Multi-Objective Optimization Algorithm Based Bidirectional Long Short Term Memory Network Model for Optimum Sizing of Distributed Generators and Shunt Capacitors for Distribution Systems
Abstract
:1. Introduction
- A GWO algorithm based multi-objective approach is developed for obtaining the optimum sizing of DGs and SHCs at different load factors.
- A BiLSTM network model is trained for direct determination of optimum sizing of DGs and SHCs without using load flows utilizing the data sets generated by the GWO algorithm.
- The performance of the BiLSTM network is tested with three different training algorithms known as root mean square propagation (rmsprop), stochastic gradient descent with momentum (sgdm) and adaptive moment estimation (adam).
2. Formulation of the Multi-Objective Planning Problem
- (i)
- Substation apparent power index
- (ii)
- Substation real power index
- (iii)
- Substation reactive power index
- (iv)
- Real power loss index
- (v)
- Reactive power loss index
- (vi)
- Voltage profile index
- (vii)
- DG penetration index ()
- (viii)
- Reactive power penetration index ()
3. Optimum Placement of DGs and SHCs Using Grey Wolf Optimization Algorithm
3.1. Grey Wolf Optimization Algorithm
3.2. Optimum Sizing of DGs and SHCs Using GWO
4. Mathematical Modeling of Machine Learning Networks
4.1. Long Short-Term Memory Networks
4.2. Bidirectional Long Short-Term Memory Networks
4.3. Adaptive Moment Estimation Optimizer (Adam)
4.4. Performance Metric of the Machine Learning Model
4.5. GWO Algorithm-Based Machine Learning Model for Optimum Sizing of DGs and SHCs
5. Results and Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DGN | Number of distributed generations |
NN | Number of nodes of the distribution system |
DG penetration index | |
Real power load at ith node load factor LF | |
Real power loss with DGs and shunt capacitors | |
Real power loss at the base case at load factor LF | |
Real power delivered by the ith DG at load factor LF | |
Reactive power load at ith node at load factor LF | |
Reactive power loss with DGs and shunt capacitors | |
Reactive power delivered by the ith DG | |
Reactive power delivered by the ith shunt capacitor | |
Reactive power load of ith node at load factor LF | |
Reactive power loss at bases case at load factor LF | |
Reactive power penetration index | |
Substation apparent power index at load factor LF | |
Substation Apparent power with the integration of DGs and SHCs at LF | |
Substation Apparent power with base case | |
Substation real power index | |
Real power delivered by the S/S with integration of DGs and SHCs | |
Real power delivered by the S/S with base case | |
Substation reactive power index | |
Reactive power delivered by the S/S with integration of DGs and SHCs | |
Reactive power delivered by the S/S at base case | |
Voltage profile index at load factor LF | |
Voltage of ith node with DGs and SHCs at LF | |
Voltage of ith node with base case at LF |
References
- Gampa, S.R.; Das, D. Optimum placement and sizing of DGs considering average hourly variations of load. Int. J. Electr. Power Energy Syst. 2015, 66, 25–40. [Google Scholar] [CrossRef]
- Gampa, S.R.; Jasthi, K.; Goli, P.; Das, D.; Bansal, R.C. Grasshopper optimization algorithm based two stage fuzzy multiobjective approach for optimum sizing and placement of distributed generations, shunt capacitors and electric vehicle charging stations. J. Energy Storage 2020, 27, 101117. [Google Scholar] [CrossRef]
- Gil-González, W.; Garces, A.; Montoya, O.D.; Hernández, J.C. A Mixed-Integer Convex Model for the Optimal Placement and Sizing of Distributed Generators in Power Distribution Networks. Appl. Sci. 2021, 11, 627. [Google Scholar] [CrossRef]
- Fathy, A. A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems. Appl. Energy 2022, 323, 119605. [Google Scholar] [CrossRef]
- Hari Prasad, C.; Subbaramaiah, K.; Sujatha, P. Optimal DG unit placement in distribution networks by multi-objective whale optimization algorithm & its techno-economic analysis. Electr. Power Syst. Res. 2023, 214 Pt A, 108869. [Google Scholar]
- Gümüş, T.E.; Emiroglu, S.; Yalcin, M.A. Optimal DG allocation and sizing in distribution systems with Thevenin based impedance stability index. Int. J. Electr. Power Energy Syst. 2023, 144, 108555. [Google Scholar] [CrossRef]
- Raj, A.F.; Saravanan, A.G. An optimization approach for optimal location & size of DSTATCOM and DG. Appl. Energy 2023, 336, 120797. [Google Scholar]
- Shukla, V.; Mukherjee, V.; Singh, B. Integration of distributed generations and static var compensators with static synchronous compensators to reduce power losses. Eng. Appl. Artif. Intell. 2023, 126, 107208. [Google Scholar] [CrossRef]
- Ahlawat, A.; Das, D. Optimal sizing and scheduling of battery energy storage system with solar and wind DG under seasonal load variations considering uncertainties. J. Energy Storage 2023, 74, 109377. [Google Scholar] [CrossRef]
- Azeredo, L.F.; Yahyaoui, I.; Fiorotti, R.; Fardin, J.F.; Garcia-Pereira, H.; Rocha, H.R. Study of reducing losses, short-circuit currents and harmonics by allocation of distributed generation, capacitor banks and fault current limiters in distribution grids. Appl. Energy 2023, 350, 121760. [Google Scholar] [CrossRef]
- Roy, A.; Verma, V.; Gampa, S.R.; Bansal, R.C. Planning of distribution system considering residential roof top photovoltaic systems, distributed generations and shunt capacitors using gravitational search algorithm. Comput. Electr. Eng. 2023, 111 Pt B, 108960. [Google Scholar] [CrossRef]
- El-Rifaie, A.M.; Shaheen, A.M.; Tolba, M.A.; Smaili, I.H.; Moustafa, G.; Ginidi, A.R.; Elshahed, M. Modified gradient-based algorithm for distributed generation and capacitors integration in radial distribution networks. IEEE Access 2023, 120899–120917. [Google Scholar] [CrossRef]
- Ćetković, D.; Komen, V. Optimal distributed generation and capacitor bank allocation and sizing at two voltage levels. IEEE Syst. J. 2023, 17, 5831–5841. [Google Scholar] [CrossRef]
- Smaili, I.H.; Almalawi, D.R.; Shaheen, A.M.; Mansour, H.S.E. Optimizing PV Sources and Shunt Capacitors for Energy Efficiency Improvement in Distribution Systems Using Subtraction-Average Algorithm. Mathematics 2024, 12, 625. [Google Scholar] [CrossRef]
- Elseify, M.A.; Hashim, F.A.; Hussien, A.G.; Kamel, S. Single and multi-objectives based on an improved golden jackal optimization algorithm for simultaneous integration of multiple capacitors and multi-type DGs in distribution systems. Appl. Energy 2024, 353 Pt A, 122054. [Google Scholar] [CrossRef]
- Nareshkumar, K.; Roy, N.B.; Das, D. A novel distributed Q-PQV bus pair approach for optimal planning of distributed generators and capacitor banks in a distribution network. Comput. Electr. Eng. 2024, 120 Pt A, 109718. [Google Scholar] [CrossRef]
- Mohammedi, R.D.; Kouzou, A.; Mosbah, M.; Souli, A.; Rodriguez, J.; Abdelrahem, M. Allocation and Sizing of DSTATCOM with Renewable Energy Systems and Load Uncertainty Using Enhanced Gray Wolf Optimization. Appl. Sci. 2024, 14, 556. [Google Scholar] [CrossRef]
- Nabavi, S.A.; Aslani, A.; Zaidan, M.A.; Zandi, M.; Mohammadi, S.; Hossein Motlagh, N. Machine learning modeling for energy consumption of residential and commercial sectors. Energies 2020, 13, 5171. [Google Scholar] [CrossRef]
- Guo, F.; Xu, B.; Zhang, W.A.; Wen, C.; Zhang, D.; Yu, L. Training deep neural network for optimal power allocation in islanded microgrid systems: A distributed learning-based approach. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 2057–2069. [Google Scholar] [CrossRef]
- Zafar, R.; Vu, B.H.; Husein, M.; Chung, I.Y. Day-Ahead solar irradiance forecasting using hybrid recurrent neural network with weather classification for power system scheduling. Appl. Sci. 2021, 11, 6738. [Google Scholar] [CrossRef]
- Shams, M.H.; Niaz, H.; Na, J.; Anvari-Moghaddam, A.; Liu, J.J. Machine learning-based utilization of renewable power curtailments under uncertainty by planning of hydrogen systems and battery storages. J. Energy Storage 2021, 41, 103010. [Google Scholar] [CrossRef]
- Bidgoli, M.A.; Ahmadian, A. Multi-stage optimal scheduling of multi-microgrids using deep-learning artificial neural network and cooperative game approach. Energy 2022, 239, 122036. [Google Scholar] [CrossRef]
- Mayer, M.J.; Biró, B.; Szücs, B.; Aszódi, A. Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning. Appl. Energy 2023, 336, 120801. [Google Scholar] [CrossRef]
- Ghafoori, M.; Abdallah, M.; Kim, S. Electricity peak shaving for commercial buildings using machine learning and vehicle to building (V2B) system. Appl. Energy 2023, 340, 121052. [Google Scholar] [CrossRef]
- Al-Ja’Afreh, M.A.; Amjad, B.; Rowe, K.; Mokryani, G.; Marquez, J.L. Optimal planning and forecasting of active distribution networks using a multi-stage deep learning based technique. Energy Rep. 2023, 10, 686–705. [Google Scholar] [CrossRef]
- Aguilar, D.; Quinones, J.J.; Pineda, L.R.; Ostanek, J.; Castillo, L. Optimal scheduling of renewable energy microgrids: A robust multi-objective approach with machine learning-based probabilistic forecasting. Appl. Energy 2024, 369, 123548. [Google Scholar] [CrossRef]
- Krechowicz, A.; Krechowicz, M.; Poczeta, K. Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources. Energies 2022, 15, 9146. [Google Scholar] [CrossRef]
- Matijašević, T.; Antić, T.; Capuder, T. A systematic review of machine learning applications in the operation of smart distribution systems. Energy Rep. 2022, 8, 12379–12407. [Google Scholar] [CrossRef]
- Fu, X.; Guo, Q.; Sun, H. Statistical machine learning model for stochastic optimal planning of distribution networks considering a dynamic correlation and dimension reduction. IEEE Trans. Smart Grid 2020, 11, 2904–2917. [Google Scholar] [CrossRef]
- Nguyen, B.N.; Ogliari, E.; Pafumi, E.; Alberti, D.; Leva, S.; Duong, M.Q. Forecasting Generating Power of Sun Tracking PV Plant using Long-Short Term Memory Neural Network Model: A case study in Ninh Thuan-Vietnam. In Proceedings of the 2024 Tenth International Conference on Communications and Electronics, Danang, Vietnam, 31 July–2 August 2024; pp. 333–338. [Google Scholar]
- Zhang, Y.; Wang, X.; Wang, J.; Zhang, Y. Deep reinforcement learning based volt-var optimization in smart distribution systems. IEEE Trans. Smart Grid 2020, 12, 361–371. [Google Scholar] [CrossRef]
- Oladeji, I.; Zamora, R.; Lie, T.T. Security constrained optimal placement of renewable energy sources distributed generation for modern grid operations. Sustain. Energy Grids Netw. 2022, 32, 100897. [Google Scholar] [CrossRef]
- Zhang, X.; Hua, W.; Liu, Y.; Duan, J.; Tang, Z.; Liu, J. Reinforcement learning for active distribution network planning based on Monte Carlo tree search. Int. J. Electr. Power Energy Syst. 2022, 138, 107885. [Google Scholar] [CrossRef]
- Vilaisarn, Y.; Rodrigues, Y.R.; Abdelaziz, M.M.; Cros, J. A deep learning based multiobjective optimization for the planning of resilience oriented microgrids in active distribution system. IEEE Access 2022, 10, 84330–84364. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Cui, Z.; Ke, R.; Pu, Z.; Wang, Y. Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values. Transp. Res. Part C Emerg. Technol. 2020, 118, 102674. [Google Scholar] [CrossRef]
- Vanga, J.; Ranimekhala, D.P.; Jonnala, S.; Jamalapuram, J.; Gutta, B.; Gampa, S.R.; Alluri, A. Fault classification of three phase induction motors using Bi-LSTM networks. J. Electr. Syst. Inf. Technol. 2023, 10, 28. [Google Scholar] [CrossRef]
- Chakraborty, M.; Das, D. Voltage stability analysis of radial distribution networks. Int. J. Electr. Power Energy Syst. 2001, 23, 129–135. [Google Scholar] [CrossRef]
Load Factor | S/S Apparent Power (kVA) | Real Power Load (kW) | Reactive Power Load (kVAr) | Real Power Loss (kW) | Reactive Power Loss (kVAr) | Minimum Node Voltage (kV) |
---|---|---|---|---|---|---|
0.40 | 1193.11 | 985.20 | 627.60 | 19.10 | 16.51 | 10.61 |
0.45 | 1345.96 | 1108.35 | 706.05 | 24.33 | 21.02 | 10.56 |
0.50 | 1499.69 | 1231.50 | 784.50 | 30.23 | 26.12 | 10.51 |
0.55 | 1654.32 | 1354.65 | 862.95 | 36.82 | 31.80 | 10.46 |
0.60 | 1809.87 | 1477.80 | 941.40 | 44.11 | 38.09 | 10.41 |
0.65 | 1966.35 | 1600.95 | 1019.85 | 52.12 | 45.00 | 10.36 |
0.70 | 2123.79 | 1724.10 | 1098.30 | 60.85 | 52.53 | 10.31 |
0.75 | 2282.20 | 1847.25 | 1176.75 | 70.34 | 60.70 | 10.26 |
0.80 | 2441.60 | 1970.40 | 1255.20 | 80.58 | 69.53 | 10.20 |
0.85 | 2602.03 | 2093.55 | 1333.65 | 91.61 | 79.02 | 10.15 |
0.90 | 2763.50 | 2216.70 | 1412.10 | 103.43 | 89.20 | 10.10 |
0.95 | 2926.03 | 2339.85 | 1490.55 | 116.07 | 100.08 | 10.04 |
1.00 | 3089.67 | 2463.00 | 1569.00 | 129.56 | 111.68 | 9.99 |
1.05 | 3254.41 | 2586.15 | 1647.45 | 143.89 | 124.01 | 9.93 |
1.10 | 3420.30 | 2709.30 | 1725.90 | 159.10 | 137.09 | 9.88 |
1.15 | 3587.36 | 2832.45 | 1804.35 | 175.21 | 150.93 | 9.82 |
1.20 | 3755.63 | 2955.60 | 1882.80 | 192.25 | 165.56 | 9.77 |
1.25 | 3925.13 | 3078.75 | 1961.25 | 210.23 | 181.00 | 9.71 |
1.30 | 4095.89 | 3201.90 | 2039.70 | 229.18 | 197.27 | 9.65 |
Load Factor | S/S Apparent Power (kVA) | Real Power Load (kW) | Reactive Power Load (kVAr) | Real Power Loss (kW) | Reactive Power Loss (kVAr) | Minimum Node Voltage (kV) |
---|---|---|---|---|---|---|
0.40 | 1899.21 | 1520.88 | 1077.84 | 32.51 | 14.85 | 12.23 |
0.45 | 2141.89 | 1710.99 | 1212.57 | 41.47 | 18.93 | 12.17 |
0.50 | 2385.85 | 1901.10 | 1347.30 | 51.61 | 23.55 | 12.11 |
0.55 | 2631.11 | 2091.20 | 1482.03 | 62.95 | 28.71 | 12.05 |
0.60 | 2877.70 | 2281.31 | 1616.76 | 75.53 | 34.44 | 12.00 |
0.65 | 3125.66 | 2471.42 | 1751.49 | 89.38 | 40.73 | 11.94 |
0.70 | 3375.03 | 2661.53 | 1886.22 | 104.54 | 47.61 | 11.88 |
0.75 | 3625.85 | 2851.64 | 2020.95 | 121.03 | 55.10 | 11.82 |
0.80 | 3878.15 | 3041.75 | 2155.68 | 138.90 | 63.20 | 11.76 |
0.85 | 4131.97 | 3231.86 | 2290.41 | 158.20 | 71.94 | 11.70 |
0.90 | 4387.37 | 3421.97 | 2425.14 | 178.95 | 81.34 | 11.64 |
0.95 | 4644.39 | 3612.08 | 2559.87 | 201.20 | 91.41 | 11.57 |
1.00 | 4903.08 | 3802.19 | 2694.60 | 225.00 | 102.17 | 11.51 |
1.05 | 5163.49 | 3992.30 | 2829.33 | 250.40 | 113.64 | 11.45 |
1.10 | 5425.67 | 4182.41 | 2964.06 | 277.45 | 125.85 | 11.38 |
1.15 | 5689.69 | 4372.52 | 3098.79 | 306.21 | 138.81 | 11.32 |
1.20 | 5955.60 | 4562.63 | 3233.52 | 336.72 | 152.56 | 11.25 |
1.25 | 6223.48 | 4752.74 | 3368.25 | 369.06 | 167.12 | 11.18 |
1.30 | 6493.39 | 4942.85 | 3502.98 | 403.29 | 182.52 | 11.12 |
Load Factor | DG1 (kW) | DG2 (kW) | DG3 (kW) | SHC1 (kVAr) | SHC2 (kVAr) | SHC3 (kVAr) |
---|---|---|---|---|---|---|
0.40 | 394.08 | 188.03 | 394.08 | 111.49 | 89.28 | 106.60 |
0.45 | 443.34 | 211.61 | 443.34 | 125.17 | 101.01 | 119.76 |
0.50 | 492.60 | 235.19 | 492.60 | 139.27 | 112.07 | 132.98 |
0.55 | 541.86 | 258.87 | 541.86 | 153.34 | 122.86 | 146.74 |
0.60 | 591.12 | 282.67 | 591.12 | 167.12 | 133.33 | 161.03 |
0.65 | 640.38 | 306.56 | 640.38 | 181.38 | 145.57 | 173.30 |
0.70 | 689.64 | 330.13 | 689.64 | 195.42 | 156.52 | 186.59 |
0.75 | 738.90 | 354.65 | 738.90 | 209.02 | 167.73 | 200.37 |
0.80 | 788.16 | 378.43 | 788.16 | 223.13 | 178.95 | 213.62 |
0.85 | 837.42 | 402.50 | 837.42 | 237.32 | 189.07 | 227.58 |
0.90 | 886.68 | 426.17 | 886.68 | 251.54 | 200.11 | 241.11 |
0.95 | 935.94 | 450.63 | 935.94 | 265.08 | 211.83 | 254.45 |
1.00 | 985.2 | 474.46 | 985.2 | 279.38 | 222.10 | 268.36 |
1.05 | 1034.46 | 499.06 | 1034.46 | 293.22 | 233.54 | 281.15 |
1.10 | 1083.72 | 522.64 | 1083.72 | 308.22 | 244.43 | 294.06 |
1.15 | 1132.98 | 547.55 | 1132.98 | 322.09 | 255.18 | 307.81 |
1.20 | 1182.24 | 571.80 | 1182.24 | 336.03 | 266.02 | 321.39 |
1.25 | 1231.5 | 595.79 | 1231.5 | 350.41 | 276.88 | 334.65 |
1.30 | 1280.76 | 619.36 | 1280.76 | 363.85 | 287.58 | 349.25 |
Load Factor | DG1 (kW) | DG2 (kW) | DG3 (kW) | SHC1 (kVAr) | SHC2 (kVAr) | SHC3 (kVAr) |
---|---|---|---|---|---|---|
0.40 | 608.35 | 608.35 | 257.00 | 238.38 | 284.47 | 56.07 |
0.45 | 684.39 | 684.39 | 289.02 | 268.62 | 317.82 | 66.23 |
0.50 | 760.44 | 760.44 | 321.55 | 297.62 | 356.27 | 69.65 |
0.55 | 836.48 | 836.48 | 353.63 | 327.43 | 388.92 | 79.68 |
0.60 | 912.53 | 912.53 | 385.53 | 358.08 | 421.24 | 89.43 |
0.65 | 988.57 | 988.57 | 418.12 | 386.56 | 464.04 | 90.21 |
0.70 | 1064.61 | 1064.61 | 450.26 | 415.88 | 492.66 | 104.57 |
0.75 | 1140.66 | 1140.66 | 482.52 | 445.62 | 530.86 | 108.69 |
0.80 | 1216.70 | 1216.70 | 514.58 | 476.14 | 570.43 | 111.27 |
0.85 | 1292.74 | 1292.74 | 546.29 | 512.47 | 604.44 | 120.93 |
0.90 | 1368.79 | 1368.79 | 578.94 | 534.91 | 636.77 | 130.94 |
0.95 | 1444.83 | 1444.83 | 611.45 | 565.27 | 670.44 | 139.51 |
1.00 | 1520.88 | 1520.88 | 643.62 | 596.27 | 706.80 | 144.29 |
1.05 | 1596.92 | 1596.92 | 675.98 | 623.99 | 739.16 | 155.90 |
1.10 | 1672.96 | 1672.96 | 707.64 | 655.35 | 778.54 | 157.85 |
1.15 | 1749.01 | 1749.01 | 740.30 | 683.50 | 812.53 | 168.12 |
1.20 | 1825.05 | 1825.05 | 772.56 | 712.13 | 850.19 | 173.11 |
1.25 | 1901.10 | 1901.10 | 804.69 | 744.06 | 888.73 | 175.07 |
1.30 | 1977.14 | 1977.14 | 836.90 | 772.67 | 930.79 | 176.64 |
Load Factor | Real Power Loss (kW) | Reactive Power Loss (kVAr) | ||
---|---|---|---|---|
Without DGs and SHCs | With DGs and SHCs | Without DGs and SHCs | With DGs and SHCs | |
0.40 | 19.10 | 4.58 | 16.51 | 1.78 |
0.60 | 44.11 | 10.34 | 38.09 | 4.02 |
0.80 | 80.58 | 18.46 | 69.53 | 7.16 |
1.00 | 129.56 | 28.96 | 111.68 | 11.21 |
1.20 | 192.25 | 41.90 | 165.56 | 16.18 |
Load Factor | Real Power Loss (kW) | Reactive Power Loss (kVAr) | ||
---|---|---|---|---|
Without DGs and SHCs | With DGs and SHCs | Without DGs and SHCs | With DGs and SHCs | |
0.40 | 32.51 | 1.59 | 14.85 | 1.46 |
0.60 | 75.53 | 3.59 | 34.44 | 3.29 |
0.80 | 138.90 | 6.39 | 63.20 | 5.87 |
1.00 | 225.00 | 9.99 | 102.17 | 9.19 |
1.20 | 336.72 | 14.41 | 152.56 | 13.26 |
Name of the Solver | 51 Bus System | 69 Bus System | ||
---|---|---|---|---|
LSTM | BiLSTM | LSTM | BiLSTM | |
rmsprop | 0.01528 | 0.01708 | 0.01362 | 0.01845 |
sgdm | 0.00519 | 0.00113 | 0.00294 | 0.00306 |
adam | 0.00158 | 0.00107 | 0.00220 | 0.00129 |
Load Factor | S/S Apparent Power (kVA) | Real Power Load (kW) | Reactive Power Load (kVAr) | Real Power Loss (kW) | Reactive Power Loss (kVAr) | Minimum Node Voltage (kV) |
---|---|---|---|---|---|---|
0.475 | 1422.71 | 1169.93 | 745.28 | 27.20 | 23.50 | 10.54 |
0.675 | 2044.95 | 1662.53 | 1059.08 | 56.39 | 48.68 | 10.34 |
0.875 | 2682.63 | 2155.13 | 1372.88 | 97.42 | 84.03 | 10.12 |
1.125 | 3503.68 | 2770.88 | 1765.13 | 167.04 | 143.91 | 9.85 |
Load Factor | S/S Apparent Power (kVA) | Real Power Load (kW) | Reactive Power Load (kVAr) | Real Power Loss (kW) | Reactive Power Loss (kVAr) | Minimum Node Voltage (kV) |
---|---|---|---|---|---|---|
0.475 | 2263.71 | 1806.04 | 1279.94 | 46.39 | 21.18 | 12.14 |
0.675 | 3250.17 | 2566.48 | 1818.86 | 96.79 | 44.10 | 11.91 |
0.875 | 4259.47 | 3326.92 | 2357.78 | 168.39 | 76.56 | 11.67 |
1.125 | 5557.45 | 4277.46 | 3031.43 | 291.61 | 132.23 | 11.35 |
LF = 0.475 | LF = 0.675 | LF = 0.875 | LF = 1.125 | |||||
---|---|---|---|---|---|---|---|---|
GWO | BiLSTM | GWO | BiLSTM | GWO | BiLSTM | GWO | BiLSTM | |
DG1 (kW) | 467.97 | 467.65 | 665.01 | 665.34 | 862.05 | 863.74 | 1108.35 | 1108.34 |
DG2 (kW) | 223.37 | 222.91 | 318.77 | 319.05 | 414.54 | 415.80 | 535.32 | 534.95 |
DG3 (kW) | 467.97 | 467.21 | 665.01 | 664.93 | 862.05 | 863.74 | 1108.35 | 1108.75 |
SHC1 (kVAr) | 132.01 | 132.28 | 188.94 | 188.81 | 244.47 | 245.34 | 314.58 | 314.49 |
SHC2 (kVAr) | 106.30 | 106.91 | 150.04 | 151.07 | 194.82 | 195.20 | 249.90 | 249.32 |
SHC3 (kVAr) | 126.92 | 127.29 | 180.19 | 180.31 | 234.05 | 234.10 | 301.39 | 301.17 |
LF = 0.475 | LF = 0.675 | LF = 0.875 | LF = 1.125 | |||||
---|---|---|---|---|---|---|---|---|
GWO | BiLSTM | GWO | BiLSTM | GWO | BiLSTM | GWO | BiLSTM | |
DG1 (kW) | 722.42 | 723.00 | 1026.59 | 1026.68 | 1332.37 | 1330.77 | 1710.99 | 1710.91 |
DG2 (kW) | 722.42 | 723.20 | 1026.59 | 1026.51 | 1332.16 | 1330.77 | 1710.99 | 1711.03 |
DG3 (kW) | 305.09 | 306.40 | 434.45 | 434.28 | 563.28 | 562.75 | 724.09 | 723.61 |
SHC1 (kVAr) | 282.66 | 283.51 | 401.33 | 402.68 | 522.17 | 520.84 | 669.33 | 669.06 |
SHC2 (kVAr) | 336.57 | 336.31 | 479.87 | 478.01 | 620.89 | 616.84 | 796.79 | 797.80 |
SHC3 (kVAr) | 68.54 | 68.55 | 95.81 | 97.80 | 126.47 | 128.91 | 160.65 | 160.75 |
Load Factor | Real Power Loss (kW) | Minimum Node Voltage (kV) | ||
---|---|---|---|---|
GWO | BiLSTM | GWO | BiLSTM | |
0.475 | 6.464 | 6.460 | 10.898 | 10.898 |
0.675 | 13.115 | 13.125 | 10.855 | 10.855 |
0.875 | 22.123 | 22.177 | 10.811 | 10.811 |
1.125 | 36.763 | 36.748 | 10.756 | 10.756 |
Load Factor | Real Power Loss (kW) | Minimum Node Voltage (kV) | ||
---|---|---|---|---|
GWO | BiLSTM | GWO | BiLSTM | |
0.475 | 2.249 | 2.253 | 12.626 | 12.626 |
0.675 | 4.549 | 4.556 | 12.612 | 12.612 |
0.875 | 7.650 | 7.668 | 12.597 | 12.597 |
1.125 | 12.640 | 12.652 | 12.579 | 12.579 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alluri, A.; Gampa, S.R.; Gutta, B.; Basam, M.B.; Jasthi, K.; Roy, N.B.; Das, D. Multi-Objective Optimization Algorithm Based Bidirectional Long Short Term Memory Network Model for Optimum Sizing of Distributed Generators and Shunt Capacitors for Distribution Systems. Inventions 2024, 9, 114. https://doi.org/10.3390/inventions9060114
Alluri A, Gampa SR, Gutta B, Basam MB, Jasthi K, Roy NB, Das D. Multi-Objective Optimization Algorithm Based Bidirectional Long Short Term Memory Network Model for Optimum Sizing of Distributed Generators and Shunt Capacitors for Distribution Systems. Inventions. 2024; 9(6):114. https://doi.org/10.3390/inventions9060114
Chicago/Turabian StyleAlluri, Amarendra, Srinivasa Rao Gampa, Balaji Gutta, Mahesh Babu Basam, Kiran Jasthi, Nibir Baran Roy, and Debapriya Das. 2024. "Multi-Objective Optimization Algorithm Based Bidirectional Long Short Term Memory Network Model for Optimum Sizing of Distributed Generators and Shunt Capacitors for Distribution Systems" Inventions 9, no. 6: 114. https://doi.org/10.3390/inventions9060114
APA StyleAlluri, A., Gampa, S. R., Gutta, B., Basam, M. B., Jasthi, K., Roy, N. B., & Das, D. (2024). Multi-Objective Optimization Algorithm Based Bidirectional Long Short Term Memory Network Model for Optimum Sizing of Distributed Generators and Shunt Capacitors for Distribution Systems. Inventions, 9(6), 114. https://doi.org/10.3390/inventions9060114