Recent Inventions in Additive Manufacturing: Holistic Review
Abstract
:1. Introduction
2. The Innovation Cycle
2.1. Disclosure of an Invention
2.2. Intellectual Property
2.3. Commercializing an Invention
2.4. Historical Progression of AM Inventions
3. Recent Inventions in AM Processes
3.1. Multi-Material AM
3.2. Beam-Based Metal AM
3.3. Stereolithography and Microwave Sintering
- Remarkable speed: CLIP prints achieve the same accuracy and surface quality as DLP/SLA prints but are completed 100 times faster.
- Superior surface finish: The layer-less nature of CLIP prints enhances their surface quality, making them comparable to parts produced through injection molding.
- Exceptional properties: CLIP parts are watertight and fully isotropic (exhibiting equal strength in all orientations) and possess increased strength compared to SLA/DLP prints.
- Versatility for prototyping and production: CLIP parts can be used for functional prototyping and are even suitable for full production runs.
- Structural integrity: This is CLIP’s ability to easily integrate variable cell structures within a single part to produce different performance characteristics.
- Versality: CLIP/DLS printers offer a wide range of material options that are distinct from many other printer types.
3.4. Bioprinting and Tissue Engineering
3.5. Two-Photon Polymerization
3.6. Hybrid Technologies
- Steel-based materials have witnessed significant advancements through PBF and directed energy deposition (DED) techniques, with notable efforts made to produce steel-based hybrid and composite materials using PBF methods [77].
- The integration of DED techniques with traditional computer numerical control (CNC) machining processes offers enhanced flexibility, enabling applications in hybrid manufacturing, protective coatings, and parts repair.
- Laser-based PBF enables hybrid AM, where a simple-shaped substrate component is conventionally manufactured, while a complex-shaped part is directly printed onto it, e.g., the build of the part with conformal cooling onto an existing bulk mold.
3.7. Open-Source Inventions in AM
- RepRap: RepRap is one of the earliest and most well-known open-source AM projects [92]. It focuses on the development of self-replicating 3D printers, which are capable of producing most of their own components. The RepRap community has contributed to advancements in the field and has made it more accessible to a wider audience.
- Prusa i3: The Prusa i3 is a popular open-source 3D printer design created by Josef Prusa [93]. The design has been iterated upon and improved by the community, resulting in various versions and modifications. The Prusa i3 design has been widely adopted and has played a significant role in making 3D printing more affordable and accessible.
- Marlin Firmware: Marlin is an open-source firmware that controls and operates 3D printers [94]. It supports a wide range of 3D printer models and provides features such as the precise control of stepper motors, temperature regulation, and support for various file formats. Marlin firmware has been continuously developed and improved by the open-source community, enabling 3D printer users to customize and optimize their machines.
- Slic3r: Slic3r is an open-source slicing software used in AM [95]. It takes 3D models and converts them into instructions (G-code) that a 3D printer can understand. Slic3r provides advanced options for customizing print settings and optimizing the printing process. The open-source nature of Slic3r has allowed for community contributions, resulting in new features, bug fixes, and improved performance.
4. Inventions in AM-Related Emerging Technologies
4.1. Robotics
4.2. Digital Twins
4.3. Virtual Reality
4.4. Automation
4.5. AI-Assisted AM
5. AM Inventions in Major Industries and Their Unique Aspects
5.1. Major Industries
5.1.1. Aerospace Industry
5.1.2. Healthcare Industry
5.1.3. Automotive Industry
5.1.4. Food Industry
5.1.5. Construction Industry
5.2. Unique Aspects of AM Inventions
5.2.1. Low-Cost Products
5.2.2. Lightweight Products
5.2.3. Remanufactured Products
5.2.4. Sustainable Products
5.2.5. DfAM Products
6. Current Challenges and Future Prospects for AM
6.1. Bio-Printing
6.2. 4D/5D Printing
6.3. Micro–Nano-Scale Fabrication
6.4. Additively Manufactured Electronics
6.5. Wire Arc Additive Manufacturing
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasanov, S.; Alkunte, S.; Rajeshirke, M.; Gupta, A.; Huseynov, O.; Fidan, I.; Alifui-Segbaya, F.; Rennie, A. Review on Additive Manufacturing of Multi-Material Parts: Progress and Challenges. J. Manuf. Mater. Process. 2021, 6, 4. [Google Scholar] [CrossRef]
- Fidan, I.; Imeri, A.; Gupta, A.; Hasanov, S.; Nasirov, A.; Elliott, A.; Alifui-Segbaya, F.; Nanami, N. The trends and challenges of fiber reinforced additive manufacturing. Int. J. Adv. Manuf. Technol. 2019, 102, 1801–1818. [Google Scholar] [CrossRef]
- PL 96-517, Patent and Trademark Act Amendments of 1980. Available online: https://www.govinfo.gov/content/pkg/STATUTE-94/pdf/STATUTE-94-Pg3015.pdf (accessed on 21 May 2023).
- Amanor-Boadu, V.; Mohan, C.; Metla, R. Research Faculty, Entrepreneurship and Commercialization: The Case of Kansas State University. Ph.D. Thesis, Kansas State University, Kansas, KS, USA, 2007. [Google Scholar] [CrossRef]
- Campbell, I.; Diegel, O.; Huff, R.; Kowen, J.; Wohlers, T.; Fidan, I. Wohlers Report 2023; ASTM International: Washington, DC, USA, 2023; ISBN 978-1-6220-4966-0. [Google Scholar]
- Park, M.; Leahey, E.; Funk, R.J. Papers and patents are becoming less disruptive over time. Nature 2023, 613, 138–144. [Google Scholar] [CrossRef] [PubMed]
- 3D Printing & Additive Manufacturing Event|RAPID + TCT. Available online: https://www.rapid3devent.com/ (accessed on 11 June 2023).
- Formnext–Hub for Additive Manufacturing. Available online: https://formnext.mesago.com/events/en.html (accessed on 28 June 2023).
- Savolainen, J.; Collan, M. How Additive Manufacturing Technology Changes Business Models?–Review of Literature. Addit. Manuf. 2020, 32, 101070. [Google Scholar] [CrossRef]
- Appendix L-Patent Laws. Available online: https://www.uspto.gov/web/offices/pac/mpep/mpep-9015-appx-l.html#d0e303482 (accessed on 19 May 2023).
- Stratasys Patent Expires, 3D Printing Industry Insiders Comment on Impact-3D Printing Industry. Available online: https://3dprintingindustry.com/news/stratasys-patent-expires-3d-printing-industry-insiders-comment-on-impact-185454/ (accessed on 11 June 2023).
- Copyright Law United States OF THE and Related Laws Contained in Title 17 of the United States Code. Available online: https://www.copyright.gov/title17/title17.pdf (accessed on 19 May 2023).
- Tibbits, S. Things Fall Together; Princeton University Press: Princeton, NJ, USA, 2021; ISBN 9780691189710. [Google Scholar]
- Definitions for Maintaining a Trademark Registration|USPTO. Available online: https://www.uspto.gov/trademarks/maintain/forms-file/definitions-maintaining-trademark#Section%208%20and%209 (accessed on 19 May 2023).
- EOS, A United Kingdom Trademark of EOS Worldwide, LLC. Application Number: UK00918108117: Trademark Elite Trademarks. Available online: https://www.trademarkelite.com/uk/trademark/trademark-detail/UK00918108117/EOS (accessed on 11 June 2023).
- Frequently Asked Questions on Trade Secrets. Available online: https://www.wipo.int/tradesecrets/en/tradesecrets_faqs.html (accessed on 19 May 2023).
- Rimmer, M. Metal 3D printing: Patent law, trade secrets, and additive manufacturing. Front. Res. Metrics Anal. 2022, 7, 958761. [Google Scholar] [CrossRef] [PubMed]
- Design Patent Application Guide|USPTO. Available online: https://www.uspto.gov/patents/basics/apply/design-patent (accessed on 19 May 2023).
- Dean, L.; Loy, J. Generative Product Design Futures. Des. J. 2020, 23, 331–349. [Google Scholar] [CrossRef]
- Loy, J.; Novak, J.; Diegel, O. 3D Printing for Product Designers: Innovative Strategies Using Additive Manufacturing; Taylor & Francis: Oxford, UK, 2023; pp. 1–283. [Google Scholar] [CrossRef]
- Beltagui, A.; Gold, S.; Kunz, N.; Reiner, G. Special Issue: Rethinking operations and supply chain management in light of the 3D printing revolution. Int. J. Prod. Econ. 2023, 255, 108677. [Google Scholar] [CrossRef]
- Zhang, Y.; Westerweel, B.; Basten, R.; Song, J.-S. Distributed 3D Printing of Spare Parts via IP Licensing. Manuf. Serv. Oper. Manag. 2022, 24, 2685–2702. [Google Scholar] [CrossRef]
- Hager, I.; Golonka, A.; Putanowicz, R. 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? Procedia Eng. 2016, 151, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Agrawaal, H.; Thompson, J. Additive manufacturing (3D printing) for analytical chemistry. Talanta Open 2021, 3, 100036. [Google Scholar] [CrossRef]
- Kodama, Hideo and Photopolymer 3D Printing. Available online: https://www.imaginethat-3d.com/kodama-hideo-and-photopolymer-3d-printi (accessed on 6 June 2023).
- Meet Charles Hull, Inventor of Stereolithography. Available online: https://www.autodesk.com/products/fusion-360/blog/meet-charles-hull-inventor-of-stereolithography/ (accessed on 6 June 2023).
- Kazmer, D. Three-Dimensional Printing of Plastics. In Applied Plastics Engineering Handbook: Processing, Materials, and Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 617–634. [Google Scholar] [CrossRef]
- Alkunte, S.; Fidan, I.; Hasanov, S. Experimental Analysis of Functionally Graded Materials Produced by Fused Filament Fabrication. In Proceedings of the 2022 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 25–27 July 2022. [Google Scholar] [CrossRef]
- Wake Forest Physician Reports First Human Recipients of Laboratory-Grown Organs|Atrium Health Wake Forest Baptist. Available online: https://newsroom.wakehealth.edu/news-releases/2006/04/wake-forest-physician-reports-first-human-recipients-of-laboratorygrown-organs (accessed on 7 June 2023).
- Pandey, P.; Taufik, M. A Review on PolyJet 3-D Printing Process and Its Applications. In Lecture Notes in Mechanical Engineering; Springer: Berlin/Heidelberg, Germany, 2023; pp. 401–410. [Google Scholar] [CrossRef]
- RepRap Founder Dr Adrian Bowyer on Creating the First RepRap, Open Source & Future of 3D Printing–3DSourced. Available online: https://www.3dsourced.com/interviews/reprap-dr-adrian-bowyer/ (accessed on 7 June 2023).
- The World’s First 3D-Printed Chair Goes to Amsterdam. Available online: https://inhabitat.com/the-worlds-first-3d-printed-chair-goes-to-amsterdam/ (accessed on 7 June 2023).
- Su, A.; Al’Aref, S.J. History of 3D Printing. In 3D Printing Applications in Cardiovascular Medicine; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–10. [Google Scholar] [CrossRef]
- The Complete History of 3D Printing: From 1980 to 2022–3DSourced. Available online: https://www.3dsourced.com/guides/history-of-3d-printing/ (accessed on 7 June 2023).
- Wohlers, T.; Gornet, T. History of Additive Manufacturing. 2015. Available online: https://ssrn.com/abstract=4474824 (accessed on 7 June 2023).
- Objet Reveals Newest Multi-Material 3D Printer, the Compact Objet260 Connex. Available online: https://www.javelin-tech.com/main/news/060711_objet260_connex.htm (accessed on 7 June 2023).
- Les, A.S.; Ohye, R.G.; Filbrun, A.G.; Mahani, M.G.; Flanagan, C.L.; Daniels, R.C.; Kidwell, K.M.; Zopf, D.A.; Hollister, S.J.; Green, G.E. 3D-printed, externally-implanted, bioresorbable airway splints for severe tracheobronchomalacia. Laryngoscope 2019, 129, 1763–1771. [Google Scholar] [CrossRef] [PubMed]
- MJF Multi Jet Fusion, How Does It Work?|Dassault Systèmes®. Available online: https://www.3ds.com/make/service/3d-printing-service/mjf-multi-jet-fusion (accessed on 7 June 2023).
- Tepylo, N.; Huang, X.; Patnaik, P.C. Laser-Based Additive Manufacturing Technologies for Aerospace Applications. Adv. Eng. Mater. 2019, 21, 1900617. [Google Scholar] [CrossRef]
- Boeing Turns to 3D-Printed Parts to Save Millions on Its 787 Dreamliner | Computerworld. Available online: https://www.computerworld.com/article/3188899/boeing-turns-to-3d-printed-parts-to-save-millions-on-its-787-dreamliner.html (accessed on 7 June 2023).
- The Latest Innovations in 3D Printing 2019–Geeetech. Available online: https://www.geeetech.com/blog/2020/01/latest-developments-in-3d-printing-2019/ (accessed on 7 June 2023).
- Five Major 3D Printing Innovations Seen in the Medical Sector This Year. Available online: https://www.nsmedicaldevices.com/analysis/medical-3d-printing-innovations-2020/ (accessed on 7 June 2023).
- Kornit Digital (Formerly Voxel8)—Greentown Labs. Available online: https://greentownlabs.com/members/voxel8/ (accessed on 7 June 2023).
- You, S.; Xiang, Y.; Hwang, H.H.; Berry, D.B.; Kiratitanaporn, W.; Guan, J.; Yao, E.; Tang, M.; Zhong, Z.; Ma, X.; et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci. Adv. 2023, 9, eade7923. [Google Scholar] [CrossRef] [PubMed]
- Predictions on the Future of 3D Printing [Expert Roundup]–AMFG. Available online: https://amfg.ai/2019/08/21/10-predictions-on-the-future-of-3d-printing-expert-roundup/ (accessed on 7 June 2023).
- Nonaka, K.; Takeuchi, N.; Morita, T.; Pezzotti, G. Evaluation of the effect of high-speed sintering on the mechanical and crystallographic properties of dental zirconia sintered bodies. J. Eur. Ceram. Soc. 2023, 43, 510–520. [Google Scholar] [CrossRef]
- Tan, X.; Lu, Y.; Gao, J.; Wang, Z.; Xie, C.; Yu, H. Effect of high-speed sintering on the microstructure, mechanical properties and ageing resistance of stereolithographic additive-manufactured zirconia. Ceram. Int. 2022, 48, 9797–9804. [Google Scholar] [CrossRef]
- Williams, R.J.; Al-Dirawi, K.H.; Brown, R.; Burt, J.; Bayly, A.E.; Majewski, C. Correlations between powder wettability and part colour in the High Speed Sintering process. Addit. Manuf. 2021, 47, 102361. [Google Scholar] [CrossRef]
- Solodkyi, I.; Bogomol, I.; Loboda, P. High-speed electron beam sintering of WC-8Co under controlled temperature conditions. Int. J. Refract. Met. Hard Mater. 2022, 102, 105730. [Google Scholar] [CrossRef]
- Lipkowitz, G.; Samuelsen, T.; Hsiao, K.; Lee, B.; Dulay, M.T.; Coates, I.; Lin, H.; Pan, W.; Toth, G.; Tate, L.; et al. Injection continuous liquid interface production of 3D objects. Sci. Adv. 2022, 8, 3917. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, T. Laser Powder Bed Fusion of Powder Material: A Review. In 3D Printing and Additive Manufacturing. 2022. Available online: https://home.liebertpub.com/3dp (accessed on 1 June 2023). [CrossRef]
- Guerra, M.G.; Lafirenza, M.; Errico, V.; Angelastro, A. In-process dimensional and geometrical characterization of laser-powder bed fusion lattice structures through high-resolution optical tomography. Opt. Laser Technol. 2023, 162, 109252. [Google Scholar] [CrossRef]
- Ahn, D.-G. Directed Energy Deposition (DED) Process: State of the Art. Int. J. Precis. Eng. Manuf. Technol. 2021, 8, 703–742. [Google Scholar] [CrossRef]
- Han, D.; Lee, H. Recent advances in multi-material additive manufacturing: Methods and applications. Curr. Opin. Chem. Eng. 2020, 28, 158–166. [Google Scholar] [CrossRef]
- New 3D Printer Promises Faster, Multi-Material Creations|Stanford News. Available online: https://news.stanford.edu/2022/09/28/new-3d-printer-promises-faster-multi-material-creations/ (accessed on 4 June 2023).
- Shaukat, U.; Rossegger, E.; Schlögl, S. A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization. Polymers 2022, 14, 2449. [Google Scholar] [CrossRef] [PubMed]
- Overview ‹ Making Data Matter: Voxel-Printing for the Digital Fabrication of Data across Scales and Domains—MIT Media Lab. Available online: https://www.media.mit.edu/projects/making-data-matter/overview/ (accessed on 4 June 2023).
- Hasanov, S.; Gupta, A.; Nasirov, A.; Fidan, I. Mechanical characterization of functionally graded materials produced by the fused filament fabrication process. J. Manuf. Process. 2020, 58, 923–935. [Google Scholar] [CrossRef]
- Hasanov, S.; Gupta, A.; Alifui-Segbaya, F.; Fidan, I. Hierarchical homogenization and experimental evaluation of functionally graded materials manufactured by the fused filament fabrication process. Compos. Struct. 2021, 275, 114488. [Google Scholar] [CrossRef]
- Loy, J.; Novak, J.I.; Scerri, M.; Chowdhury, M.H.H.; Skellern, K. Developing Transition Research for Disruptive Technology: 3D Printing Innovation. 2021, 1–20. Available online: https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-4303-0.ch001 (accessed on 15 May 2023).
- Nano Dimension 2023 About Nano Dimension. Available online: https://www.nano-di.com/about-nano-dimension (accessed on 16 June 2023).
- Persad, J.; Rocke, S. Multi-material 3D printed electronic assemblies: A review. Results Eng. 2022, 16, 100730. [Google Scholar] [CrossRef]
- Li, M.; Yang, Y.; Iacopi, F.; Nulman, J.; Chappel-Ram, S. 3D-Printed Low-Profile Single-Substrate Multi-Metal Layer Antennas and Array With Bandwidth Enhancement. IEEE Access 2020, 8, 217370–217379. [Google Scholar] [CrossRef]
- Sokol, D.; Yamada, M.; Nulman, J. Design and Performance of Additively Manufactured In-Circuit Board Planar Capacitors. IEEE Trans. Electron Devices 2021, 68, 5747–5752. [Google Scholar] [CrossRef]
- Additive Manufacturing|TRUMPF. Available online: https://www.trumpf.com/en_US/solutions/applications/additive-manufacturing/?gclid=Cj0KCQjw7PCjBhDwARIsANo7CgmvBY8WHxwX9dxzXknktMapcMU05kCW3S3XoxOEwQXiYfd32cfsHrAaAvuiEALw_wcB (accessed on 4 June 2023).
- Aversa, A.; Saboori, A.; Marchese, G.; Iuliano, L.; Lombardi, M.; Fino, P. Recent Progress in Beam-Based Metal Additive Man-ufacturing from a Materials Perspective: A Review of Patents. J. Mater. Eng. Perform. 2021, 30, 8689. [Google Scholar] [CrossRef]
- Koptyug, A.; Popov, V.V.; Vega, C.A.B.; Jiménez-Piqué, E.; Katz-Demyanetz, A.; Rännar, L.-E.; Bäckström, M. Compositionally-tailored steel-based materials manufactured by electron beam melting using blended pre-alloyed powders. Mater. Sci. Eng. A 2019, 771, 138587. [Google Scholar] [CrossRef]
- Lakhdar, Y.; Tuck, C.; Binner, J.; Terry, A.; Goodridge, R. Additive manufacturing of advanced ceramic materials. Prog. Mater. Sci. 2021, 116, 100736. [Google Scholar] [CrossRef]
- Thomas Supplier Discovery Platform All about Continuous Liquid Interface Production 3D Printing. Available online: https://www.thomasnet.com/articles/custom-manufacturing-fabricating/continuous-liquid-interface-production-3d-printing/ (accessed on 16 June 2023).
- Grigoryan, B.; Paulsen, S.J.; Corbett, D.C.; Sazer, D.W.; Fortin, C.L.; Zaita, A.J.; Greenfield, P.T.; Calafat, N.J.; Gounley, J.P.; Ta, A.H.; et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 2019, 364, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Multimaterial 3D Printing with a Twist. Available online: https://seas.harvard.edu/news/2023/01/multimaterial-3d-printing-twist (accessed on 4 June 2023).
- Derakhshanfar, S.; Mbeleck, R.; Xu, K.; Zhang, X.; Zhong, W.; Xing, M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact. Mater. 2018, 3, 144–156. [Google Scholar] [CrossRef] [PubMed]
- 3D Bioprinting Market Size, Share & Trends Analysis Report by Technology (Magnetic Levitation, Inkjet-Based), by Application (Medical, Dental, Biosensors, Bioinks), by Region, and Segment Forecasts, 2023–2030; Grand View Research: San Francisco, CA, USA, 2023.
- Popov, V.V.; Kudryavtseva, E.V.; Katiyar, N.K.; Shishkin, A.; Stepanov, S.I.; Goel, S. Industry 4.0 and Digitalisation in Healthcare. Materials 2022, 15, 2140. [Google Scholar] [CrossRef] [PubMed]
- Bartolo, P.; Malshe, A.; Ferraris, E.; Koc, B. 3D bioprinting: Materials, processes, and applications. CIRP Ann. 2022, 71, 577–597. [Google Scholar] [CrossRef]
- O’Halloran, S.; Pandit, A.; Heise, A.; Kellett, A. Two-Photon Polymerization: Fundamentals, Materials, and Chemical Modification Strategies. Adv. Sci. 2023, 10, 2204072. [Google Scholar] [CrossRef] [PubMed]
- Ozsoy, A.; Tureyen, E.B.; Baskan, M.; Yasa, E. Microstructure and Mechanical Properties of Hybrid Additive Manufactured Dissimilar 17-4 PH and 316L Stainless Steels. Mater. Today Commun. 2021, 28, 102561. [Google Scholar] [CrossRef]
- Pragana, J.; Sampaio, R.; Bragança, I.; Silva, C.; Martins, P. Hybrid metal additive manufacturing: A state–of–the-art review. Adv. Ind. Manuf. Eng. 2021, 2, 100032. [Google Scholar] [CrossRef]
- Popov, V.V.; Fleisher, A. Hybrid additive manufacturing of steels and alloys. Manuf. Rev. 2020, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Dolev, O.; Osovski, S.; Shirizly, A. Ti-6Al-4V hybrid structure mechanical properties—Wrought and additive manufactured powder-bed material. Addit. Manuf. 2021, 37, 101657. [Google Scholar] [CrossRef]
- Lv, X.; Ye, F.; Cheng, L.; Fan, S.; Liu, Y. Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment. Ceram. Int. 2019, 45, 12609–12624. [Google Scholar] [CrossRef]
- Popov, V.; Fleisher, A.; Muller-Kamskii, G.; Avraham, S.; Shishkin, A.; Katz-Demyanetz, A.; Travitzky, N.; Yacobi, Y.; Goel, S. Novel hybrid method to additively manufacture denser graphite structures using Binder Jetting. Sci. Rep. 2021, 11, 2438. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Ren, X.; Ma, C.; Pei, Z. Ceramic binder jetting additive manufacturing: Particle coating for increasing powder sinterability and part strength. Mater. Lett. 2019, 234, 327–330. [Google Scholar] [CrossRef]
- Polozov, I.; Razumov, N.; Masaylo, D.; Silin, A.; Lebedeva, Y.; Popovich, A. Fabrication of Silicon Carbide Fiber-Reinforced Silicon Carbide Matrix Composites Using Binder Jetting Additive Manufacturing from Irregularly-Shaped and Spherical Powders. Materials 2020, 13, 1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleisher, A.; Zolotaryov, D.; Kovalevsky, A.; Muller-Kamskii, G.; Eshed, E.; Kazakin, M.; Popov, V. Reaction bonding of silicon carbides by Binder Jet 3D-Printing, phenolic resin binder impregnation and capillary liquid silicon infiltration. Ceram. Int. 2019, 45, 18023–18029. [Google Scholar] [CrossRef]
- Li, L.; Tirado, A.; Conner, B.; Chi, M.; Elliott, A.M.; Rios, O.; Zhou, H.; Paranthaman, M.P. A novel method combining additive manufacturing and alloy infiltration for NdFeB bonded magnet fabrication. J. Magn. Magn. Mater. 2017, 438, 163–167. [Google Scholar] [CrossRef]
- Gupta, A.; Hasanov, S.; Fidan, I. Processing and Characterization of 3d-Printed Polymer Matrix Com-Posites Reinforced with Discontinuous Fibers. In Proceedings of the 2019 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 2019. [Google Scholar]
- Gupta, A.; Fidan, I.; Hasanov, S.; Nasirov, A. Processing, mechanical characterization, and micrography of 3D-printed short carbon fiber reinforced polycarbonate polymer matrix composite material. Int. J. Adv. Manuf. Technol. 2020, 107, 3185–3205. [Google Scholar] [CrossRef]
- Joshua Pearce|Opensource.com. Available online: https://opensource.com/users/jmpearce (accessed on 13 July 2023).
- Petsiuk, A.; Pearce, J.M. Towards smart monitored AM: Open source in-situ layer-wise 3D printing image anomaly detection using histograms of oriented gradients and a physics-based rendering engine. Addit. Manuf. 2022, 52, 102690. [Google Scholar] [CrossRef]
- So, A.; Reeves, J.M.; Pearce, J.M. Open-Source Designs for Distributed Manufacturing of Low-Cost Customized Walkers. Inventions 2023, 8, 79. [Google Scholar] [CrossRef]
- Rayna, T.; Striukova, L.; Fauchart, E. Commercialization Strategies of Large-Scale and Distributed Open Innovation: The Case of Open-Source Hardware. Calif. Manag. Rev. 2023, 65, 22–44. [Google Scholar] [CrossRef]
- Hu, B. Original Prusa i3: The Self-Replicating 3D Printer. Oper. Manag. Educ. Rev. 2023, 15, 5–22. [Google Scholar] [CrossRef]
- Montes, E.; Lasmarias, G.; Escanilla, E.J.; Velasco, L.C. Conversion of Proprietary 3D Printer for Open-Source Utilization. Lect. Notes Netw. Syst. 2022, 217, 343–355. [Google Scholar] [CrossRef]
- Anand Sankar, M.; Deepak Lawrence, K.; Mathew, J. Part Quality Improvement of Fused Filament Fabrication-Based Additive Manufacturing by Means of Slicing Software Modifications. Lect. Notes Mech. Eng. 2023, 251–265. [Google Scholar] [CrossRef]
- Stavropoulos, P.; Foteinopoulos, P.; Stavridis, J.; Bikas, H. Increasing the industrial uptake of additive manufacturing processes: A training framework. Adv. Ind. Manuf. Eng. 2023, 6, 100110. [Google Scholar] [CrossRef]
- Li, Z.; Diller, E. Multi-Material Fabrication for Magnetically Driven Miniature Soft Robots Using Stereolithography. In Proceedings of the MARSS 2022-5th International Conference on Manipulation, Automation, and Robotics at Small Scales, Toronto, ON, Canada, 25–29 July 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Howard, G.D.; Brett, J.; O’Connor, J.; Letchford, J.; Delaney, G.W. One-Shot 3D-Printed Multimaterial Soft Robotic Jamming Grippers. Soft Robot. 2022, 9, 497–508. [Google Scholar] [CrossRef] [PubMed]
- WO2017058334A9—3d Printed Hybrid Robot—Google Patents. (n.d.). Available online: https://patents.google.com/patent/WO2017058334A9/en?q=(3D+PRINTED+hybrid+robot)&oq=3D+PRINTED+hybrid+robot (accessed on 31 July 2023).
- Saab, W.; Ben-Tzvi, P. A Genderless Coupling Mechanism With Six-Degrees-of-Freedom Misalignment Capability for Modular Self-Reconfigurable Robots. J. Mech. Robot. 2016, 8, 061014. [Google Scholar] [CrossRef]
- Matulis, M.; Harvey, C. A robot arm digital twin utilising reinforcement learning. Comput. Graph. 2021, 95, 106–114. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Zhou, W.; Cheng, T.; Chen, L.; Guo, Z.; Han, B.; Lu, L. Digital Twins for Additive Manufacturing: A State-of-the-Art Review. Appl. Sci. 2020, 10, 8350. [Google Scholar] [CrossRef]
- DebRoy, T.; Zhang, W.; Turner, J.; Babu, S.S. Building digital twins of 3D printing machines. Scr. Mater. 2017, 135, 119–124. [Google Scholar] [CrossRef]
- Mukherjee, T.; DebRoy, T. A digital twin for rapid qualification of 3D printed metallic components. Appl. Mater. Today 2019, 14, 59–65. [Google Scholar] [CrossRef]
- Gaikwad, A.; Yavari, R.; Montazeri, M.; Cole, K.; Bian, L.; Rao, P. Toward the digital twin of additive manufacturing: Integrating thermal simulations, sensing, and analytics to detect process faults. IISE Trans. 2020, 52, 1204–1217. [Google Scholar] [CrossRef]
- Degraen, D.; Zenner, A.; Krüger, A. Enhancing Texture Perception in Virtual Reality Using 3D-Printed Hair Structures. In Proceedings of the Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; Association for Computing Machinery: New York, NY, USA, 2019. [Google Scholar]
- Lee, J.H.; Kim, H.; Hwang, J.-Y.; Chung, J.; Jang, T.-M.; Seo, D.G.; Gao, Y.; Lee, J.; Park, H.; Lee, S.; et al. 3D Printed, Customizable, and Multifunctional Smart Electronic Eyeglasses for Wearable Healthcare Systems and Human–Machine Interfaces. ACS Appl. Mater. Interfaces 2020, 12, 21424–21432. [Google Scholar] [CrossRef] [PubMed]
- Sauter, A.; Nasirov, A.; Fidan, I.; Allen, M.; Elliott, A.; Cossette, M.; Tackett, E.; Singer, T. Development, implementation and optimization of a mobile 3D printing platform. Prog. Addit. Manuf. 2021, 6, 231–241. [Google Scholar] [CrossRef]
- Tankova, T.; da Silva, L.S. Robotics and Additive Manufacturing in the Construction Industry. Curr. Robot. Rep. 2020, 1, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Hiemenz, J.; Stratasys, I. For a 3D World White Paper How to Realize an Extreme Reduction in Time and Cost by Making Your Custom Manufacturing Tools via 3D Printing. In 3D Printing Jigs, Fixtures and Other Manufacturing Tools; Stratasys, Inc.: Rehovot, Israel, 2011. [Google Scholar]
- Lewis, J.A.; Ahn, B.Y. Three-dimensional printed electronics. Nature 2015, 518, 42–43. [Google Scholar] [CrossRef] [PubMed]
- Ready, S.; Endicott, F.; Whiting, G.L.; Nga Ng, T.; Chow, E.M.; Lu, J. 3D printed electronics. In NIP & Digital Fabrication Conference; Society for Imaging Science and Technology: Springfield, VA, USA, 2013. [Google Scholar]
- Zhang, Z.; Fidan, I.; Allen, M. Detection of Material Extrusion In-Process Failures via Deep Learning. Inventions 2020, 5, 25. [Google Scholar] [CrossRef]
- Kumar, S.; Gopi, T.; Harikeerthana, N.; Gupta, M.K.; Gaur, V.; Krolczyk, G.M.; Wu, C. Machine learning techniques in additive manufacturing: A state of the art review on design, processes and production control. J. Intell. Manuf. 2022, 34, 21–55. [Google Scholar] [CrossRef]
- Using Artificial Intelligence to Control Digital Manufacturing|MIT News|Massachusetts Institute of Technology. Available online: https://news.mit.edu/2022/artificial-intelligence-3-d-printing-0802 (accessed on 4 June 2023).
- Yao, X.; Moon, S.K.; Bi, G. A Hybrid Machine Learning Approach for Additive Manufacturing Design Feature Recommenda-tion. Rapid Prototyp. J. 2017, 23, 983–997. [Google Scholar] [CrossRef]
- Kumar, S.; Pradhan, H.; Shah, N.; Rahul, M.R.; Phanikumar, G. Machine learning enabled processing map generation for high-entropy alloy. Scr. Mater. 2023, 234, 115543. [Google Scholar] [CrossRef]
- Bansal, A.; Kumar, P.; Yadav, S.; Hariharan, V.S.; Rahul, M.R.; Phanikumar, G. Accelerated design of high entropy alloys by integrating high throughput calculation and machine learning. J. Alloys Compd. 2023, 960, 170543. [Google Scholar] [CrossRef]
- Huseynov, O.; Hasanov, S.; Fidan, I. Influence of the matrix material on the thermal properties of the short carbon fiber reinforced polymer composites manufactured by material extrusion. J. Manuf. Process. 2023, 92, 521–533. [Google Scholar] [CrossRef]
- Ron, T.; Leon, A.; Popov, V.; Strokin, E.; Eliezer, D.; Shirizly, A.; Aghion, E. Synthesis of Refractory High-Entropy Alloy WTaMoNbV by Powder Bed Fusion Process Using Mixed Elemental Alloying Powder. Materials 2022, 15, 4043. [Google Scholar] [CrossRef] [PubMed]
- Terry, S.; Lu, H.; Fidan, I.; Zhang, Y.; Tantawi, K.; Guo, T.; Asiabanpour, B. The Influence of Smart Manufacturing towards Energy Conservation: A Review. Technologies 2020, 8, 31. [Google Scholar] [CrossRef]
- Gao, M.C.; Liaw, P.K.; Yeh, J.W.; Zhang, Y. High-Entropy Alloys: Fundamentals and Applications; Springer International Publishing: Cham, Switzerland, 2016; ISBN 9783319270135. [Google Scholar]
- Eshed, E.; Larianovsky, N.; Kovalevsky, A.; Popov, V., Jr.; Gorbachev, I.; Popov, V.; Katz-Demyanetz, A. Microstructural Evolution and Phase Formation in 2nd-Generation Refractory-Based High Entropy Alloys. Materials 2018, 11, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz-Demyanetz, A.; Gorbachev, I.; Eshed, E.; Popov, V.; Bamberger, M. High entropy Al0.5CrMoNbTa0.5 alloy: Additive manufacturing vs. casting vs. CALPHAD approval calculations. Mater. Charact. 2020, 167, 110505. [Google Scholar] [CrossRef]
- Gorbachev, I.I.; Popov, V.V.; Katz-Demyanetz, A.; Eshed, E. Prediction of the Phase Composition of High-Entropy Alloys Based on Cr–Nb–Ti–V–Zr Using the Calphad Method. Phys. Met. Met. 2019, 120, 378–386. [Google Scholar] [CrossRef]
- Scime, L.; Beuth, J. A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Addit. Manuf. 2018, 24, 273–286. [Google Scholar] [CrossRef]
- Fortune Business Insights Aviation. Available online: https://www.fortunebusinessinsights.com/industry-reports/aerospace-3d-printing-market-101613 (accessed on 20 May 2023).
- 3D Printing in Aerospace And Defense Market Size & Share Analysis—Industry Research Report—Growth Trends. (n.d.). Available online: https://www.mordorintelligence.com/industry-reports/3d-printing-in-aerospace-and-defense-market (accessed on 31 July 2023).
- Boeing 777X’s First Flight with more than 300 3D Printed Parts—3Dnatives. (n.d.). Available online: https://www.3dnatives.com/en/boeing-777x-300-3d-printed-parts-290120205/ (accessed on 31 July 2023).
- GE additive New Manufacturing Milestone: 30,000 Additive Fuel Nozzles. Available online: https://www.ge.com/additive/stories/new-manufacturing-milestone-30000-additive-fuel-nozzles (accessed on 31 July 2023).
- Pearson, A. Stratasys Additive Manufacturing Chosen by Airbus to Produce 3D Printed Flight Parts. Available online: https://www.stratasys.com/en/resources/blog/airbus-3d-printing/ (accessed on 31 July 2023).
- Products by Ppg for The Aerospace Industry–PPG Industries–Aerospace. Available online: https://www.ppgaerospace.com/Products/PPG-Ambient-Reactive-Extrusion-(ARE)-Additive.aspx (accessed on 11 June 2023).
- Global 3D Printing in Healthcare Market Report 2022 to 2027: Industry Trends, Share, Size, Growth, Opportunity and Forecasts. 2023. Available online: https://www.researchandmarkets.com/ (accessed on 31 July 2023).
- Israeli Scientists Unveil “First” 3D Print of Heart with Human Tissue, V. No Title. Available online: https://www.i24news.tv/en/news/israel/technology-science/1555327041-israeli-scientists-unveil-first-3d-print-of-heart-with-human-tissue-vessels (accessed on 31 July 2023).
- Ravanbakhsh, H.; Karamzadeh, V.; Bao, G.; Mongeau, L.; Juncker, D.; Zhang, Y.S. Emerging Technologies in Multi-Material Bioprinting. Adv. Mater. 2021, 33, e2104730. [Google Scholar] [CrossRef] [PubMed]
- Bioengineers 3D Print Complex Vascular Networks. Available online: https://www.engadget.com/2019-05-02-bioengineers-3d-print-vascular-networks.html (accessed on 31 July 2023).
- Tampi, T. Smartech Report: 3D Printing in Dental Market to Reach $3.1 Billion by 2020. Available online: https://3dprintingindustry.com/news/smartech-report-3d-printing-in-dental-market-to-reach-3-1-billion-by-2020-51971/ (accessed on 31 July 2023).
- Decker, C. Kinetic Study and New Applications of UV Radiation Curing. Macromol. Rapid Commun. 2002, 23, 1067–1093. [Google Scholar] [CrossRef]
- Bugatti–Molsheim/Wolfsburg World Premiere: Brake Caliper from 3-D Printer. Available online: https://www.bugatti.com/media/news/2018/world-premiere-brake-caliper-from-3-d-printer/ (accessed on 31 July 2023).
- Automotive GM Seat Bracket Made with Autodesk Generative Design Software. Available online: https://www.additivemanufacturing.media/news/gm-seat-bracket-made-with-autodesk-generative-design-software (accessed on 31 July 2023).
- ORTIZ, P. House Grail. Available online: https://housegrail.com/what-was-local-motors-and-the-3d-printed-olli-shuttle/ (accessed on 31 July 2023).
- Porsche 3D Printing Technology Optimises Pistons for the Powerful 911 GT2 RS. Available online: https://media.porsche.com/mediakit/porsche-innovationen/en/porsche-innovationen/3d-printed-pistons (accessed on 31 July 2023).
- AMRC. Electrification and Lightweighting in Industry 4.0. 2022. Available online: https://www.amrc.co.uk/files/document/471/1648484969_AMRC_MACH_MAIN_AW.pdf (accessed on 31 July 2023).
- Alyn Griffiths Barry Callebaut 3D-Prints Intricate Desserts in Belgian Chocolate. Available online: https://www.dezeen.com/2020/03/21/3d-printing-chocolate-barry-callebaut/ (accessed on 31 July 2023).
- Noort, M.; van Bommel, K.; Renzetti, S. 3D-Printed Cereal Foods. Cereal Foods World 2017, 62, 272. [Google Scholar] [CrossRef]
- GE Additive Additive Manufacturing Food Industry. Available online: https://www.ge.com/additive/additive-manufacturing/industries/food-beverage (accessed on 31 July 2023).
- Kouzani, A.Z.; Adams, S.; Whyte, D.J.; Oliver, R.; Hemsley, B.; Palmer, S.; Balandin, S. 3D Printing of Food for People with Swallowing Difficulties. KnE Eng. 2017, 2, 23–29. [Google Scholar] [CrossRef]
- Lorenz, T.; Iskandar, M.M.; Baeghbali, V.; Ngadi, M.O.; Kubow, S. 3D Food Printing Applications Related to Dysphagia: A Narrative Review. Foods 2022, 11, 1789. [Google Scholar] [CrossRef] [PubMed]
- Biswas, K.; Rose, J.; Eikevik, L.; Guerguis, M.; Enquist, P.; Lee, B.; Love, L.; Green, J.; Jackson, R. Additive Manufacturing Integrated Energy—Enabling Innovative Solutions for Buildings of the Future. J. Sol. Energy Eng. 2016, 139, 015001. [Google Scholar] [CrossRef]
- Rael, R.; San Fratello, V. Printing Architecture: Materials and Methods for 3D Printing; Princeton Architectural Press: New York, NY, USA, 2018. [Google Scholar]
- Long-awaited 3D-Printed Stainless Steel Bridge Opens in Amsterdam. (n.d.). Available online: https://www.dezeen.com/2021/07/19/mx3d-3d-printed-bridge-stainless-steel-amsterdam/ (accessed on 31 July 2023).
- Kaddoura, M. Dubai Is Now Home to the World’s First 3D-Printed Commercial Building. Guinness World Records. 1 March 2020. Available online: https://www.guinnessworldrecords.com/news/commercial/2020/3/dubai-is-now-home-to-the-worlds-first-3d-printed-commercial-building (accessed on 31 July 2023).
- Alawneh, M.; Matarneh, M.; El-Ashri, S. The World’s First 3D Printed Office Building in Dubai. Proceedings of 2018 PCI/NBC. 2018. Available online: https://www.pci.org/PCI_Docs/Papers/2018/32_Final_Paper.pdf (accessed on 31 July 2023).
- De Vergaderfabriek. Available online: https://cybe.eu/cases/de-vergaderfabriek/ (accessed on 10 June 2023).
- Wu, P.; Wang, J.; Wang, X. A critical review of the use of 3-D printing in the construction industry. Autom. Constr. 2016, 68, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Fidan, I. Innovations in Additive Manufacturing Workforce Development, Proceedings of the 2018 RAPID + TCT Conference. Available online: https://par.nsf.gov/biblio/10107915 (accessed on 19 June 2023).
- Moini, R.; Baghaie, A.; Rodriguez, F.B.; Zavattieri, P.D.; Youngblood, J.P.; Olek, J. Quantitative microstructural investigation of 3D-printed and cast cement pastes using micro-computed tomography and image analysis. Cem. Concr. Res. 2021, 147, 106493. [Google Scholar] [CrossRef]
- Thomas, D.S.; Gilbert, S.W. Costs and Cost Effectiveness of Additive Manufacturing: A Literature Review and Discussion. In Additive Manufacturing: Costs, Cost Effectiveness and Industry Economics; NIST: Gaithersburg, MD, USA, 2015; pp. 1–96. [Google Scholar]
- Alshaikh Ali, M.; Fidan, I.; Tantawi, K. Investigation of the Impact of Power Consumption, Surface Roughness, and Part Complexity in Stereolithography and Fused Filament Fabrication. Int. J. Adv. Manuf. Technol. 2023, 126, 2665–2676. [Google Scholar] [CrossRef]
- The Different Types of 3D Printing–How These Methods Compare. Available online: https://www.hubs.com/guides/3d-printing/ (accessed on 25 June 2023).
- Immigrant, H.; Now, F. Additive Manufacturing: Building the Future; Department of Energy–Office of Technology Transitions: Washington, DC, USA, 2019; pp. 2012–2016. [Google Scholar]
- 3D Printing: Recycling Plastic Waste and Saving the World. Available online: https://www.3dprinteros.com/articles/3d-printing-recycling-plastic-waste-and-saving-the-world (accessed on 10 June 2023).
- The EKOCYCLE Cube 3D Printer: Remake Using Recycled Plastic Bottles. Available online: https://www.3dsystems.com/blog/2014/06/ekocycle-cuber-3d-printer-remake-using-recycled-plastic-bottles (accessed on 10 June 2023).
- 3D Printer Reversed. Available online: https://www.yankodesign.com/2014/09/12/3d-printer-reversed/ (accessed on 10 June 2023).
- ReDeTec|Make Filament. Reuse Waste. Invent Materials. Available online: https://redetec.com/ (accessed on 20 June 2023).
- ProtoCycler V3 Filament Maker and Recycler. Available online: https://redetec.com/products/protocycler?variant=39805373743152 (accessed on 10 June 2023).
- Zhu, G.; Zhang, J.; Huang, J.; Qiu, Y.; Liu, M.; Yu, J.; Liu, C.; Shang, Q.; Hu, Y.; Hu, L.; et al. Recyclable and reprintable biobased photopolymers for digital light processing 3D printing. Chem. Eng. J. 2023, 452, 139401. [Google Scholar] [CrossRef]
- Saboori, A.; Aversa, A.; Marchese, G.; Biamino, S.; Lombardi, M.; Fino, P. Application of Directed Energy Deposition-Based Additive Manufacturing in Repair. Appl. Sci. 2019, 9, 3316. [Google Scholar] [CrossRef] [Green Version]
- Johan, C.; de Lennart, J.; Hertz, S. The Impact of Additive Manufacturing on Sustainability of Inbound Transportation. Master’s Thesis, Jönköping University, Jönköping, Sweden, 2020. [Google Scholar]
- Wang, Y.; Ahmed, A.; Azam, A.; Bing, D.; Shan, Z.; Zhang, Z.; Tariq, M.K.; Sultana, J.; Mushtaq, R.T.; Mehboob, A.; et al. Applications of additive manufacturing (AM) in sustainable energy generation and battle against COVID-19 pandemic: The knowledge evolution of 3D printing. J. Manuf. Syst. 2021, 60, 709–733. [Google Scholar] [CrossRef]
- Hegab, H.; Khanna, N.; Monib, N.; Salem, A. Design for sustainable additive manufacturing: A review. Sustain. Mater. Technol. 2023, 35, e00576. [Google Scholar] [CrossRef]
- Niaki, M.K.; Torabi, S.A.; Nonino, F. Why manufacturers adopt additive manufacturing technologies: The role of sustainability. J. Clean. Prod. 2019, 222, 381–392. [Google Scholar] [CrossRef]
- Nagesha, B.; Dhinakaran, V.; Shree, M.V.; Kumar, K.M.; Chalawadi, D.; Sathish, T. Review on characterization and impacts of the lattice structure in additive manufacturing. Mater. Today Proc. 2020, 21, 916–919. [Google Scholar] [CrossRef]
- Kanbur, B.B.; Zhou, Y.; Shen, S.; Wong, K.H.; Chen, C.; Shocket, A.; Duan, F. Metal Additive Manufacturing of Plastic Injection Molds with Conformal Cooling Channels. Polymers 2022, 14, 424. [Google Scholar] [CrossRef]
- Badir, M.E. Part Geometry Design, Modeling, Manufacturing, and Analysis via Selective Laser Melting Method for Topology Optimization of Satellite Parts. Master’s Thesis, Gazi University, Ankara, Turkey, 2019. [Google Scholar]
- Zhu, J.; Zhou, H.; Wang, C.; Zhou, L.; Yuan, S.; Zhang, W. A review of topology optimization for additive manufacturing: Status and challenges. Chin. J. Aeronaut. 2021, 34, 91–110. [Google Scholar] [CrossRef]
- Yang, S.; Min, W.; Ghibaudo, J.; Zhao, Y.F. Understanding the sustainability potential of part consolidation design supported by additive manufacturing. J. Clean. Prod. 2019, 232, 722–738. [Google Scholar] [CrossRef]
- Lacroix, R.; Seifert, R.W.; Timonina-Farkas, A. Benefiting from additive manufacturing for mass customization across the product life cycle. Oper. Res. Perspect. 2021, 8, 100201. [Google Scholar] [CrossRef]
- Kačarević, P.; Rider, P.M.; Alkildani, S.; Retnasingh, S.; Smeets, R.; Jung, O.; Ivanišević, Z.; Barbeck, M. An Introduction to 3D Bioprinting: Possibilities, Challenges and Future Aspects. Materials 2018, 11, 2199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoni, S.; Gugliandolo, S.G.; Sponchioni, M.; Moscatelli, D.; Colosimo, B.M. 3D bioprinting: Current status and trends—A guide to the literature and industrial practice. Bio-Des. Manuf. 2021, 5, 14–42. [Google Scholar] [CrossRef]
- Choudhury, D.; Anand, S.; Naing, M.W. The Arrival of Commercial Bioprinters—Towards 3D Bioprinting Revolution! Int. J. Bioprinting 2018, 4, 139. [Google Scholar] [CrossRef]
- Hölzl, K.; Lin, S.; Tytgat, L.; Van Vlierberghe, S.; Gu, L.; Ovsianikov, A. Bioink properties before, during and after 3D bioprinting. Biofabrication 2016, 8, 032002. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef]
- Hospodiuk, M.; Dey, M.; Sosnoski, D.; Ozbolat, I.T. The bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2017, 35, 217–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Chen, M.; Fan, X.; Zhou, H. Recent advances in bioprinting techniques: Approaches, applications and future prospects. J. Transl. Med. 2016, 14, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozbolat, I.T.; Moncal, K.K.; Gudapati, H. Evaluation of bioprinter technologies. Addit. Manuf. 2017, 13, 179–200. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Salvador, M.; Rio-Belver, R.M.; Garechana-Anacabe, G. Scientometric and patentometric analyses to determine the knowledge landscape in innovative technologies: The case of 3D bioprinting. PLoS ONE 2017, 12, e0180375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwala, S.; Lee, J.M.; Ng, W.L.; Layani, M.; Yeong, W.Y.; Magdassi, S. A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform. Biosens. Bioelectron. 2018, 102, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Ramos, T.A.D.S.; Moroni, L. Tissue Engineering and Regenerative Medicine 2019: The Role of Biofabrication—A Year in Review. Tissue Eng. Part C Methods 2020, 26, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Panwar, A.; Tan, L.P. Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting. Molecules 2016, 21, 685. [Google Scholar] [CrossRef] [Green Version]
- Moroni, L.; Boland, T.; Burdick, J.A.; De Maria, C.; Derby, B.; Forgacs, G.; Groll, J.; Li, Q.; Malda, J.; Mironov, V.A.; et al. Biofabrication: A Guide to Technology and Terminology. Trends Biotechnol. 2017, 36, 384–402. [Google Scholar] [CrossRef] [Green Version]
- Ng, W.L.; Lee, J.M.; Zhou, M.; Chen, Y.-W.; Lee, K.-X.A.; Yeong, W.Y.; Shen, Y.-F. Vat polymerization-based bioprinting—Process, materials, applications and regulatory challenges. Biofabrication 2020, 12, 022001. [Google Scholar] [CrossRef]
- Murphy, S.V.; De Coppi, P.; Atala, A. Opportunities and challenges of translational 3D bioprinting. Nat. Biomed. Eng. 2019, 4, 370–380. [Google Scholar] [CrossRef]
- Ozbolat, I.T.; Hospodiuk, M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016, 76, 321–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, E.S.; Mostafa, S.; Pakvasa, M.; Luu, H.H.; Lee, M.J.; Wolf, J.M.; Ameer, G.A.; He, T.-C.; Reid, R.R. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes Dis. 2017, 4, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Donderwinkel, I.; van Hest, J.C.M.; Cameron, N.R. Bio-inks for 3D bioprinting: Recent advances and future prospects. Polym. Chem. 2017, 8, 4451–4471. [Google Scholar] [CrossRef] [Green Version]
- Suryakant, A.S.; Gajjal, S.Y.; Mahajan, D.A. Contact Stress Analysis for’Gear’to Optimize Mass Using CAE Techniques. Int. J. Sci. Eng. Technol. Res. 2014, 3, 3491–3495. [Google Scholar]
- Yang, Y.; Jia, Y.; Yang, Q.; Xu, F. Engineering bio-inks for 3D bioprinting cell mechanical microenvironment. Int. J. Bioprinting 2022, 9, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Yu, K.; Meyer, A.S.; Karana, E.; Aubin-Tam, M. Bioprinting of Regenerative Photosynthetic Living Materials. Adv. Funct. Mater. 2021, 31, 2011162. [Google Scholar] [CrossRef]
- Ghazal, A.F.; Zhang, M.; Mujumdar, A.S.; Ghamry, M. Progress in 4D/5D/6D printing of foods: Applications and R&D opportunities. Crit. Rev. Food Sci. Nutr. 2022. [Google Scholar] [CrossRef]
- Vasiliadis, A.V.; Koukoulias, N.; Katakalos, K. From Three-Dimensional (3D)- to 6D-Printing Technology in Orthopedics: Science Fiction or Scientific Reality? J. Funct. Biomater. 2022, 13, 101. [Google Scholar] [CrossRef]
- Chu, H.; Yang, W.; Sun, L.; Cai, S.; Yang, R.; Liang, W.; Yu, H.; Liu, L. 4D Printing: A Review on Recent Progresses. Micromachines 2020, 11, 796. [Google Scholar] [CrossRef]
- Mahmood, A.; Akram, T.; Chen, H.; Chen, S. On the Evolution of Additive Manufacturing (3D/4D Printing) Technologies: Materials, Applications, and Challenges. Polymers 2022, 14, 4698. [Google Scholar] [CrossRef]
- Shie, M.-Y.; Shen, Y.-F.; Astuti, S.D.; Lee, A.K.-X.; Lin, S.-H.; Dwijaksara, N.L.B.; Chen, Y.-W. Review of Polymeric Materials in 4D Printing Biomedical Applications. Polymers 2019, 11, 1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zolfagharian, A.; Durran, L.; Gharaie, S.; Rolfe, B.; Kaynak, A.; Bodaghi, M. 4D printing soft robots guided by machine learning and finite element models. Sens. Actuators A Phys. 2021, 328, 112774. [Google Scholar] [CrossRef]
- Nida, S.; Moses, J.A.; Anandharamakrishnan, C. Emerging applications of 5D and 6D printing in the food industry. J. Agric. Food Res. 2022, 10, 100392. [Google Scholar] [CrossRef]
- Pingale, P.; Dawre, S.; Dhapte-Pawar, V.; Dhas, N.; Rajput, A. Advances in 4D printing: From stimulation to simulation. Drug Deliv. Transl. Res. 2023, 13, 164–188. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Arya, S.; Gupta, V.; Furukawa, H.; Khosla, A. 4D printing: Fundamentals, materials, applications and challenges. Polymer 2021, 228, 123926. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.L.; Shin, Y.C.; Zhang, S.; Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering. Comput.-Aided Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R. Significant roles of 4D printing using smart materials in the field of manufacturing. Adv. Ind. Eng. Polym. Res. 2021, 4, 301–311. [Google Scholar] [CrossRef]
- Joshi, S.; Rawat, K.; Karunakaran, C.; Rajamohan, V.; Mathew, A.T.; Koziol, K.; Thakur, V.K.; Balan, A.S.S. 4D printing of materials for the future: Opportunities and challenges. Appl. Mater. Today 2020, 18, 100490. [Google Scholar] [CrossRef]
- Huang, J.; Xia, S.; Li, Z.; Wu, X.; Ren, J. Applications of four-dimensional printing in emerging directions: Review and pro-spects. J. Mater. Sci. Technol. 2021, 91, 105. [Google Scholar] [CrossRef]
- Pei, E.; Loh, G.H. Technological considerations for 4D printing: An overview. Prog. Addit. Manuf. 2018, 3, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Momeni, F.; Hassani, N.S.M.M.; Liu, X.; Ni, J. A review of 4D printing. Mater. Des. 2017, 122, 42–79. [Google Scholar] [CrossRef]
- Singh, R.; Holmukhe, R.M.; Gandhar, A.; Kumawat, K. 5D Printing: A future beyond the scope of 4D printing with application of smart materials. J. Inf. Optim. Sci. 2022, 43, 155–167. [Google Scholar] [CrossRef]
- An, J.; Chua, C.K.; Mironov, V. A Perspective on 4D Bioprinting. Int. J. Bioprint. 2016, 2, 3–5. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, X.; Liu, Y.; Ramakrishna, S. Review of mechanisms and deformation behaviors in 4D printing. Int. J. Adv. Manuf. Technol. 2019, 105, 4633–4649. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. 4D printing applications in medical field: A brief review. Clin. Epidemiol. Glob. Health 2019, 7, 317–321. [Google Scholar] [CrossRef] [Green Version]
- Ziaie, B.; Baldi, A.; Atashbar, M. Introduction to Micro/Nanofabrication. In Springer Handbook of Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2007; pp. 197–238. [Google Scholar] [CrossRef]
- Limongi, T.; Tirinato, L.; Pagliari, F.; Giugni, A.; Allione, M.; Perozziello, G.; Candeloro, P.; Di Fabrizio, E. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering. Nano-Micro Lett. 2017, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, A.; Singh, G.; Devgan, S. Additive manufacturing of metallic biomaterials: A concise review. Arch. Civ. Mech. Eng. 2023, 23, 187. [Google Scholar] [CrossRef]
- Ikumapayi, O.; Akinlabi, E.; Adeoye, A.; Fatoba, S. Microfabrication and nanotechnology in manufacturing system—An overview. Mater. Today Proc. 2020, 44, 1154–1162. [Google Scholar] [CrossRef]
- Kim, C.-S.; Ahn, S.-H.; Jang, D.-Y. Review: Developments in micro/nanoscale fabrication by focused ion beams. Vacuum 2012, 86, 1014–1035. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Wang, C.; Yuan, L.; Chen, W.; Bao, J.; Su, Q.; Xu, Z.; Wang, C.; Wang, Z.; et al. A Review on Micro/Nanoforming to Fabricate 3D Metallic Structures. Adv. Mater. 2021, 33, e2000893. [Google Scholar] [CrossRef]
- Zhu, W.; O’Brien, C.; O’Brien, J.R.; Zhang, L.G. 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration. Nanomedicine 2014, 9, 859–875. [Google Scholar] [CrossRef]
- Luu, T.U.; Gott, S.C.; Woo, B.W.K.; Rao, M.P.; Liu, W.F. Micro- and Nanopatterned Topographical Cues for Regulating Mac-rophage Cell Shape and Phenotype. ACS Appl. Mater. Interfaces 2015, 7, 28665–28672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limongi, T.; Schipani, R.; Di Vito, A.; Giugni, A.; Francardi, M.; Torre, B.; Allione, M.; Miele, E.; Malara, N.; Alrasheed, S.; et al. Photolithography and micromolding techniques for the realization of 3D polycaprolactone scaffolds for tissue engineering applications. Microelectron. Eng. 2015, 141, 135–139. [Google Scholar] [CrossRef]
- Shi, D.; Xu, X.; Ye, Y.; Song, K.; Cheng, Y.; Di, J.; Hu, Q.; Li, J.; Ju, H.; Jiang, Q.; et al. Photo-Cross-Linked Scaffold with Kar-togenin-Encapsulated Nanoparticles for Cartilage Regeneration. ACS Nano 2016, 10, 1292–1299. [Google Scholar] [CrossRef]
- Chen, S. Nanomanufacturing: Challenges and opportunities from design to fabrication. In Proceedings of the 2009 11th IEEE International Conference on Computer-Aided Design and Computer Graphics, Huangshan, China, 19–21 August 2009; pp. 41–42. [Google Scholar] [CrossRef]
- Yoon, G.; Kim, I.; Rho, J. Challenges in fabrication towards realization of practical metamaterials. Microelectron. Eng. 2016, 163, 7–20. [Google Scholar] [CrossRef]
- Xu, Q.; Lv, Y.; Dong, C.; Sreeprased, T.S.; Tian, A.; Zhang, H.; Tang, Y.; Yu, Z.; Li, N. Three-dimensional micro/nanoscale architectures: Fabrication and applications. Nanoscale 2015, 7, 10883–10895. [Google Scholar] [CrossRef]
- Bae, H.; Chu, H.; Edalat, F.; Cha, J.M.; Sant, S.; Kashyap, A.; Ahari, A.F.; Kwon, C.H.; Nichol, J.W.; Manoucheri, S.; et al. Development of functional biomaterials with micro- and nanoscale technologies for tissue engineering and drug delivery applications. J. Tissue Eng. Regen. Med. 2014, 8, 1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahadian, S.; Finbloom, J.A.; Mofidfar, M.; Diltemiz, S.E.; Nasrollahi, F.; Davoodi, E.; Hosseini, V.; Mylonaki, I.; Sangabathuni, S.; Montazerian, H.; et al. Micro and nanoscale technologies in oral drug delivery. Adv. Drug Deliv. Rev. 2020, 157, 37–62. [Google Scholar] [CrossRef]
- Kingsley, J.D.; Ranjan, S.; Dasgupta, N.; Saha, P. Nanotechnology for tissue engineering: Need, techniques and applications. J. Pharm. Res. 2013, 7, 200–204. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, P.; Fu, Z.; Meng, S.; Dai, L.; Yang, H. Applications of nanomaterials in tissue engineering. RSC Adv. 2021, 11, 19041–19058. [Google Scholar] [CrossRef]
- Wang, Z.; Miccio, L.; Coppola, S.; Bianco, V.; Memmolo, P.; Tkachenko, V.; Ferraro, V.; Di Maio, E.; Maffettone, P.L.; Ferraro, P. Digital holography as metrology tool at micro-nanoscale for soft matter. Light. Adv. Manuf. 2022, 3, 151–176. [Google Scholar] [CrossRef]
- Muldoon, K.; Song, Y.; Ahmad, Z.; Chen, X.; Chang, M.-W. High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices. Micromachines 2022, 13, 642. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, G.; Guo, Y.; Wang, Y.; Zhang, D.; Chen, H. Bioinspired Functional Surfaces for Medical Devices. Chin. J. Mech. Eng. 2022, 35, 43. [Google Scholar] [CrossRef]
- Ma, Y.-B.; Xie, Z.-Y.; Hamid, N.; Tang, Q.-P.; Deng, J.-Y.; Luo, L.; Pei, D.-S. Recent advances in micro (nano) plastics in the environment: Distribution, health risks, challenges and future prospects. Aquat. Toxicol. 2023, 261, 106597. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ma, J.; Shi, X.; Zhu, Y.; Wu, Z.-S. Recent status and future perspectives of ultracompact and customizable micro-supercapacitors. Nano Res. Energy 2022, 1, e9120018. [Google Scholar] [CrossRef]
- Divakaran, N.; Das, J.P.; PV, A.K.; Mohanty, S.; Ramadoss, A.; Nayak, S.K. Comprehensive review on various additive manufacturing techniques and its implementation in electronic devices. J. Manuf. Syst. 2022, 62, 477–502. [Google Scholar] [CrossRef]
- Cheng, D.; Wei, C.; Huang, Y.; Zhang, Z.; Wang, D.; Liu, Z.; Newman, M.; Ma, T.; Chueh, Y.-H.; Zhang, X.; et al. Additive manufacturing of lithium aluminosilicate glass-ceramic/metal 3D electronic components via multiple material laser powder bed fusion. Addit. Manuf. 2022, 49, 102481. [Google Scholar] [CrossRef]
- Espinosa, R.; Bertuol, D.A.; Barbosa, A.; Junior, B.; Efstratiadis, V.S.; Michailidis, N.; Michailidis, N. Sustainable Recovery, Recycle of Critical Metals and Rare Earth Elements from Waste Electric and Electronic Equipment (Circuits, Solar, Wind) and Their Reusability in Additive Manufacturing Applications: A Review. Metals 2022, 12, 794. [Google Scholar] [CrossRef]
- Kailkhura, G.; Mandel, R.K.; Shooshtari, A.; Ohadi, M. Numerical and Experimental Study of a Novel Additively Manufactured Metal-Polymer Composite Heat-Exchanger for Liquid Cooling Electronics. Energies 2022, 15, 598. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Tejo-Otero, A.; Fenollosa-Artés, F. Evolution of Additive Manufacturing Processes: From the Background to Hybrid Printers. In Mechanical and Industrial Engineering: Historical Aspects and Future Directions; Springer: Berlin/Heidelberg, Germany, 2022; pp. 95–110. [Google Scholar] [CrossRef]
- Paek, S.W.; Balasubramanian, S.; Stupples, D. Composites Additive Manufacturing for Space Applications: A Review. Materials 2022, 15, 4709. [Google Scholar] [CrossRef]
- Schuhmann, D.; Rockinger, C.; Merkel, M.; Harrison, D.K. A Study on Additive Manufacturing for Electromobility. World Electr. Veh. J. 2022, 13, 154. [Google Scholar] [CrossRef]
- Praveena, B.A.; Lokesh, N.; Buradi, A.; Santhosh, N.; Praveena, B.L.; Vignesh, R. A comprehensive review of emerging additive manufacturing (3D printing technology): Methods, materials, applications, challenges, trends and future potential. Mater. Today Proc. 2022, 52, 1309–1313. [Google Scholar] [CrossRef]
- Mu, B.; Wang, X.; Zhang, X.; Xiao, X. Laser direct sintering approach for additive manufacturing in flexible electronic. Results Eng. 2022, 13, 100359. [Google Scholar] [CrossRef]
- Szabo, L. Additive Manufacturing of Cooling Systems Used in Power Electronics. A Brief Survey. In Proceedings of the Additive Manufacturing of Cooling Systems Used in Power Electronics. A Brief Surve, Moscow, Russia, 26–29 January 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Espera, A.H.; Dizon, J.R.C.; Valino, A.D.; Advincula, R.C. Advancing flexible electronics and additive manufacturing. Jpn. J. Appl. Phys. 2022, 61, SE0803. [Google Scholar] [CrossRef]
- Prashar, G.; Vasudev, H.; Bhuddhi, D. Additive manufacturing: Expanding 3D printing horizon in industry 4.0. Int. J. Interact. Des. Manuf. IJIDeM 2022, 1–15. [Google Scholar] [CrossRef]
- Alteneiji, M.; Ali, M.I.H.; Khan, K.A.; Abu Al-Rub, R.K. Heat transfer effectiveness characteristics maps for additively manufactured TPMS compact heat exchangers. Energy Storage Sav. 2022, 1, 153–161. [Google Scholar] [CrossRef]
- Wang, D.; Liu, L.; Deng, G.; Deng, C.; Bai, Y.; Yang, Y.; Wu, W.; Chen, J.; Liu, Y.; Wang, Y.; et al. Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion. Virtual Phys. Prototyp. 2022, 17, 329–365. [Google Scholar] [CrossRef]
- Rao, C.H.; Avinash, K.; Varaprasad, B.K.S.V.L.; Goel, S. A Review on Printed Electronics with Digital 3D Printing: Fabrication Techniques, Materials, Challenges and Future Opportunities. J. Electron. Mater. 2022, 51, 2747–2765. [Google Scholar] [CrossRef]
- Chen, P.; Wang, H.; Su, J.; Tian, Y.; Wen, S.; Su, B.; Yang, C.; Chen, B.; Zhou, K.; Yan, C.; et al. Recent Advances on High-Performance Polyaryletherketone Materials for Additive Manufacturing. Adv. Mater. 2022, 34, e2200750. [Google Scholar] [CrossRef]
- Tian, X.; Wu, L.; Gu, D.; Yuan, S.; Zhao, Y.; Li, X.; Ouyang, L.; Song, B.; Gao, T.; He, J.; et al. Roadmap for Additive Manufacturing: Toward Intellectualization and Industrialization. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100014. [Google Scholar] [CrossRef]
- Alhendi, M.; Alshatnawi, F.; Abbara, E.M.; Sivasubramony, R.; Khinda, G.; Umar, A.I.; Borgesen, P.; Poliks, M.D.; Shaddock, D.; Hoel, C.; et al. Printed electronics for extreme high temperature environments. Addit. Manuf. 2022, 54, 102709. [Google Scholar] [CrossRef]
- Wang, P.; Li, J.; Wang, G.; He, L.; Yu, Y.; Xu, B. Multimaterial Additive Manufacturing of LTCC Matrix and Silver Conductors for 3D Ceramic Electronics. Adv. Mater. Technol. 2022, 7, 2101462. [Google Scholar] [CrossRef]
- Mu, H.; Polden, J.; Li, Y.; He, F.; Xia, C.; Pan, Z. Layer-by-Layer Model-Based Adaptive Control for Wire Arc Additive Manu-facturing of Thin-Wall Structures. J. Intell. Manuf. 2022, 33, 1165–1180. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.; Yang, X.; Wang, D.; Hu, W.; Di, X.; Zhang, J. In-situ heat treatment (IHT) wire arc additive manufacturing of Inconel625-HSLA steel functionally graded material. Mater. Lett. 2023, 330, 133326. [Google Scholar] [CrossRef]
- Dias, M.; Pragana, J.P.M.; Ferreira, B.; Ribeiro, I.; Silva, C.M.A. Economic and Environmental Potential of Wire-Arc Additive Manufacturing. Sustainability 2022, 14, 5197. [Google Scholar] [CrossRef]
- Li, Y.; Su, C.; Zhu, J. Comprehensive review of wire arc additive manufacturing: Hardware system, physical process, monitoring, property characterization, application and future prospects. Results Eng. 2022, 13, 100330. [Google Scholar] [CrossRef]
- Barrionuevo, G.O.; Sequeira-Almeida, P.M.; Ríos, S.; Ramos-Grez, J.A.; Williams, S.W. A machine learning approach for the prediction of melting efficiency in wire arc additive manufacturing. Int. J. Adv. Manuf. Technol. 2022, 120, 3123–3133. [Google Scholar] [CrossRef]
- Omiyale, B.O.; Olugbade, T.O.; Abioye, T.E.; Farayibi, P.K. Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: A review. Mater. Sci. Technol. 2022, 38, 391–408. [Google Scholar] [CrossRef]
- Çam, G. Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM). Mater. Today Proc. 2022, 62, 77–85. [Google Scholar] [CrossRef]
- Srivastava, M.; Rathee, S.; Tiwari, A.; Dongre, M. Wire arc additive manufacturing of metals: A review on processes, materials and their behaviour. Mater. Chem. Phys. 2023, 294, 126988. [Google Scholar] [CrossRef]
- Tomar, B.; Shiva, S.; Nath, T. A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances. Mater. Today Commun. 2022, 31, 103739. [Google Scholar] [CrossRef]
- Nagasai, B.P.; Malarvizhi, S.; Balasubramanian, V. Effect of welding processes on mechanical and metallurgical characteristics of carbon steel cylindrical components made by wire arc additive manufacturing (WAAM) technique. CIRP J. Manuf. Sci. Technol. 2022, 36, 100–116. [Google Scholar] [CrossRef]
- Kawalkar, R.; Dubey, H.K.; Lokhande, S.P. Wire arc additive manufacturing: A brief review on advancements in addressing industrial challenges incurred with processing metallic alloys. Mater. Today Proc. 2022, 50, 1971–1978. [Google Scholar] [CrossRef]
- Guo, X.; Li, H.; Pan, Z.; Zhou, S. Microstructure and mechanical properties of ultra-high strength Al-Zn-Mg-Cu-Sc aluminum alloy fabricated by wire + arc additive manufacturing. J. Manuf. Process. 2022, 79, 576–586. [Google Scholar] [CrossRef]
- Sridar, S.; Klecka, M.A.; Xiong, W. Interfacial characteristics of P91 steel - Inconel 740H bimetallic structure fabricated using wire-arc additive manufacturing. J. Mater. Process. Technol. 2022, 300, 117396. [Google Scholar] [CrossRef]
- Mclean, N.; Bermingham, M.J.; Colegrove, P.; Sales, A.; Dargusch, M.S. Understanding the grain refinement mechanisms in aluminium 2319 alloy produced by wire arc additive manufacturing. Sci. Technol. Weld. Join. 2022, 27, 479–489. [Google Scholar] [CrossRef]
- Huang, C.; Wang, G.; Song, H.; Li, R.; Zhang, H. Rapid surface defects detection in wire and arc additive manufacturing based on laser profilometer. Measurement 2022, 189, 110503. [Google Scholar] [CrossRef]
- Derekar, K.S.; Ahmad, B.; Zhang, X.; Joshi, S.S.; Lawrence, J.; Xu, L.; Melton, G.; Addison, A. Effects of Process Variants on Residual Stresses in Wire Arc Additive Manufacturing of Aluminum Alloy. J. Manuf. Sci. Eng. 2022, 144, 071005. [Google Scholar] [CrossRef]
- Rodrigues, T.A.; Bairrão, N.; Farias, F.W.C.; Shamsolhodaei, A.; Shen, J.; Zhou, N.; Maawad, E.; Schell, N.; Santos, T.G.; Oliveira, J. Steel-copper functionally graded material produced by twin-wire and arc additive manufacturing (T-WAAM). Mater. Des. 2022, 213, 110270. [Google Scholar] [CrossRef]
- Ramalho, A.; Santos, T.G.; Bevans, B.; Smoqi, Z.; Rao, P.; Oliveira, J. Effect of contaminations on the acoustic emissions during wire and arc additive manufacturing of 316L stainless steel. Addit. Manuf. 2022, 51, 102585. [Google Scholar] [CrossRef]
IP Type | Description | Protection Period | Applications | Examples from AM |
---|---|---|---|---|
Patents | Protects new and useful inventions, providing exclusive rights to the inventor | Typically, 20 years from the filing date [10] | Novel technology, processes, or products | Stratasys expiry of patent US6722872B1Proprietary heated build chamber 2021. [11] |
Copyright | Protects original creative works, such as literary, artistic, or musical creations | Author’s lifetime + 70 years [12] | Books, software | Things Fall Together: A guide to the new materials, Skylar Tibbets 15 June 2021—copyright valid until 15 June 2091. [13] |
Trademarks | Protects brands, logos, or symbols that distinguish goods or services in the marketplace | Renewable indefinitely as long as it is in use and maintained [14] | Company logos, product names | EOS logo trademarked its logo for use in the UK via application UK00918108117 on 07 March 2019 and is due for renewal in 2029. [15] |
Trade Secrets | Protects confidential business information that is not publicly disclosed | Potentially indefinite as long as the information remains secret [16] | Formulas, manufacturing processes | The protection of IP within the AM sector is a significant issue—for example, Desktop Metal highlights the costs involved in the protection and enforcement of their IP. [17] |
Industrial Designs | Protects aesthetic or visual aspects of a product’s shape, pattern, or ornamentation | 15-year term of protection measured from the date of grant [18] | Product designs | Product Artists, such as Lionel Dean, produce unique designs via new ways of working with AM recognized by museums and galleries around the world. [19] |
Element | Spectrum 1 | Spectrum 2 | Spectrum 1-2 | Spectrum 2-2 | Spectrum 3 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | |
C | 0.09 | 0.43 | - | - | 0.69 | 3.19 | 0.57 | 2.55 | 0.42 | 1.90 |
Si | 0.96 | 1.90 | - | -- | 0.30 | 0.58 | 1.03 | 1.98 | 0.87 | 1.71 |
P | 0.19 | 0.34 | - | - | 0 | 0 | 0 | 0 | 0 | 0 |
S | 0.15 | 0.26 | - | - | 0.12 | 0.20 | 0.11 | 0.19 | 0.08 | 0.13 |
Ti | - | - | 1.00 | 1.23 | 0.72 | 0.84 | 0 | 0 | 0.17 | 0.19 |
V | 0.41 | 0.45 | 0.03 | 0.04 | 0.16 | 0.18 | 0.46 | 0.49 | 0.34 | 0.37 |
Cr | 5.41 | 5.75 | - | - | 1.41 | 1.51 | 5.32 | 5.54 | 4.47 | 4.72 |
Fe | 89.92 | 89.00 | 66.23 | 69.94 | 71.72 | 71.34 | 90.97 | 88.16 | 85.83 | 84.42 |
Co | 0.68 | 0.64 | 9.57 | 9.58 | 7.07 | 6.67 | 0.63 | 0.57 | 2.28 | 2.13 |
Ni | 0.15 | 0.14 | 18.61 | 18.70 | 14.20 | 13.43 | 0.24 | 0.22 | 3.68 | 3.44 |
Cu | 0.15 | 0.13 | - | - | 0.05 | 0.05 | 0.08 | 0.07 | 0.12 | 0.11 |
Nb | 0.33 | 0.19 | - | - | - | - | - | - | - | - |
Mo | 1.20 | 0.69 | 5.20 | 3.20 | 3.72 | 2.15 | 0.87 | 0.49 | 1.79 | 1.03 |
W | 0.37 | 0.11 | 0.38 | 0.12 | 0.09 | 0.03 | 0.01 | 0.00 | 0.15 | 0.04 |
Total: | 100 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fidan, I.; Huseynov, O.; Ali, M.A.; Alkunte, S.; Rajeshirke, M.; Gupta, A.; Hasanov, S.; Tantawi, K.; Yasa, E.; Yilmaz, O.; et al. Recent Inventions in Additive Manufacturing: Holistic Review. Inventions 2023, 8, 103. https://doi.org/10.3390/inventions8040103
Fidan I, Huseynov O, Ali MA, Alkunte S, Rajeshirke M, Gupta A, Hasanov S, Tantawi K, Yasa E, Yilmaz O, et al. Recent Inventions in Additive Manufacturing: Holistic Review. Inventions. 2023; 8(4):103. https://doi.org/10.3390/inventions8040103
Chicago/Turabian StyleFidan, Ismail, Orkhan Huseynov, Mohammad Alshaikh Ali, Suhas Alkunte, Mithila Rajeshirke, Ankit Gupta, Seymur Hasanov, Khalid Tantawi, Evren Yasa, Oguzhan Yilmaz, and et al. 2023. "Recent Inventions in Additive Manufacturing: Holistic Review" Inventions 8, no. 4: 103. https://doi.org/10.3390/inventions8040103
APA StyleFidan, I., Huseynov, O., Ali, M. A., Alkunte, S., Rajeshirke, M., Gupta, A., Hasanov, S., Tantawi, K., Yasa, E., Yilmaz, O., Loy, J., Popov, V., & Sharma, A. (2023). Recent Inventions in Additive Manufacturing: Holistic Review. Inventions, 8(4), 103. https://doi.org/10.3390/inventions8040103