Power Optimization Control Scheme for Doubly Fed Induction Generator Used in Wind Turbine Generators
Abstract
:1. Introduction
2. Methodology
2.1. Active and Reactive Power Control
2.2. d-q Vector Control
2.3. Implementation of Probabilistic Feedforward Neural Network
2.4. Implementation of Multi-Layer Perceptron Feedforward Neural Network
2.5. Implementation of Radial Basic Function Neural Network
3. Implementation of DFIG with Its Controllers in MATLAB/Simulink
Operating Conditions for Model
4. Results and Discussion
4.1. Response for Active Power at Stator
4.2. Response for Reactive Power Control at Stator
4.3. Response for Active Power Control at Rotor
4.4. Response for Reactive Power Control at Rotor
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deshmukh, M.K.; Moorthy, C.B. Review on stability analysis of grid connected wind power generating system. Int. J. Electr. Electron. Eng. Res. Dev. IJEEERD 2013, 3, 1–33. [Google Scholar]
- Duong, M.Q.; Leva, S.; Mussetta, M.; Le, K.H. A Comparative Study on Controllers for Improving Transient Stability of DFIG Wind Turbines during Large Disturbances. Energies 2018, 11, 480. [Google Scholar] [CrossRef] [Green Version]
- Pichan, M.; Rastegar, H.; Monfared, M. Fuzzy-based direct power control of doubly fed induction generator-based wind energy conversion systems. In Proceedings of the 2012 2nd International e Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 18 October 2012; pp. 66–70. [Google Scholar]
- Abdel-Khalik, A.S.; Elserougi, A.; Massoud, A.; Ahmed, S. A power control strategy for flywheel doubly-fed induction machine storage system using artificial neural network. Electr. Power Syst. Res. 2013, 96, 267–276. [Google Scholar] [CrossRef]
- Tuka, M.B.; Leidhold, R.; Mamo, M. Modeling and control of a Doubly Fed Induction Generator using a back-to-back converters in grid tied wind power system. In Proceedings of the 2017 IEEE PES PowerAfrica, Accra, Ghana, 27–30 June 2017; pp. 75–80. [Google Scholar]
- Wang, L.; Wang, K.-H. Dynamic Stability Analysis of a DFIG-Based Offshore Wind Farm Connected to a Power Grid through an HVDC Link. IEEE Trans. Power Syst. 2010, 26, 1501–1510. [Google Scholar] [CrossRef]
- Yousefi-Talouki, A.; Pouresmaeil, E.; Jorgensen, B.N. Active and reactive power ripple minimization in direct power control of matrix converter-fed DFIG. Int. J. Electr. Power Energy Syst. 2014, 63, 600–608. [Google Scholar] [CrossRef]
- Vittal, E. The Impact of Reactive Power from Wind Generation on Power System Stability. Ph.D. Thesis, University College Dublin, Dublin, Ireland, September 2011. [Google Scholar]
- Luna, A.; Lima, F.; Santos, D.; Rodriguez, P.; Watanabe, E.H.; Arnaltes, S. Simplified Modeling of a DFIG for Transient Studies in Wind Power Applications. IEEE Trans. Ind. Electron. 2010, 58, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Liu, G.; Li, A.-P.; Van Dai, L. A Predictive Power Control Strategy for DFIGs Based on a Wind Energy Converter System. Energies 2017, 10, 1098. [Google Scholar] [CrossRef]
- Teng, W.; Meng, Y. An improved control strategy to the frequency regulation of DFIG based wind turbine. J. Renew. Sustain. Energy 2017, 9, 63303. [Google Scholar] [CrossRef]
- Kaloi, G.S.; Wang, J.; Baloch, M.H. Active and reactive power control of the doubly fed induction generator based on wind energy conversion system. Energy Rep. 2016, 2, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Nora, Z.; Hocine, L. Active and Reactive Power Control of a Doubly Fed Induction Generator. Int. J. Power Electron. Drive Syst. IJPEDS 2014, 5, 244–251. [Google Scholar] [CrossRef]
- Tohidi, S.; Mohammadi-Ivatloo, B. A comprehensive review of low voltage ride through of doubly fed induction wind generators. Renew. Sustain. Energy Rev. 2016, 57, 412–419. [Google Scholar] [CrossRef]
- Bhutto, D.K.; Ansari, J.A.; Chachar, F.; Katyara, S.; Soomro, J. Selection of optimal controller for active and reactive power control of doubly fed induction generator (DFIG). In Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 3–4 March 2018; pp. 1–5. [Google Scholar]
- Duggirala, V.N.A.; Gundavarapu, V.N.K. Dynamic Stability Improvement of Grid Connected DFIG Using Enhanced Field Oriented Control Technique for High Voltage Ride Through. J. Renew. Energy 2015, 2015, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bouchiba, N.; Barkia, A.; Sallem, S.; Chrifi-Alaoui, L.; Drid, S.; Kammoun, M.B.A. Implementation and comparative study of control strategies for an isolated DFIG based WECS. Eur. Phys. J. Plus 2017, 132. [Google Scholar] [CrossRef]
- Dong, J.; Li, S.; Wu, S.; He, T.; Yang, B.; Shu, H.; Yu, J. Nonlinear Observer-Based Robust Passive Control of Doubly-Fed Induction Generators for Power System Stability Enhancement via Energy Reshaping. Energies 2017, 10, 1082. [Google Scholar] [CrossRef]
- Vahdati, P.M.; Vanfretti, L.; Amini, M.H.; Kazemi, A. Hopf Bifurcation Control of Power Systems Nonlinear Dynamics Via a Dynamic State Feedback Controller—Part II: Performance Evaluation. IEEE Trans. Power Syst. 2017, 32, 1. [Google Scholar] [CrossRef]
- Njiri, J.G.; Söffker, D. State-of-the-art in wind turbine control: Trends and challenges. Renew. Sustain. Energy Rev. 2016, 60, 377–393. [Google Scholar] [CrossRef]
- Sun, T.; Chen, Z.; Blaabjerg, F. Transient stability of DFIG wind turbines at an external short-circuit fault. Wind. Energy 2005, 8, 345–360. [Google Scholar] [CrossRef]
- Prabha, M.; Priyadharshini, M.; Priyanga, P.M.; Shanmugapriya, K. Modeling of Doubly Fed Induction Generator with Low Voltage Ride through Mechanism. Int. J. Adv. Res. Electr. 2017, 6. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, S.N.; Khatod, D.K. Modeling and simulation of doubly fed induction generator coupled with wind turbine-an overview. J. Eng. Comput. Appl. Sci. 2013, 2, 45–54. [Google Scholar]
- Petersson, A. Analysis, Modeling and Control of Doubly-Fed Induction Generators for Wind. Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2005. [Google Scholar]
- Ansari, J.A.; Memon, A.P.; Shah, M.A. Probabilistic Feedforward Neural Network Based Power System Stabilizer for Excitation Control System of Synchronous Generator. Bahria Univ. J. Inf. Commun. Technol. BUJICT 2015, 8, 70–74. [Google Scholar]
- Bhutto, D.K.; Ansari, J.A.; Bukhari, S.S.H.; Chachar, F.A. Wind energy conversion systems (WECS) generators: A review. In Proceedings of the 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30–31 January 2019; pp. 1–6. [Google Scholar]
Quantity | Value |
Active power (P) | 1.0 p.u |
Reactive power (Q) | 0.62 p.u |
Load power factor (p.f) | 0.85 p.u |
Stator Voltage (Vt) | 1.0 p.u |
Stator Resistance (Rs) | 0.01 p.u |
Stator Leakage inductance | 0.1 p.u |
Rotor Resistance(Rr) | 0.02 p.u |
Magnetizing Inductance (Lm) | 5 p.u |
Base frequency (ωR) Radians/s | 314.28 |
Damping value (D) | 0.8 |
Inertia value (H) | 4 |
Reference voltage (VRef) | 1 p.u |
Sensor gain (KR) | 1 |
DFIG Linear Parameters | |
---|---|
K1 | 1.0075 |
K2 | 1.0578 |
K3 | −0.0409 |
K4 | 0.4971 |
Active Power Controllers Parameters | |
Washout network Saturation | 10 |
Lead–lag network | τ1 = 0.100, τ2 = 10.00 |
Lag–lead network | τ3 = 0.100, τ4 = 10.00 |
Reactive Power Controllers Parameters | |
Washout network Saturation | 1000 |
Lead–lag network | τ1 = 0.100, τ2 = 10.00 |
Lag–lead network | τ3 = 0.100, τ4 = 10.00 |
PID Parameters | |
Proportional gain (Kp) | 0.1 |
Integral gain (Ki) | 10 |
Derivative gain (Kd) | 0.1 |
S. No. | Type of Controller | Overshoot in p.u. | Settling Time in Seconds | Rise Time in Seconds |
---|---|---|---|---|
1 | PI | 0.378 | 1.9 | 0.13 |
2 | PID | 0.26 | 2 | 0.11 |
3 | PFFNN | 1.3 | 1.38 | 0.015 |
4 | MLPFFN | 1.2 | 1.36 | 0.013 |
5 | RBFFFN | 0.38 | 1.33 | 0.010 |
S. No | Type of Controller | Overshoot in p.u. | Settling Time in Seconds | Rise Time in Seconds |
---|---|---|---|---|
1 | PI | 0.376 | 1.8 | 0.15 |
2 | PID | 0.257 | 2 | 0.13 |
3 | PFFNN | 0.84 | 1.48 | 0.017 |
4 | MLPFFNN | 0.8 | 1.37 | 0.015 |
5 | RBFFNN | 0.18 | 1.3 | 0.011 |
S. No. | Type of Controller | Overshoot Value in p.u. | Settling Time in Seconds | Rise Time in Seconds |
---|---|---|---|---|
1 | PI | 0.134 | 1.78 | 0.17 |
2 | PID | 0.08 | 2 | 0.15 |
3 | PFFNN | 1.23 | 1.47 | 0.015 |
4 | MLPFFNN | 1.2 | 1.36 | 0.013 |
5 | RBFFFNN | 0.22 | 1.34 | 0.011 |
S. No. | Type of Controller | Overshoot in p.u. | Settling Time in Seconds | Rise Time in Seconds |
---|---|---|---|---|
1 | PI | 0.19 | 1.78 | 0.15 |
2 | PID | 0.15 | 2 | 0.14 |
3 | PFFNN | 0.86 | 1.43 | 0.017 |
4 | MLPFFNN | 0.93 | 1.36 | 0.014 |
5 | RBFFFNN | 0.15 | 1.32 | 0.011 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, D.; Ahmed Ansari, J.; Aziz Khan, S.; Abrar, U. Power Optimization Control Scheme for Doubly Fed Induction Generator Used in Wind Turbine Generators. Inventions 2020, 5, 40. https://doi.org/10.3390/inventions5030040
Khan D, Ahmed Ansari J, Aziz Khan S, Abrar U. Power Optimization Control Scheme for Doubly Fed Induction Generator Used in Wind Turbine Generators. Inventions. 2020; 5(3):40. https://doi.org/10.3390/inventions5030040
Chicago/Turabian StyleKhan, Darya, Jamshed Ahmed Ansari, Shahid Aziz Khan, and Usama Abrar. 2020. "Power Optimization Control Scheme for Doubly Fed Induction Generator Used in Wind Turbine Generators" Inventions 5, no. 3: 40. https://doi.org/10.3390/inventions5030040
APA StyleKhan, D., Ahmed Ansari, J., Aziz Khan, S., & Abrar, U. (2020). Power Optimization Control Scheme for Doubly Fed Induction Generator Used in Wind Turbine Generators. Inventions, 5(3), 40. https://doi.org/10.3390/inventions5030040