A Fast and Cost-Effective (FACE) Instrument Setting to Construct Focus-Extended Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Setup of the FACE Instrument
2.2. The Setup of the Motorized Stepper Instrument
2.3. Construction of the Diffusion Tunnel
2.4. Orientation of Subjects and Background Replacement
2.5. Image Stacking
2.6. Computer Setup
2.7. Post-Editing of Images
3. Results
3.1. Comparisons of Magnification Level between the Current FACE and Motorized Stepper Methods
3.2. Comparisons of Working Distance between the Current FACE and Motorized Stepper Methods
3.3. Comparisons of Operation Time between the Current FACE and Motorized Stepper Methods
3.4. The FACE Method Is Cost-Effective
4. Discussion
4.1. Advantages of the Current FACE System
4.1.1. Shorter Operation Time and Capability to Capture Images of Living Objects
4.1.2. High Flexibility in Obtaining the Images of Objects from cm to mm Scale
4.2. Limitations of the Current FACE System
4.2.1. Unable to Control Aperture and Exposure Time
4.2.2. Relatively Short Working Distance at High Magnification
4.2.3. Requires Additional Steps to Convert the Video into Images
4.2.4. Heavily Relies on the User’s Manual Observation Prior to a Video Recording
4.3. Future Applications of the Current FACE System
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savazzi, E. Digital Photography for Science; Lulu.com: Morrisville, NC, USA, 2010. [Google Scholar]
- Davies, A. Close-Up and Macro Photography; Taylor & Francis: Abingdon, UK, 2012. [Google Scholar]
- Baird, R.C. Leveraging the fullest potential of scientific collections through digitisation. Biodivers. Inform. 2010, 7, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Tegelberg, R.; Mononen, T.; Saarenmaa, H. High-performance digitization of natural history collections: Automated imaging lines for herbarium and insect specimens. Taxon 2014, 63, 1307–1313. [Google Scholar] [CrossRef]
- Short, A.E.Z.; Dikow, T.; Moreau, C.S. Entomological collections in the age of big data. Annu. Rev. Entomol. 2018, 63, 513–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, D.; Porter, S.T.; Trumper, M.L.; Carlson, K.E.; Crawford, D.J.; Schwalen, D.; McFadden, C.H. Gigapixel macro photography of tree rings. Tree-Ring Res. 2021, 77, 86–94. [Google Scholar] [CrossRef]
- Fuchs, F.; Koenig, A.; Poppitz, D.; Hahnel, S. Application of macro photography in dental materials science. J. Dent. 2020, 102, 103495. [Google Scholar] [CrossRef] [PubMed]
- Breidbach, O. Representation of the microcosm–the claim for objectivity in 19th century scientific microphotography. J. Hist. Biol. 2002, 35, 221–250. [Google Scholar] [CrossRef] [PubMed]
- Vernon, T. The Canon MP-E 65MM Macro Lens. J. Vis. Commun. Med. 2009, 32, 96–98. [Google Scholar] [CrossRef] [PubMed]
- Tindall, A.; Kalms, B. Guidance: Photographing Specimens in Natural History Collections; The Museum Board of South Australia: Adelaide, Australia, 2012. [Google Scholar]
- Gallo, A.; Muzzupappa, M.; Bruno, F. 3D reconstruction of small sized objects from a sequence of multi-focused images. J. Cult. Herit. 2014, 15, 173–182. [Google Scholar] [CrossRef]
- Goldsmith, N.T. Deep focus; a digital image processing technique to produce improved focal depth in light microscopy. Image Anal. Stereol. 2000, 19, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Kibby, G. Focus stacking in macrophotography and microphotography. Field Mycol. 2019, 20, 51–54. [Google Scholar] [CrossRef]
- Adelson, E.H.; Anderson, C.H.; Bergen, J.R.; Burt, P.J.; Ogden, J.M. Pyramid methods in image processing. RCA Eng. 1984, 29, 33–41. [Google Scholar]
- Longson, J.; Cooper, G.; Gibson, R.; Gibson, M.; Rawlins, J.; Sargent, R. Adapting traditional macro and micro photography for scientific gigapixel imaging. In Proceedings of the Fine International Conference on Gigapixel Imaging for Science, Pittsburgh, PA, USA, 11–13 November 2010. [Google Scholar]
- Ströbel, B.; Schmelzle, S.; Blüthgen, N.; Heethoff, M. An automated device for the digitization and 3D modelling of insects, combining extended-depth-of-field and all-side multi-view imaging. ZooKeys 2018, 759, 1. [Google Scholar] [CrossRef] [PubMed]
- Plum, F.; Labonte, D. scAnt—An open-source platform for the creation of 3D models of arthropods (and other small objects). PeerJ 2021, 9, e11155. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.A.H.; Nguyen, C.; Li, H.; Hartley, R. Fixed-Lens camera setup and calibrated image registration for multifocus multiview 3D reconstruction. Neural Comput. Appl. 2021, 33, 7421–7440. [Google Scholar] [CrossRef]
- Mertens, J.E.; Van Roie, M.; Merckx, J.; Dekoninck, W. The use of low cost compact cameras with focus stacking functionality in entomological digitization projects. ZooKeys 2017, 712, 141. [Google Scholar] [CrossRef] [PubMed]
- Brecko, J.; Mathys, A.; Dekoninck, W.; Leponce, M.; VandenSpiegel, D.; Semal, P. Focus stacking: Comparing commercial top-end set-ups with a semi-automatic low budget approach. A possible solution for mass digitization of type specimens. ZooKeys 2014, 464, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Gonzálvez, P.; Muñoz-Nieto, A.L.; del Pozo, S.; Sanchez-Aparicio, L.J.; Gonzalez-Aguilera, D.; Micoli, L.; Barsanti, S.G.; Guidi, G.; Mills, J.; Fieber, K. 4D reconstruction and visualization of cultural heritage: Analyzing our legacy through time. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 609. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.; Doulamis, A.; Moura Santo, P.; Hadjiprocopi, A.; Fritsch, D.; Doulamis, N.D.; Makantasis, K.; Stork, A.; Ioannides, M.; Klein, M. Online 4D reconstruction using multi-images available under Open Access. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 11, 169–174. [Google Scholar]
- Kacprzyk, Z.; Kępa, T. Building information Modelling–4D Modelling technology on the example of the reconstruction stairwell. Procedia Eng. 2014, 91, 226–231. [Google Scholar] [CrossRef]
FACE Method | Motorized Stepper Method | |
---|---|---|
Camera | 500 USD (4K CCD) | 500 USD (Canon 800D) |
Lens | 100 USD (0.6–6× zoom lens); 100 USD (4× and 10× objective lens); 450 USD (DCR-150 + DCR-250 + MSN-202 + MSN-505 macro lens) | 500 USD (Laowa 25 mm ultra macro lens) |
Extension tubes | - | 54 USD |
Motorized rail | - | 299 USD (WeMacro) |
Microscopic holder | 100 USD | 149 USD (WeMacro) |
Helicon Remote control software (Lifetime license) | - | 48 USD |
Helicon Focus stacking software (Lifetime license) | 100 USD | 100 USD |
DIY 3D printed diffusion tunnel with LED light strip | 100 USD | 100 USD |
Total price | 800 *–1450 ** USD | 1750 USD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Audira, G.; Hsu, T.-W.; Chen, K.H.-C.; Huang, J.-C.; Lin, M.-D.; Ger, T.-R.; Hsiao, C.-D. A Fast and Cost-Effective (FACE) Instrument Setting to Construct Focus-Extended Images. Inventions 2022, 7, 110. https://doi.org/10.3390/inventions7040110
Audira G, Hsu T-W, Chen KH-C, Huang J-C, Lin M-D, Ger T-R, Hsiao C-D. A Fast and Cost-Effective (FACE) Instrument Setting to Construct Focus-Extended Images. Inventions. 2022; 7(4):110. https://doi.org/10.3390/inventions7040110
Chicago/Turabian StyleAudira, Gilbert, Ting-Wei Hsu, Kelvin H.-C. Chen, Jong-Chin Huang, Ming-Der Lin, Tzong-Rong Ger, and Chung-Der Hsiao. 2022. "A Fast and Cost-Effective (FACE) Instrument Setting to Construct Focus-Extended Images" Inventions 7, no. 4: 110. https://doi.org/10.3390/inventions7040110
APA StyleAudira, G., Hsu, T. -W., Chen, K. H. -C., Huang, J. -C., Lin, M. -D., Ger, T. -R., & Hsiao, C. -D. (2022). A Fast and Cost-Effective (FACE) Instrument Setting to Construct Focus-Extended Images. Inventions, 7(4), 110. https://doi.org/10.3390/inventions7040110