Next Issue
Volume 4, September
Previous Issue
Volume 4, March
 
 

Inventions, Volume 4, Issue 2 (June 2019) – 10 articles

Cover Story (view full-size image): In the residential sector, the additional integration of renewable distributed energy sources has been undergoing fast development, along with a rapid expansion in the use of essential DC electrical equipment, resulting in potential severe power quality problems. This paper demonstrates the smart integration of DC microgrid into the neighborhood low-voltage distribution network. The controller enables bidirectional active/reactive power flow, compensates for the legacy unbalanced loading, eliminates harmonics, unifying the power factor, and provides voltage support at the point of common coupling. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
11 pages, 2251 KiB  
Article
Statistical Analysis of the Mathematical Model of Entropy Generation of Magnetized Nanofluid
by Munawwar Ali Abbas and Ibrahim Hussain
Inventions 2019, 4(2), 32; https://doi.org/10.3390/inventions4020032 - 21 Jun 2019
Cited by 6 | Viewed by 5262
Abstract
This investigation introduces a mathematical model of entropy generation for Magnetohydrodynamic (MHD) peristaltic wave of nanofluid. The governing equations have been created by the supposition of low Reynolds number and long wavelength estimation. The scientific arrangement has been procured with the help of [...] Read more.
This investigation introduces a mathematical model of entropy generation for Magnetohydrodynamic (MHD) peristaltic wave of nanofluid. The governing equations have been created by the supposition of low Reynolds number and long wavelength estimation. The scientific arrangement has been procured with the help of perturbation technique. The concentration profile, temperature profile, pressure distribution and friction forces are shown graphically for some important parameters. Further, the eventual outcomes of connection between the entropy generation and some various parameters have been plotted by means of correlation and regression. It is fundamental to find the affectability of each parameter on entropy generation. Full article
(This article belongs to the Special Issue Recent Trends in Nanofluids)
Show Figures

Figure 1

22 pages, 1246 KiB  
Article
Prediction of Heat Transfer during Condensation in Non-Circular Channels
by Mirza M. Shah
Inventions 2019, 4(2), 31; https://doi.org/10.3390/inventions4020031 - 19 Jun 2019
Cited by 2 | Viewed by 5244
Abstract
It is desirable to know whether correlations for condensation in round tubes can be used for non-circular channels. To investigate this matter, a number of well-known correlations for mini and macro channels as well as some for flattened channels were compared to a [...] Read more.
It is desirable to know whether correlations for condensation in round tubes can be used for non-circular channels. To investigate this matter, a number of well-known correlations for mini and macro channels as well as some for flattened channels were compared to a database for condensation in non-circular channels. Data included square, rectangular, triangular, semi-circular, drum, N, and W shaped channels as well as flattened tubes. The data included 15 fluids, hydraulic diameter 0.067 to 1.46 mm, aspect ratio 0.14 to 7, reduced pressure 0.045 to 0.77, and mass flux from 48 to 1000 kgm−2s−1. None of the correlations worked well for flattened tubes. Data for all other shapes were best predicted by the Shah correlation with mean absolute deviation of 20.1% with 1120 data points from 22 sources. None of the other correlations was found satisfactory over the entire range. Full article
(This article belongs to the Special Issue Heat transfer and Thermal Managements of Innovative Systems)
Show Figures

Figure 1

11 pages, 1676 KiB  
Article
Adaptive Control Synchronization of a Novel Memristive Chaotic System for Secure Communication Applications
by Zain-Aldeen S. A. Rahman, Hayder A. A. Al-Kashoash, Saif Muneam Ramadhan and Yasir I. A. Al-Yasir
Inventions 2019, 4(2), 30; https://doi.org/10.3390/inventions4020030 - 17 Jun 2019
Cited by 15 | Viewed by 5697
Abstract
In this paper, a new memristive chaotic system is designed, analyzed, tested, and proposed. An adaptive control synchronization mechanism for both master and slave chaotic systems is also designed. The adaptive control law of this mechanism is derived based on the Lyapunov theory. [...] Read more.
In this paper, a new memristive chaotic system is designed, analyzed, tested, and proposed. An adaptive control synchronization mechanism for both master and slave chaotic systems is also designed. The adaptive control law of this mechanism is derived based on the Lyapunov theory. A single parameter in the slave system has been assumed to be unknown. As the parameters of the master and slave are asymptotically matched, the unknown slave parameters will be identified according to the master’s parameters. The proposed system is used in a secure communication system. The achieved results prove a simple system implementation with a high security of data transmission. Full article
Show Figures

Figure 1

15 pages, 3732 KiB  
Review
Therapeutic Potential of Iridoid Derivatives: Patent Review
by Hidayat Hussain, Ivan R. Green, Muhammad Saleem, Muhammad Liaquat Raza and Mamona Nazir
Inventions 2019, 4(2), 29; https://doi.org/10.3390/inventions4020029 - 16 May 2019
Cited by 42 | Viewed by 10608
Abstract
Iridoids belong to a family of monoterpenoids comprising the cyclopentan[c]-pyran system; this class of compounds offers a wide range of biological effects, namely antileishmanial, anticancer, antiplasmodial, and anti-inflammatory potency. To date, a large number of biologically active iridoid derivatives have been [...] Read more.
Iridoids belong to a family of monoterpenoids comprising the cyclopentan[c]-pyran system; this class of compounds offers a wide range of biological effects, namely antileishmanial, anticancer, antiplasmodial, and anti-inflammatory potency. To date, a large number of biologically active iridoid derivatives have been reported from various plant families, including Rubiaceae, Plantaginaceae, Scrophulariaceae, and Verbenaceae. Furthermore, iridoids have the potential to form conjugates with other anticancer, antidiabetic, antileishmanial, and antimalarial drugs which synergistically have the potential to increase their effects. Additionally, future research should focus on the synthesis of halo analogs as well as preparing homo dimers or heterodimers of iridoids, since these might quite conceivably possess an increased bioactivity. Full article
Show Figures

Graphical abstract

10 pages, 791 KiB  
Article
Thermodynamics of Manufacturing Processes—The Workpiece and the Machinery
by Jude A. Osara
Inventions 2019, 4(2), 28; https://doi.org/10.3390/inventions4020028 - 15 May 2019
Cited by 10 | Viewed by 7723
Abstract
Considered the world’s largest industry, manufacturing transforms billions of raw materials into useful products. Like all real processes and systems, manufacturing processes and equipment are subject to the first and second laws of thermodynamics and can be modeled via thermodynamic formulations. This article [...] Read more.
Considered the world’s largest industry, manufacturing transforms billions of raw materials into useful products. Like all real processes and systems, manufacturing processes and equipment are subject to the first and second laws of thermodynamics and can be modeled via thermodynamic formulations. This article presents a simple thermodynamic model of a manufacturing sub-process or task, assuming multiple tasks make up the entire process. For example, to manufacture a machined component such as an aluminum gear, tasks include cutting the original shaft into gear blanks of desired dimensions, machining the gear teeth, surfacing, etc. The formulations presented here, assessing the workpiece and the machinery via entropy generation, apply to hand-crafting. However, consistent isolation and measurement of human energy changes due to food intake and work output alone pose a significant challenge; hence, this discussion focuses on standardized product-forming processes typically via machine fabrication. Full article
(This article belongs to the Special Issue Thermodynamics in the 21st Century)
Show Figures

Figure 1

18 pages, 3855 KiB  
Article
Control of Distributed Generators and Direct Harmonic Voltage Controlled Active Power Filters for Accurate Current Sharing and Power Quality Improvement in Islanded Microgrids
by Hafiz Mudassir Munir, Rami Ghannam, Hong Li, Talha Younas, Noorbakhsh Amiri Golilarz, Mannan Hassan and Abubakar Siddique
Inventions 2019, 4(2), 27; https://doi.org/10.3390/inventions4020027 - 15 May 2019
Cited by 13 | Viewed by 6627
Abstract
Harmonics are regarded as one of the main challenges in a microgrid. This issue may even get worse when different distributed generators (DGs) work together to solve the load sharing problems due to mismatched feeder impedances and diversified DG ratings. Even though load [...] Read more.
Harmonics are regarded as one of the main challenges in a microgrid. This issue may even get worse when different distributed generators (DGs) work together to solve the load sharing problems due to mismatched feeder impedances and diversified DG ratings. Even though load sharing can be achieved, the microgrid suffers from voltage unbalance and total harmonic distortion (THD) issues at the output of DG terminals as well as at the point of common coupling (PCC). Thus, in this paper, the power quality improving method is discussed, with a target of load sharing under the hierarchical control of different DG units and an active power filter (APF) in microgrids. To achieve this objective, we propose integrating a direct harmonic voltage controlled APF with DGs to improve their harmonic compensation performance. This proposed control scheme has many advantages over conventional control using a shunt resistive active power filter (R-APF) with voltage controlled DGs. First, based on the existing THD level of the PCC voltage, the proposed scheme provides improved voltage compensation and reduction in THD in the islanded microgrid. Secondly, equal load sharing can be achieved simultaneously. Thus, the proposed scheme provides better performance and a seamless interface as the proposed study mainly contains both the voltage controlled DGs and the local based voltage detection APF. Full article
Show Figures

Figure 1

10 pages, 8285 KiB  
Article
Design of a Smart Bartender with Peristaltic Pumps
by Vyacheslav Rybin, Timur Karimov, Maria Sigaeva, Ekaterina Solomevich, Georgii Kolev and Ekaterina Kopets
Inventions 2019, 4(2), 26; https://doi.org/10.3390/inventions4020026 - 1 May 2019
Cited by 1 | Viewed by 8759
Abstract
In this paper, the development of a smart scalable system for liquid supply based on high-precision peristaltic pumps is described. The architecture of software and hardware for the proposed system is considered. This liquid supply system can be used for mixed and layered [...] Read more.
In this paper, the development of a smart scalable system for liquid supply based on high-precision peristaltic pumps is described. The architecture of software and hardware for the proposed system is considered. This liquid supply system can be used for mixed and layered cocktail preparation in public catering establishments, such as bars, as well as for home use. Due to the flexibility and scalability of the system, it is possible to apply it in various branches of human activity, where fine dosing of liquids is required, e.g., for beverage mixing, cooking, health and medical applications. By using open architecture and software, this system can be built in a smart home environment. The cross-platform control software and an embedded Bluetooth module allow using the developed setup in various use case scenarios. The result of the project is a DIY-kit, capable of mixing 6 to 32 different liquids in specified proportions and the programmable sequence. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

14 pages, 3465 KiB  
Article
Smart Integration of a DC Microgrid: Enhancing the Power Quality Management of the Neighborhood Low-Voltage Distribution Network
by Ahmed F. Ebrahim, Ahmed A. Saad and Osama Mohammed
Inventions 2019, 4(2), 25; https://doi.org/10.3390/inventions4020025 - 17 Apr 2019
Cited by 4 | Viewed by 6304
Abstract
The fast development of the residential sector regarding the additional integration of renewable distributed energy sources and the modern expansion usage of essential DC electrical equipment may cause severe power quality problems. For example, the integration of rooftop photovoltaic (PV) may cause unbalance, [...] Read more.
The fast development of the residential sector regarding the additional integration of renewable distributed energy sources and the modern expansion usage of essential DC electrical equipment may cause severe power quality problems. For example, the integration of rooftop photovoltaic (PV) may cause unbalance, and voltage fluctuation, which can add constraints for further PV integrations to the network, and the deployment of DC native loads with their nonlinear behavior adds harmonics to the network. This paper demonstrates the smart integration of a DC microgrid to the neighborhood low-voltage distribution network (NLVDN). The DC microgrid is connected to the NLVDN through a three-phase voltage source inverter (VSI), in which the VSI works as a distribution static compensator (DSTATCOM). Unlike previous STATCOM work in the literature, the proposed controller of the VSI of the DC smart building allows for many functions: (a) it enables bidirectional active/reactive power flow between the DC building and the AC grid at point of common coupling (PCC); (b) it compensates for the legacy unbalance in the distribution network, providing harmonics elimination and power factor correction capability at PCC; and (c) it provides voltage support at PCC. The proposed controller was validated by Matlab/Simulink and by experimental implementation at the lab. Full article
Show Figures

Figure 1

11 pages, 1819 KiB  
Review
The Noisy and Marvelous Molecular World of Biology
by Felix Ritort
Inventions 2019, 4(2), 24; https://doi.org/10.3390/inventions4020024 - 16 Apr 2019
Cited by 6 | Viewed by 6098
Abstract
At the molecular level biology is intrinsically noisy. The forces that regulate the myriad of molecular reactions in the cell are tiny, on the order of piconewtons (10−12 Newtons), yet they proceed in concerted action making life possible. Understanding how this is [...] Read more.
At the molecular level biology is intrinsically noisy. The forces that regulate the myriad of molecular reactions in the cell are tiny, on the order of piconewtons (10−12 Newtons), yet they proceed in concerted action making life possible. Understanding how this is possible is one of the most fundamental questions biophysicists would like to understand. Single molecule experiments offer an opportunity to delve into the fundamental laws that make biological complexity surface in a physical world governed by the second law of thermodynamics. Techniques such as force spectroscopy, fluorescence, microfluidics, molecular sequencing, and computational studies project a view of the biomolecular world ruled by the conspiracy between the disorganizing forces due to thermal motion and the cosmic evolutionary drive. Here we will digress on some of the evidences in support of this view and the role of physical information in biology. Full article
(This article belongs to the Special Issue Thermodynamics in the 21st Century)
Show Figures

Figure 1

28 pages, 3387 KiB  
Article
A Thermodynamic Model for Lithium-Ion Battery Degradation: Application of the Degradation-Entropy Generation Theorem
by Jude A. Osara and Michael D. Bryant
Inventions 2019, 4(2), 23; https://doi.org/10.3390/inventions4020023 - 3 Apr 2019
Cited by 27 | Viewed by 12506
Abstract
Presented is a lithium-ion battery degradation model, based on irreversible thermodynamics, which was experimentally verified, using commonly measured operational parameters. The methodology, applicable to all lithium-ion batteries of all chemistries and composition, combined fundamental thermodynamic principles, with the Degradation–Entropy Generation theorem, to relate [...] Read more.
Presented is a lithium-ion battery degradation model, based on irreversible thermodynamics, which was experimentally verified, using commonly measured operational parameters. The methodology, applicable to all lithium-ion batteries of all chemistries and composition, combined fundamental thermodynamic principles, with the Degradation–Entropy Generation theorem, to relate instantaneous capacity fade (loss of useful charge-holding capacity) in the lithium-ion battery, to the irreversible entropy generated via the underlying dissipative physical processes responsible for battery degradation. Equations relating capacity fade—aging—to battery cycling were also formulated and verified. To show the robustness of the approach, nonlinear data from abusive and inconsistent battery cycling was measured and used to verify formulations. A near 100% agreement between the thermodynamic battery model and measurements was achieved. The model also gave rise to new material and design parameters to characterize all lithium-ion batteries. Full article
(This article belongs to the Special Issue Thermodynamics in the 21st Century)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop