The Strategy of Factors Influencing Learning Satisfaction Explored by First and Second-Order Structural Equation Modeling (SEM)
Abstract
:1. Introduction
1.1. Research-Based Teaching Techniques
1.2. Relationship
1.3. Learning Satisfaction
1.4. Conceptual Framework
2. Materials and Methods
2.1. Methodology
2.2. Data Analysis
2.3. Exploratory Factor Analysis (EFA)
2.4. Factor Analysis by PLS Algorithm
2.5. Construct Reliability and Validity
2.6. Convergent Validity
2.7. Discriminant Validity
3. Hypothesized Structural Equation Model (SEM) by PLS-Bootstrapping
R-Square (r2)
4. Conclusions and Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murugesan, V. Modern teaching techniques in education. JASC J. Appl. Sci. Comput. 2019, 6, 2588–2595. [Google Scholar]
- Walczak, P. Importance of Teaching Philosophy and Ethics in the Light of the Challenges of Future Education. Future Human Image 2020, 14, 102–107. [Google Scholar] [CrossRef]
- Abugohar, M.A.; Yunus, K.; Rashid, R.A. Smartphone applications as a teaching technique for enhancing tertiary learners’ speaking skills: Perceptions and practices. Int. J. Emerg. Technol. Learn. 2019, 14, 74–92. [Google Scholar] [CrossRef]
- Lu, X.; Ma, B. Analysis of «Dual System» Talent Training Model from the Perspective of Legal Education Reform in the New Era. Ukr. Policymaker 2021, 9, 29–37. [Google Scholar] [CrossRef]
- Rudenko, S.; Bazaluk, O.; Tsvykh, V.; Kalmuk, I. The Role of Philosophical Disciplines in Educational Strategies for Specialist Training in the Field of Public Administration. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2019, 3, 158–163. [Google Scholar] [CrossRef]
- Tian, S. Improving the vocational education based Japanese teaching research approach using deep learning techniques. Curr. Psychol. 2020, 107, 2411–2502. [Google Scholar] [CrossRef]
- Rudenko, S.; Sapeńko, R.; Bazaluk, O.; Tytarenko, V. Management Features of International Educational Projects Between Universities of Poland and Ukraine. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2018, 2, 142–147. [Google Scholar] [CrossRef]
- Bazaluk, O.; Fatkhutdinov, V.; Svyrydenko, D. The Potential of Systematization of the Theories of Education for Solving of Contradictions of Ukrainian Higher Education Development. Studia Warm. 2018, 55, 63–79. [Google Scholar] [CrossRef]
- Fox, D.S. Research-based instructional strategies in the classroom: The missing link in the school improvement process. Adv. Educ. Adm. 2014, 21, 93–114. [Google Scholar]
- Kucher, A.; Mendrukh, Y.; Khodakevich, O.; Dybkova, L. Management of formation of communicative competence of the future economists: Case study of Ukraine. TEM J. 2019, 8, 1127–1136. [Google Scholar] [CrossRef]
- Levchuk, O.; Levchuk, K.; Husak, L. Scientific and educational consortium as institutional projection of the innovative professional training. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2022, 2, 148–153. [Google Scholar] [CrossRef]
- Litvinova, M.B.; Dudchenko, O.M.; Shtanko, O.D. Application of logistic concept for the organization of small academic groups training in higher education institutions. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2022, 2, 174–179. [Google Scholar] [CrossRef]
- Bilan, Y.; Nitsenko, V.; Ushkarenko, I.; Chmut, A.; Sharapa, O. Outsourcing in international economic relations. Montenegrin J. Econ. 2017, 13, 175–185. [Google Scholar] [CrossRef]
- Gillian, E.; Lew, R. Incorporating research-based teaching techniques in E-learning to teach english articles. 3L Lang. Linguist. Lit. 2018, 24, 16–28. [Google Scholar] [CrossRef]
- Kholiavko, N.; Popova, L.; Marych, M.; Hanzhurenko, I.; Koliadenko, S.; Nitsenko, V. Comprehensive methodological approach to estimating the research component influence on the information economy development. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2020, 4, 192–199. [Google Scholar] [CrossRef]
- Zhukova, O.; Platash, L.; Tymchuk, L. Inclusive Education as a Tool For Implementing the Sustainable Development Goals on the Basis of Humanization of Society. Probl. Ekorozw. 2022, 17, 114–122. [Google Scholar] [CrossRef]
- Iqbal, M.M.; Mia, M.M. Strategy of Sustainability: A Reflective Model Validation by AMOS. Acad. Strateg. Manag. J. 2021, 20, 1–12. [Google Scholar]
- Purohit, A. The Challenges before Higher Education for the Composite Growth of a Sustainable Society. Probl. Ekorozw. 2021, 16, 192–198. [Google Scholar] [CrossRef]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Tobi, H.; Kampen, J.K. Research design: The methodology for interdisciplinary research framework. Qual. Quant. 2018, 52, 1209–1225. [Google Scholar] [CrossRef] [Green Version]
- Ingram, K.; Nitsenko, V. Comparative analysis of public management models. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2021, 4, 122–127. [Google Scholar] [CrossRef]
- Fincham, D.; Schickerling, J.; Temane, M.; Nel, D.; De Roover, W.; Seedat, S. Exploratory and confirmatory factor analysis of the multidimensional anxiety scale for children among adolescents in the Cape Town metropole of South Africa. Depress. Anxiety 2008, 25, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mia, M.M.; Majri, Y.; Rahman, I.K.A. The Impact of Soft TQM Practices on Organizational Enactment: A Mediating Role of OHSAS18001 Standard. Int. J. Soc. Sci. Perspect. 2019, 4, 1–11. [Google Scholar] [CrossRef]
- Osborne, J.W.; Fitzpatrick, D.C. Replication Analysis in Exploratory Factor Analysis: What it is and why it makes your analysis better. Pract. Assess. Res. Eval. 2012, 17, 1–8. [Google Scholar]
- Revin, F. The Shifting Image of Social Capital: Digitizing Cooperative Ties. Future Hum. Image 2021, 16, 75–82. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R. Factor Analysis: Confirmatory Factor Analysis. In Multivariate Data Analysis, 7th ed.; Pearson: New York, NY, USA, 2010; pp. 599–606. [Google Scholar]
- Kamal, I.; Rahman, A.; Mia, M.M. Using Partial Least Squares Structural Equation Modeling (PLS–SEM): Mediation between Strategic Management & Performance. Int. J. Innov. Creat. Chang. 2020, 10, 392–404. [Google Scholar]
- Hair, J.F.; Matthews, L.M.; Matthews, R.L.; Sarstedt, M. PLS-SEM or CB-SEM: Updated guidelines on which method to use. Int. J. Multivar. Data Anal. 2017, 1, 107–123. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. Adv. Int. Mark. 2009, 20, 277–319. [Google Scholar]
- Hair, J.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2rd ed.; SAGE Publications, Inc.: New York, NY, USA, 2017. [Google Scholar]
- Kroonenberg, P.M.; Lohmoller, J.-B. Latent Variable Path Modeling with Partial Least Squares. J. Am. Stat. Assoc. 1990, 85, 909–910. [Google Scholar] [CrossRef]
- Tanasiichuk, A.; Hromova, O.; Kovalchuk, S.; Perevozova, I.; Khmelevskyi, O. Scientific and methodological approaches to the evaluation of marketing management of enterprises in the context of international diversification. Eur. J. Sustain. Dev. 2020, 9, 349. [Google Scholar] [CrossRef]
- Cohen, J. Statistical power analysis for the behavioral sciences. In Hillsdale, 2nd ed.; L. Erlbaum Associates: Mahwah, NJ, USA, 1988; pp. 215–252. [Google Scholar]
- Iqbal, M.M.; Mia, M.M. The strategy of management system standards: A variance-based structural equation modeling (VB-SEM). Int. J. Adv. Sci. Technol. 2020, 29, 1882–1893. [Google Scholar]
- Amora, J.T. Convergent validity assessment in PLS-SEM: A loadings-driven approach. Data Anal. Perspect. J. 2021, 2, 1–6. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Reynaldo, J.A.; Santos, A. Cronbach’s alpha: A tool for assessing the reliability of scales. J. Ext. 1999, 37, 1–5. [Google Scholar]
- Oleksiyenko, A.; Terepyshchyi, S.; Gomilko, O.; Svyrydenko, D. ‘What Do You Mean, You Are a Refugee in Your Own Country?’: Displaced Scholars and Identities in Embattled Ukraine. Eur. J. High Educ. 2020, 11, 101–118. [Google Scholar] [CrossRef]
- Dovgyi, S.; Nebrat, V.; Svyrydenko, D.; Babiichuk, S. Science education in the age of Industry 4.0: Challenges to economic development and human capital growth in Ukraine. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2020, 1, 146–151. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.-M. “SmartPLS 3.” Boenningstedt: SmartPLS GmbH. 2015. Available online: http://www.smartpls.com (accessed on 29 June 2022).
Item | Alpha | Components | ||||||
---|---|---|---|---|---|---|---|---|
(α) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
ch1 | 0.78 | 0.62 | ||||||
ch2 | 0.71 | 0.85 | ||||||
ch3 | 0.75 | 0.78 | ||||||
col1 | 0.82 | 0.75 | ||||||
col2 | 0.80 | 0.84 | ||||||
col3 | 0.83 | 0.81 | ||||||
com1 | 0.84 | 0.85 | ||||||
com2 | 0.80 | 0.82 | ||||||
com3 | 0.87 | 0.80 | ||||||
cr1 | 0.90 | 0.76 | ||||||
cr2 | 0.86 | 0.86 | ||||||
cr3 | 0.87 | 0.84 | ||||||
ct1 | 0.78 | 0.76 | ||||||
ct2 | 0.72 | 0.86 | ||||||
ct3 | 0.78 | 0.84 | ||||||
ls1 | 0.89 | 0.82 | ||||||
ls2 | 0.82 | 0.88 | ||||||
ls3 | 0.85 | 0.79 | ||||||
rt1 | 0.80 | 0.75 | ||||||
rt2 | 0.77 | 0.82 | ||||||
rt3 | 0.77 | 0.78 | ||||||
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. Bartlett’s Test of Approx. Chi-Square Sphericity df Sig. | 0.843 13,590.179 210 0.000 |
Constructs | Cronbach’s Alpha | rho_A | Composite Reliability | Average Variance Extracted (AVE) |
---|---|---|---|---|
Choice | 0.82 | 0.82 | 0.89 | 0.74 |
Collaboration | 0.86 | 0.87 | 0.92 | 0.80 |
Communication | 0.88 | 0.89 | 0.93 | 0.81 |
Critical thinking | 0.83 | 0.84 | 0.90 | 0.75 |
Creativity | 0.91 | 0.92 | 0.95 | 0.85 |
Relationship | 0.87 | 0.88 | 0.89 | 0.35 |
Research techniques | 0.84 | 0.86 | 0.91 | 0.76 |
Learning satisfaction | 0.90 | 0.90 | 0.94 | 0.83 |
Constructs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Learning satisfaction (1) | 0.912 | |||||||
Relationship (2) | 0.615 | 0.594 | ||||||
Research techniques (3) | 0.838 | 0.551 | 0.873 | |||||
Choice (4) | 0.466 | 0.765 | 0.363 | 0.857 | ||||
Collaboration (5) | 0.396 | 0.788 | 0.399 | 0.624 | 0.890 | |||
Communication (6) | 0.525 | 0.664 | 0.444 | 0.322 | 0.318 | 0.902 | ||
Creativity (7) | 0.315 | 0.451 | 0.253 | 0.207 | 0.164 | 0.208 | 0.924 | |
Critical thinking (8) | 0.350 | 0.648 | 0.373 | 0.300 | 0.390 | 0.341 | 0.174 | 0.865 |
Constructs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Learning satisfaction (1) | - | |||||||
Relationship (2) | 0.700 | |||||||
Research techniques (3) | 0.954 | 0.637 | ||||||
Choice (4) | 0.543 | 0.866 | 0.426 | |||||
Collaboration (5) | 0.450 | 0.859 | 0.468 | 0.737 | ||||
Communication (6) | 0.587 | 0.753 | 0.510 | 0.376 | 0.360 | |||
Creativity (7) | 0.346 | 0.602 | 0.275 | 0.239 | 0.180 | 0.226 | ||
Critical thinking (8) | 0.403 | 0.773 | 0.444 | 0.359 | 0.456 | 0.396 | 0.199 | - |
Hypotheses | Constructs | t-Statistics | p-Values | Remark |
---|---|---|---|---|
H1 | Research techniques → for learning satisfaction | 12.287 | 0.000 | accepted |
H2 | Relationship → learning satisfaction | 2.490 | 0.025 | accepted |
Second-order constructs | Choice ← relationship | 10.824 | 0.000 | accepted |
Collaboration ← relationship | 12.687 | 0.000 | accepted | |
Communication ← relationship | 2.204 | 0.043 | accepted | |
Creativity ← relationship | 2.217 | 0.040 | accepted | |
Critical-thinking ← relationship | 6.196 | 0.000 | accepted |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mia, M.M.; Zayed, N.M.; Islam, K.M.A.; Nitsenko, V.; Matusevych, T.; Mordous, I. The Strategy of Factors Influencing Learning Satisfaction Explored by First and Second-Order Structural Equation Modeling (SEM). Inventions 2022, 7, 59. https://doi.org/10.3390/inventions7030059
Mia MM, Zayed NM, Islam KMA, Nitsenko V, Matusevych T, Mordous I. The Strategy of Factors Influencing Learning Satisfaction Explored by First and Second-Order Structural Equation Modeling (SEM). Inventions. 2022; 7(3):59. https://doi.org/10.3390/inventions7030059
Chicago/Turabian StyleMia, Mohammed Mamun, Nurul Mohammad Zayed, Khan Mohammad Anwarul Islam, Vitalii Nitsenko, Tetiana Matusevych, and Iryna Mordous. 2022. "The Strategy of Factors Influencing Learning Satisfaction Explored by First and Second-Order Structural Equation Modeling (SEM)" Inventions 7, no. 3: 59. https://doi.org/10.3390/inventions7030059
APA StyleMia, M. M., Zayed, N. M., Islam, K. M. A., Nitsenko, V., Matusevych, T., & Mordous, I. (2022). The Strategy of Factors Influencing Learning Satisfaction Explored by First and Second-Order Structural Equation Modeling (SEM). Inventions, 7(3), 59. https://doi.org/10.3390/inventions7030059