | −6.1 | 17.2 | 118.2 | 2.5 | 2.5 | |||||||
Propane | 0.321 | 200 | 2295 | 238 | 26 | 19.9 | 15.7 | 17.7 | 26.4 | 133.3 | 18.8 | 18.8 | ||||
0.4017 | 500 | 6416 | 1500 | 6.2 | −4.7 | −1.5.5 | 23.1 | 133.3 | 0.7 | 0.7 | ||||||
Park et al. [45] | Multi, rect., V | 1.43 | 1.86 | R-1234ze | 0.2100 0.4417 | 100 | 855 | 51 | 31 | 29.9 | 20.7 | 21.0 | 18.9 | 187.3 | 24.1 | 21.7 |
260 | 2137 | 317 | 22.3 | 19.3 | 8.5 | −4.5 | 187.3 | 8.0 | 2.7 | |||||||
R-236fa | 0.1359 | 100 | 604 | 63 | 17 | 40.3 | 23.4 | 23.8 | 15.0 | 176.8 | 30.0 | 15.0 | ||||
260 | 1571 | 423 | 31.9 | 23.2 | 17.9 | −2.7 | 176.8 | 20.4 | −2.7 | |||||||
R-134a | 0.2494 | 100 | 884 | 47 | 16 | 12.8 | 8.2 | 12.6 | 15.9 | 149.3 | 16.0 | 14.4 | ||||
260 | 2295 | 316 | 7.4 | 3.5 | −6.3 | −15.5 | 149.3 | 2.8 | −2.9 | |||||||
Agarwal et al. [46] | Multi, Square, H | 1 | 0.762 | R-134a | 0.166 | 150 | 861 | 52 | 31 | 25.2 | 13.3 | 19.5 | 40.4 | 159.8 | 24.4 | 24.4 |
750 | 4303 | 1307 | 25.1 | 10.0 | 11.7 | 39.9 | 159.8 | 21.4 | 21.4 | |||||||
Multi, W-insert, H | 1 | 0.732 | 0.366 | 150 | 827 | 50 | 25 | 12.2 | 20.8 | 21.7 | 14.5 | 90.8 | 14.9 | 14.9 | ||
750 | 4134 | 1256 | −6.3 | −18.9 | −17.6 | 3.1 | 90.8 | −10.6 | −10.6 | |||||||
Multi, N- shape, H | 1 | 0.536 | 0.3661 | 300 | 1211 | 147 | 16 | 22.3 | 27.8 | 28.1 | 18.9 | 77.2 | 22.7 | 22.7 | ||
750 | 3017 | 919 | −15.2 | −25.8 | −22.9 | −3.9 | 77.2 | −16.7 | −16.7 | |||||||
Multi, triangle, H | 1 | 0.839 | 0.3661 | 150 | 948 | 71 | 15 | 14.0 | 24.7 | 27.1 | 45.6 | 193.1 | 30.4 | 25.8 | ||
750 | 16,987 | 2042 | −8.7 | −23.2 | −26.4 | −32.5 | 193.1 | −30.2 | −23.8 | |||||||
Multi, barrel, H | 0.799 | 1.25 | 0.3661 | 150 | 1805 | 55 | 150 750 | 29.2 | 24.8 | 31.0 | 31.1 | 150.5 | 29.5 | 29.0 | ||
750 | 4512 | 1370 | 12.7 | −2.4 | 2.0 | 14.1 | 150.5 | 11.2 | 9.2 | |||||||
Multi, rect., H | 0.424 | 2 | 0.3661 | 600 | 1437 | 262 | 10 | 24.5 | 26.8 | 27.6 | 29.0 | 140.9 | 23.4 | 24.3 | ||
750 | 2394 | 727 | −7.8 | −22.2 | −15.2 | −23.4 | 140.9 | −2.9 | −8.3 | |||||||
Belchi et al. [47] | Multi, sq., H | 1.16 | 1 | Propane | 0.2529 | 175 | 2129 | 224 | 28 | 21.5 | 18.8 | 16.1 | 33.3 | 152.1 | 16.5 | 16.5 |
0.4017 | 350 | 5472 | 896 | 16.6 | 10.1 | 7.1 | 33.1 | 152.1 | 7.9 | 7.9 | ||||||
Shin and Kim [48] | Single, square, H | 0.494 | 1 | R-134a | 0.2494 | 100 | 305 | 16 | 11 | 19.0 | 25.6 | 30.4 | 37.1 | 75.2 | 31.4 | 31.4 |
600 | 1832 | 581 | −3.6 | −20.4 | −24.6 | −9.1 | 66.2 | −21.8 | −21.8 | |||||||
0.972 | 1 | 100 | 601 | 32 | 23 | 28.0 | 25.8 | 28.6 | 37.4 | 110.6 | 30.7 | 30.7 | ||||
600 | 3605 | 1144 | 7.8 | −2.5 | −7.2 | 12.0 | 106.8 | −3.6 | −3.6 | |||||||
Liu et al. [49] | Single, square, H | 0.952 | 1 | R-152a | 0.2005 | 200 | 1386 | 174 | 21 | 15.9 | 13.9 | 13.1 | 18.6 | 115.4 | 14.9 | 14.9 |
600 | 4157 | 1567 | 3.6 | −0.8 | −2.1 | 11.3 | 115.4 | −9.5 | −9.5 | |||||||
Del Col et al. [14] | Single, square, H | 1.23 | 1 | R-134a | 0.2494 | 200 | 1521 | 161 | 44 | 14.8 | 21.3 | 22.9 | 8.8 | 70.8 | 20.4 | 20.4 |
789 | 6000 | 2503 | −14.8 | −21.3 | −22.9 | −6.7 | 70.1 | −20.4 | −20.4 | |||||||
Del Col et al. [50] | Single, square, H | 1.23 | 1 | R-32 | 0.4271 | 100 | 1292 | 37 | 30 | 12.0 | 23.3 | 32.9 | 23.5 | 66.3 | 27.9 | 27.9 |
390 | 5041 | 568 | −11.9 | −23.3 | −32.9 | −22.1 | 66.3 | −27.9 | −27.9 | |||||||
Single, square, V | 1.23 | 1 | R-134a | 0.2494 | 100 | 760 | 90 | 53 | 10.9 | 28.7 | 37.0 | 24.2 | 40.2 | 34.1 | 34.1 | |
390 | 2966 | 610 | −10.7 | −28.7 | −37.0 | −23.8 | 40.2 | −34.1 | −34.1 | |||||||
Kim & Mudawar. [20] | Multi, square, H | 1.0 (1.33) | 1 | FC-72 | 0.0574 | 68 | 141 | 32 | 54 | 20.4 | 28.4 | 34.3 | 30.9 | 29.6 | 24.6 | 24.6 |
367 | 763 | 932 | −7.2 | −17.0 | −34.3 | −30.7 | 22.2 | −15.7 | −15.7 | |||||||
Derby et al. [51] | Multi, square, H | 1.0 (1.33) | 1 | R-134a | 0.2176 | 75 | 579 | 18 | 61 | 10.9 | 14.2 | 23.0 | 20.4 | 66.7 | 19.3 | 19.9 |
0.2846 | 450 | 3946 | 693 | 3.1 | 5.3 | −21.9 | −2.8 | 66.7 | −15.4 | −15.4 | ||||||
Multi, semi-circle, H | 1.0 (1.64) | 2 | 0.2176 | 75 | 714 | 19 | 31 | 5.4 | 10.4 | 26.0 | 33.0 | 93.1 | 20.5 | 21.4 | ||
450 | 4282 | 693 | −2.6 | 5.1 | −26.1 | −30.0 | 93.1 | −13.3 | −18.0 | |||||||
Multi, triang., H | 1.0 (1.5) | 1.16 | 0.2176 | 75 | 653 | 19 | 25 | 9.8 | 16.6 | 25.3 | 22.9 | 65.4 | 24.1 | 24.1 | ||
450 | 3917 | 693 | −2.5 | 3.6 | −25.3 | −14.0 | 65.4 | −16.5 | −17.5 | |||||||
Cavallini et al. [52] | Multi, sq., H | 1.4 | 1 | R-410A | 0.4917 | 200 | 2906 | 168 | 27 | 11.1 | 18.8 | 14.7 | 12.1 | 119.9 | 10.8 | 10.8 |
1000 | 14,531 | 4195 | −5.8 | −17.9 | −12.0 | 4.2 | 119.9 | −6.5 | −6.5 | |||||||
Koyama et al. [53] | Multi, rect, H | 0.807 | 0.3 | R-134a | 0.4177 | 273 | 1791 | 184 | 8 | 11.1 | 26.1 | 12.0 | 90.8 | 49.3 | 12.5 | 10.9 |
652 | 4278 | 1052 | 2.5 | 10.8 | −11.4 | 90.8 | 49.3 | −11.7 | −2.6 | |||||||
Al-Hajri et al. [54] | Single, rect., H | 0.7 | 0.14 | R-134a | 0.1889 | 50 | 246 | 5 | 15 | 22.6 | 26.3 | 29.0 | 121.0 | 18.7 | 33.1 | 24.2 |
0.5197 | 500 | 2464 | 539 | −1.1 | −18.7 | −28.8 | 121.0 | −10.3 | −33.1 | −21.5 | ||||||
R-245fa | 0.0484 | 50 | 121 | 9 | 14 | 14.5 | 20.8 | 19.7 | 127.0 | 20.4 | 30.1 | 22.9 | ||||
0.1663 | 500 | 1208 | 872 | −4.2 | −15.4 | −14.2 | 127.0 | −10.9 | −27.6 | −15.0 | ||||||
Wang et al. [55] | Multi, rect., H | 1.46 | 1.07 | R-134a | 0.4586 | 150 | 1857 | 102 | 37 | 13.0 | 10.8 | 12.9 | 17.8 | 128.2 | 11.8 | 11.6 |
750 | 9434 | 2561 | 6.8 | −5.0 | −4.4 | 15.2 | 128.2 | 3.6 | 3.0 | |||||||
Kim et al. [10] | Multi, rect., H | 1.4 | 1.4 | R-410A | 0.5542 | 200 | 3162 | 177 | 9 | 12.0 | 8.1 | 8.2 | 6.5 | 196.7 | 14.9 | 11.8 |
600 | 9482 | 1618 | 11.8 | 2.6 | 3.7 | 3.1 | 196.7 | 14.9 | 11.8 | |||||||
R-22 | 0.3453 | 200 | 2154 | 139 | 10 | 21.8 | 9.0 | 12.9 | 18.1 | 187.0 | 23.7 | 20.6 | ||||
600 | 6461 | 1254 | 21.8 | 8.9 | 8.4 | 17.0 | 187.0 | 23.7 | 20.6 | |||||||
All sources | 0.067 | 0.14 | 0.0449 | 48 | 52 | 5 | 1120 | 20.3 | 24.0 | 27.4 | 31.4 | 84.6 | 27.2 | 26.5 | ||
1.46 | 4.0 | 0.7738 | 1000 | 16,987 | 4195 | −1.8 | −11.3 | −18.4 | 2.6 | 78.0 | −16.5 | −16.0 |
Source | Geometry | DHYD (DHP) mm | AR | Fluid | pr | G Kg. m−2s−1 | ReLT | WeGT | N | Deviation, % Mean Absolute Average | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Shah [3] | Kim and Mudawar [1] | Ana-niev et al. [37] | Kim et al. [10] | Solanki and Kumar [13] | Wen et al. [7] | Dorao and Fernandino [2] | ||||||||||
Wilson et al. [9] | Flattened tube, H | 4.88 | 4.4 | R-134a | 0.2176 | 75 | 1915 | 85 | 15 | 13.5 | 27.1 | 27.6 | 46.5 | 152.4 | 20.7 | 27.3 |
400 | 10,213 | 2409 | −4.7 | −24.8 | −27.6 | −38.0 | 152.4 | −3.0 | −27.3 | |||||||
R-410A | 0.4347 | 75 | 3191 | 71 | 15 | 12.8 | 24.7 | 27.1 | 45.6 | 193.1 | 17.3 | 25.8 | ||||
400 | 16,987 | 2042 | −0.7 | −23.2 | −26.4 | −32.5 | 193.1 | −17.3 | −23.6 | |||||||
Round tube, H | 8.9 | 1 | R-134a | 0.2176 | 75 | 3873 | 171 | 7 | 43.1 | 37.8 | 26.9 | 43.1 | 82.8 | 29.0 | 29.0 | |
175 | 9038 | 933 | 43.1 | 27.5 | −12.6 | 43.1 | 72.0 | −14.0 | −14.0 | |||||||
R-410A | 0.4347 | 75 | 6455 | 143 | 15 | 54.7 | 19.3 | 25.9 | 54.7 | 128.1 | 28.4 | 28.4 | ||||
175 | 15,038 | 791 | 54.7 | 10.9 | −4.5 | 54.7 | 127.4 | −1.4 | −1.4 | |||||||
Kim et al. [10] | Flattened tube, H | 2.3 | 6 | R-410a | 0.5542 | 100 | 2579 | 72 | 10 | 58.9 | 30.2 | 24.0 | 39.1 | 434.4 | 47.8 | 28.9 |
400 | 10,313 | 1172 | 57.3 | 22.0 | 20.1 | −39.1 | 434.4 | 47.8 | 27.7 | |||||||
3.0 | 4 | 0.5542 | 100 | 3364 | 94 | 10 | 50.7 | 21.5 | 28.8 | 36.1 | 392.6 | 50.8 | 34.6 | |||
400 | 13,451 | 1529 | 50.7 | 21.5 | 28.8 | 4.7 | 392.6 | 50.8 | 34.6 | |||||||
4.1 | 2 | 0.5542 | 100 | 4597 | 129 | 12 | 32.2 | 6.4 | 8.9 | 30.6 | 218.2 | 15.0 | 9.4 | |||
400 | 18,383 | 2018 | 32.2 | 0.5 | 4.9 | 15.7 | 218.2 | 15.0 | 8.6 | |||||||
Round, H | 5.0 | 1 | 0.5542 | 100 | 5606 | 157 | 42 | 29.1 | 16.0 | 18.2 | 29.1 | 164.1 | 21.0 | 21.0 | ||
400 | 22,419 | 2548 | 29.1 | −7.3 | 3.2 | 29.1 | 164.1 | 11.0 | 11.0 | |||||||
Solanki and Kumar [13] | Flattened Tube, H | 3.8 | 5.88 | R-134a | 0.2176 | 450 | 10,001 | 2654 | 9 | 41.0 | 54.1 | 44.7 | 71.4 | 105.7 | 35.7 | 44.4 |
650 | 14,446 | 5536 | −41.0 | −54.1 | −44.7 | −71.4 | 105.7 | −35.7 | −44.4 | |||||||
6.4 | 2.72 | 0.2176 | 450 | 16,790 | 4455 | 9 | 24.5 | 43.6 | 29.3 | 47.7 | 106.3 | 24.0 | 28.8 | |||
650 | 24,253 | 9295 | −24.5 | −43.6 | −29.3 | −47.7 | 106.3 | −22.7 | −28.8 | |||||||
Round, H | 8.9 | 1 | 0.2176 | 550 | 23,236 | 6173 | 19 | 10.7 | 34.5 | 17.3 | 10.6 | 78.9 | 15.5 | 15.5 | ||
0.2846 | 650 | 33,607 | 12,880 | −0.6 | −34.5 | −5.6 | −0.6 | 78.9 | −15.0 | −15.0 | ||||||
Darzi et al. [11] | Flattened tube, H | 8.2 | 1.5 | Isobutane | 0.1536 | 155 | 10,010 | 1686 | 7 | 20.6 | 35.9 | 23.3 | 26.5 | 81.5 | 26.3 | 28.7 |
−20.6 | −35.9 | −23.3 | −26.5 | 81.5 | −26.3 | −28.7 | ||||||||||
7.29 | 2.06 | 0.1536 | 155 | 8899 | 1499 | 28 | 29.5 | 49.2 | 38.2 | 49.5 | 56.9 | 39.6 | 43.1 | |||
266 | 15,215 | 4381 | −29.5 | −49.2 | −38.2 | −49.5 | 56.9 | −39.6 | −43.1 | |||||||
5.1 | 3.84 | 0.1536 | 155 | 6226 | 1049 | 7 | 42.0 | 54.1 | 49.6 | 68.8 | 59.6 | 47.8 | 53.2 | |||
−42.0 | −54.1 | −49.6 | −68.8 | 59.6 | −47.8 | −53.2 | ||||||||||
Round, H | 8.7 | 1 | 0.142 | 155 | 10,459 | 1746 | 28 | 7.7 | 30.8 | 14.6 | 7.7 | 73.6 | −37.9 | −37.9 | ||
0.1617 | 265 | 18,798 | 5022 | −1.9 | −30.8 | −14.2 | −1.9 | 73.6 | −32.6 | −32.6 | ||||||
Kaewon et al. [12] | Single, Round, H | 3.51 | 1 | R-134a | 0.1959 | 380 | 7380 | 1807 | 31 | 48.8 | 15.8 | 28.8 | 48.8 | 168.6 | 28.9 | 28.9 |
0.2944 | 750 | 16,150 | 6486 | 48.3 | 9.6 | 25.8 | 48.3 | 168.6 | 27.0 | 27.0 | ||||||
Flattened, H | 3.17 | 0.72 | 0.2454 | 400 | 7779 | 1666 | 11 | 12.1 | 19.0 | 15.3 | 37.6 | 86.1 | 12.6 | 12.4 | ||
825 | 16,045 | 7088 | 3.9 | −15.1 | 1.5 | 37.6 | 86.1 | −2.7 | 0.0 | |||||||
1.84 | 3.5 | 0.2454 | 400 | 4515 | 967 | 17 | 15.3 | 25.7 | 18.9 | 38.7 | 187.2 | 12.7 | 15.0 | |||
825 | 9313 | 4114 | −3.2 | −17.8 | −7.3 | −38.7 | 187.2 | 3.2 | −6.8 | |||||||
1.16 | 7 | 0.2454 | 400 | 2847 | 610 | 18 | 44.6 | 48.0 | 46.1 | 74.0 | 109.6 | 39.7 | 46.5 | |||
825 | 5871 | 2594 | 42.8 | −47.3 | −45.7 | −74.0 | 109.6 | −35.9 | −45.3 | |||||||
All | Round, flattened | 1.16 | 0.72 | 0.1420 | 75 | 1915 | 71 | 271 | 29.6 | 30.8 | 26.7 | 40.5 | 142.8 | 27.3 | 28.2 | |
8.9 | 7.0 | 0.5542 | 825 | 33,607 | 12,880 | 8.2 | −20.3 | −12.6 | −12.7 | 142.6 | −7.7 | −12.7 |
WeGT | N | Deviation % Mean Absolute Average | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Shah [3] | Kim and Mudawar [1] | Ananiev et al. [37] | Kim et al. [10] | Solanki and Kumar | Wen et al. [7] | Dorao and Fern-andino [2] | Moser et al. [38] | Akers et al. [38] | ||
≤ 100 | 381 | 21.6 | 32.6 | 41.1 | 40.5 | 36.0 | 40.8 | 40.0 | 39.3 | 191.2 |
−1.6 | −19.5 | −35.1 | −11.5 | −21.6 | −38.7 | −37.2 | 8.3 | 190.6 | ||
> 100 | 739 | 19.7 | 19.5 | 20.3 | 26.7 | 109.7 | 20.1 | 19.5 | 37.4 | 129.7 |
−1.9 | −7.1 | −9.7 | 10.1 | 107.1 | −5.1 | −5.2 | 30.6 | 129.0 | ||
All | 1120 | 20.3 | 24.0 | 27.4 | 31.4 | 84.6 | 27.2 | 26.5 | 38.1 | 150.7 |
−1.8 | −11.3 | −18.4 | 2.6 | 78.0 | −16.5 | −16.0 | 23.0 | 150.0 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, M.M. Prediction of Heat Transfer during Condensation in Non-Circular Channels. Inventions 2019, 4, 31. https://doi.org/10.3390/inventions4020031
Shah MM. Prediction of Heat Transfer during Condensation in Non-Circular Channels. Inventions. 2019; 4(2):31. https://doi.org/10.3390/inventions4020031
Chicago/Turabian StyleShah, Mirza M. 2019. "Prediction of Heat Transfer during Condensation in Non-Circular Channels" Inventions 4, no. 2: 31. https://doi.org/10.3390/inventions4020031
APA StyleShah, M. M. (2019). Prediction of Heat Transfer during Condensation in Non-Circular Channels. Inventions, 4(2), 31. https://doi.org/10.3390/inventions4020031