High-Intensity Functional Training Guided by Individualized Heart Rate Variability Results in Similar Health and Fitness Improvements as Predetermined Training with Less Effort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Procedures
2.3.1. Heart Rate Variability
2.3.2. Resting Heart Rate
2.3.3. Coefficient of Variance of Heart Rate Variability
2.3.4. Body Composition
2.3.5. Aerobic Capacity
2.3.6. Physical Work Capacity
2.3.7. Muscular Strength
2.3.8. High-Intensity Exercise Training Program
2.4. Modulation for High-Intensity Exercise Training Program
2.5. Statistical Analyses
3. Results
3.1. Effects on Cardiovascular Function
3.2. Effects on Body Composition
3.3. Effects on Performance Outcomes
3.4. Effects on Intervention Metrics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Day | Structure | Structured Daily Workout |
---|---|---|
1 | M | Two-mile Run (no time cap) |
2 | GW | [8 Push Press (135/95 lbs.) + 8 Pull-Ups] × 5 rounds for time |
3 | MGW | [12 Goblet Squats (45/25 lbs.) + 12 Burpees + 24 Calorie Row] AMRAP in 10 min |
4 | MG | [400-m Run + 25 Box Jumps (18/12″)] × 3 rounds for time |
5 | W | Deadlift 5-5-5-5-5 working up to target 85% of 1RM |
6 | G | Kipping Pull-Up practice for 20 min |
7 | WM | [10 Thrusters (135/95 lbs.) + 100 Double Unders] × 4 rounds for time |
8 | GWM | [6 Handstand Push-Ups + 12 Deadlifts (185/135 lbs.) + 500 m Row] AMRAP in 12 min |
9 | GW | [15 Ring Rows + 20 Wall Balls (20/14 lbs.)] × 4 rounds for time |
10 | M | 8 km Partner Row (no time cap) |
11 | W | Front Squat 1-1-1-1-1-1-1-1-1-1 working up to target a 1RM |
12 | MG | [400-m Run + 20 Push-Ups] × 5 rounds for time |
13 | WMG | [5 Cleans (135/95 lbs.) + 10 Pull-Ups + 15 Double Unders] AMRAP in 15 min |
14 | WM | [10/20–8/16–6/12–4/8–2/4 repetitions of Power Clean/Calorie Row] for time |
15 | G | Handstand Push-Up Practive for 20 min |
16 | W | Squat 3-3-3-3-3-3-3 working up to target 90% 1RM |
17 | MG | [800-m Run + 25 Sit-Ups] × 3 rounds for time |
18 | MGW | [50 Double Unders + 5 Box Jumps (18/12″) + 15 Ball Slams (20/14 lbs.)] AMRAP in 15 min |
19 | GW | [6 Strict Pull-Ups + 6 Front Squats (50% Squat 1RM)] × 4 rounds for time |
20 | M | Two-mile Run (no time cap) |
21 | M | Tabata Double Unders × 2 |
22 | GW | [Maximum repetitions Handstand Push-Ups + 6 Deadlifts (75% 1RM)] × 5 rounds for time |
23 | GWM | [20 Sit-Ups + 16 Dumbbell Clean and Jerk (45/20 lbs.)] |
24 | WM | [30 Kettlebell Swings (45/20 lbs.) + 400 m Run] × 5 rounds for time |
25 | G | Strict Pull-Up Practice (Loaded) for 25 min |
26 | G | Muscle Up Practice for 25 min |
27 | WM | [6 Squats (50% 1RM) + 50 Double Unders] × 4 rounds for time |
28 | WMG | [12 Goblet Squats (45/25 lbs.) + 12 Burpees + 24 Calorie Row] AMRAP in 10 min |
29 | MG | [400-m Run + 10 Handstand Push-Ups] × 5 rounds for time |
30 | W | Clean 1-1-1-1-1-1-1-1-1-1 working up to target 1RM |
Day | Modified Training | Light Training |
---|---|---|
1 | 1.5 m | WALK 20 min |
2 | 25% Volume Reduction. 115/65# | Barbell Press/DB/PVC Pending Strength Levels, DEAD hang stretch or lat banded distraction |
3 | NO MODULATION | NO MODULATION |
4 | 300 m/Walk 100 m & 18 Jumps 16/12″ Step up | Walk 400 m, 2/Leg/Rd Sampson Stretch |
5 | 5RM Load with 2 RIR “5 × 3” at 85% | 5 × 3 at 40% 1RM |
6 | 3 Strict Pull ups, Kipping practice (no kipping pull-ups) | Shoulder-strengthing exercise, light lat pull down machine (RPE LIGHT) |
7 | 8 Thrusters, 150 Single Unders. 115/65 | Barbell, DB, PVC thrusters and hopping in place, no rope, 20 min |
8 | 8 min: 4 pushups, 8 deadlifts 135/95, 375 row, RPE 13–17 | 20 min: Pushups, BB/DB/PVC deadlifts, 400 m walking |
9 | 3 RFT, 16/10 | Ring Rows, childs pose, walking, 20 min |
10 | 6 K partner row, not for time or 3 k row if solo | Walking 20 min |
11 | 85% of Back Squat, 10 × 1, 2 RIR | KB/Goblet Squat/Barbell Squat, Walking |
12 | 200 m run, walk back, 15 pushups | 20 min: 400 m walk, knee pushups |
13 | 5 Deadlifts, ring rows, 15 single unders | Med Ball Cleans, childs pose, shoulder exercise, walking, 20 min |
14 | 4 rounds, 2 min break b/t: 115/65 6 power cleans, 12 cal row | Med ball cleans, walking 20 min RPE 6–13 |
15 | HS holds | push-ups, walking |
16 | 7 × 3 2 RIR, 75% target | 40% 7 × 3 |
17 | 600 m Run, 200 m walk. 20 Situps | 20 min Walk |
18 | 12 min | 20 min Walk |
19 | 3 RFT | 20 min: Goblet Squats, Lat Pulldowns |
20 | 1.5 m Run | 20 min Walk |
21 | 1.5 Tabata Rounds | 20 min Walk |
22 | 4 RFT Max Push ups 2 RIR, 6 Deadlift 50% | 20 min: Push ups, Handstand holds, deadlifts, hamstring curls |
23 | 15 min | 20 min Stretching |
24 | 4 RFT 28 KB Swings, 200 M run, 200 walk | 20 min Walk |
25 | 30 Pull-Ups | Lat Pull-Downs, Ring Row |
26 | 30 Pull-Ups, 20 dips | Lat Pull-Downs, Ring Row, Press |
27 | 3 RFT | 20 min: Air Squats, Box Jumps, walking |
28 | Testing Day, no modifications | Testing Day, no modifications |
29 | 4 RFT, 200 m run, 200 m walk. 9 push ups | 20 min Walk |
30 | 7 × 1 front squat, 2 RIR | 20 min: Goblet squat, front rack mobility, barbell front squat |
References
- Bouchard, C.; Rankinen, T. Individual differences in response to regular physical activity. Med. Sci. Sports Exerc. 2001, 33, S446–S451. [Google Scholar] [CrossRef] [Green Version]
- Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Nissilä, J.; Virtanen, P.; Karjalainen, J.; Tulppo, M.P. Daily Exercise Prescription on the Basis of HR Variability among Men and Women. Med. Sci. Sports Exerc. 2010, 42, 1355–1363. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring Training Load to Understand Fatigue in Athletes. Sports Med. 2014, 44, 139–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Impellizzeri, F.M.; Marcora, S.M.; Coutts, A.J. Internal and external training load: 15 years on. Int. J. Sports Physiol. Perform. 2019, 14, 270–273. [Google Scholar] [CrossRef]
- Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring athlete training loads: Consensus statement. Int. J. Sports Physiol. Perform. 2017, 12, 161–170. [Google Scholar] [CrossRef]
- Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Plews, D.; Moya-Ramon, M. Training Prescription Guided by Heart Rate Variability Vs. Block Periodization in Well-Trained Cyclists. J. Strength Cond. Res. 2020, 34, 1511–1518. [Google Scholar] [CrossRef]
- Plews, D.J.; Laursen, P.B.; Kilding, A.E.; Buchheit, M. Evaluating training adaptation with heart-rate measures: A methodological comparison. Int. J. Sports Physiol. Perform. 2013, 8, 688–691. [Google Scholar] [CrossRef]
- Makivic, B.; Djordjevic, M.; Willis, M. Heart Rate Variability (HRV) as a Tool for Diagnostic and Monitoring Performance in Sport and Physical Activities. J. Exerc. Physiol. Online 2013, 16, 103–131. [Google Scholar]
- Vesterinen, V.; Nummela, A.; Heikura, I.; Laine, T.; Hynynen, E.; Botella, J.; Häkkinen, K. Individual Endurance Training Prescription with Heart Rate Variability. Med. Sci. Sports Exerc. 2016, 48, 1347–1354. [Google Scholar] [CrossRef] [Green Version]
- Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Moya-Ramon, M. Training prescription guided by heart-rate variability in cycling. Int. J. Sports Physiol. Perform. 2019, 14, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Tulppo, M.P. Endurance training guided individually by daily heart rate variability measurements. Eur. J. Appl. Physiol. 2007, 101, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, L.; Regnard, J.; Parmentier, A.L.; Mauny, F.; Mourot, L.; Coulmy, N.; Millet, G.P. Typology of “ Fatigue ” by Heart Rate Variability Analysis in Elite Nordic-skiers. Int. J. Sports Med. 2015, 36, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, R.M.; Ugrinowitsch, C.; Kingsley, J.D.; Da Silva, D.G.; Bittencourt, D.; Caruso, F.R.; Borghi-Silva, A.; Libardi, C.A. Effect of individualized resistance training prescription with heart rate variability on individual muscle hypertrophy and strength responses. Eur. J. Sport Sci. 2019, 19, 1092–1100. [Google Scholar] [CrossRef]
- Feito, Y.; Heinrich, K.; Butcher, S.; Poston, W. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports 2018, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Crawford, D.A.; Drake, N.B.; Carper, M.J.; DeBlauw, J.A.; Heinrich, K.M. Are Changes in Physical Work Capacity Induced by High-Intensity Functional Training Related to Changes in Associated Physiologic Measures? Sports 2018, 6, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, D.A.; Drake, N.B.; Carper, M.J.; DeBlauw, J.A.; Heinrich, K.M. Validity, Reliability, and Application of the Session-RPE Method for Quantifying Training Loads during High Intensity Functional Training. Sports 2018, 6, 84. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, K.M.; Crawford, D.A.; Langford, C.R.; Kehler, A.; Andrews, V. High-Intensity Functional Training Shows Promise for Improving Physical Functioning and Activity in Community-Dwelling Older Adults: A Pilot Study. J. Geriatr. Phys. Ther. 2021, 44, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Reading, J.; Shephard, R.J. Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Can. J. Sport Sci. 1992, 17, 338–345. [Google Scholar] [PubMed]
- Plews, D.J.; Scott, B.; Altini, M.; Wood, M.; Kilding, A.E.; Laursen, P.B. Comparison of Heart-Rate-Variability Recording With Smartphone Photoplethysmography, Polar H7 Chest Strap, and Electrocardiography. Int. J. Sports Physiol. Perform. 2017, 12, 1324–1328. [Google Scholar] [CrossRef] [PubMed]
- Esco, M.R.; Flatt, A.A.; Nakamura, F.Y. Agreement between a Smartphone Pulse Sensor Application and Electrocardiography for Determining lnRMSSD. J. Strength Cond. Res. 2017, 31, 380–385. [Google Scholar] [CrossRef]
- Esco, M.R.; Flatt, A.A. Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: Evaluating the agreement with accepted recommendations. J. Sports Sci. Med. 2014, 13, 535–541. [Google Scholar]
- Williams, S.; Booton, T.; Watson, M.; Rowland, D.; Altini, M. Heart rate variability is a moderating factor in the workload-injury relationship of competitive crossfitTM athletes. J. Sports Sci. Med. 2017, 16, 443–449. [Google Scholar] [PubMed]
- Altini, M. Coefficeint of Variation (CV): What Is It and How Can You Use It? Available online: https://www.hrv4training.com/blog/coefficient-of-variation-cv-what-is-it-and-how-can-you-use-it (accessed on 1 June 2021).
- Bruce, R.A.; Kusumi, F.; Hosmer, D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am. Heart J. 1973, 85, 546–562. [Google Scholar] [CrossRef]
- Foster, C.; Jackson, A.S.; Pollock, M.L.; Taylor, M.M.; Hare, J.; Sennett, S.M.; Rod, J.L.; Sarwar, M.; Schmidt, D.H. Generalized equations for predicting functional capacity from treadmill performance. Am. Heart J. 1984, 107, 1229–1234. [Google Scholar] [CrossRef]
- Poole, D.C.; Jones, A.M. Measurement of the maximum oxygen uptake Vo2max: Vo2peak is no longer acceptable. J. Appl. Physiol. 2017, 122, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Butcher, S.; Neyedly, T.; Horvey, K.; Benko, C. Do physiological measures predict selected CrossFit® benchmark performance? Open Access J. Sports Med. 2015, 6, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rippetoe, M. The CrossFit Total. Available online: http://journal.crossfit.com/2006/12/the-crossfit-total-by-mark-rip.tpl.1/05/2018 (accessed on 1 May 2018).
- Schoenfeld, B.J.; Pope, Z.K.; Benik, F.M.; Hester, G.M.; Sellers, J.; Nooner, J.L.; Schnaiter, J.A.; Bond-Williams, K.E.; Carter, A.S.; Ross, C.L.; et al. Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. J. Strength Cond. Res. 2016, 30, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Glassman, G. The CrossFit Level 1 Training Guide. CrossFit J. 2016, 15–25. Available online: http://library.crossfit.com/free/pdf/CFJ_English_Level1_TrainingGuide.pdf (accessed on 11 October 2021).
- Plews, D.J.; Laursen, P.B.; Kilding, A.E.; Buchheit, M. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur. J. Appl. Physiol. 2012, 112, 3729–3741. [Google Scholar] [CrossRef] [PubMed]
- Crawford, D.A.; Heinrich, K.M.; Drake, N.B.; DeBlauw, J.; Carper, M.J. Heart rate variability mediates motivation and fatigue throughout a high-intensity exercise program. Appl. Physiol. Nutr. Metab. 2020, 45, 193–202. [Google Scholar] [CrossRef]
- Buchheit, M.; Chivot, A.; Parouty, J.; Mercier, D.; Al Haddad, H.; Laursen, P.B.; Ahmaidi, S. Monitoring endurance running performance using cardiac parasympathetic function. Eur. J. Appl. Physiol. 2010, 108, 1153–1167. [Google Scholar] [CrossRef] [PubMed]
- Boutcher, S.H.; Park, Y.; Dunn, S.L.; Boutcher, Y.N. The relationship between cardiac autonomic function and maximal oxygen uptake response to high-intensity intermittent-exercise training. J. Sports Sci. 2013, 31, 1024–1029. [Google Scholar] [CrossRef]
- Hynynen, E.; Vesterinen, V.; Rusko, H.; Nummela, A. Effects of moderate and heavy endurance exercise on nocturnal HRV. Int. J. Sports Med. 2010, 31, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Drake, N.; Smeed, J.; Carper, M.J.; Crawford, D.A. Effects of Short-Term CrossFitTM Training: A Magnitude-Based Approach. J. Exerc. Physiol. Online 2017, 20, 111–133. [Google Scholar]
- Heinrich, K.M.; Becker, C.; Carlisle, T.; Gilmore, K.; Hauser, J.; Frye, J.; Harms, C.A. High-intensity functional training improves functional movement and body composition among cancer survivors: A pilot study. Eur. J. Cancer Care 2015, 24, 812–817. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. (Version 4.0) (Computer Software). 2020. Available online: https://cran.r-project.org (accessed on 24 August 2020).
- The Jamovi Project. Jamovi. (Version 1.6) (Computer Software). 2021. Available online: https://www.jamovi.org (accessed on 11 October 2021).
- Gallucci, M. GAMLj: General Analyses for Linear Models. (Jamovi Module). 2019. Available online: https://gamlj.github.io/ (accessed on 11 October 2021).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: Hillsdale, NJ, USA, 1988; ISBN 978-0805802832. [Google Scholar]
- Vesterinen, V.; Hakkinen, K.; Laine, T.; Hynynen, E.; Mikkola, J.; Nummela, A. Predictors of individual adaptation to high-volume or high-intensity endurance training in recreational endurance runners. Scand. J. Med. Sci. Sports 2016, 26, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Nuuttila, O.P.; Nikander, A.; Polomoshnov, D.; Laukkanen, J.A.; Häkkinen, K. Effects of HRV-Guided vs. Predetermined Block Training on Performance, HRV and Serum Hormones. Int. J. Sports Med. 2017, 38, 909–920. [Google Scholar] [CrossRef]
- Hautala, A.J.; Kiviniemi, A.M.; Mäkikallio, T.H.; Kinnunen, H.; Nissilä, S.; Huikuri, H.V.; Tulppo, M.P. Individual differences in the responses to endurance and resistance training. Eur. J. Appl. Physiol. 2006, 96, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, K.M.; Spencer, V.; Fehl, N.; Poston, W.S.C. Mission essential fitness: Comparison of functional circuit training to traditional Army physical training for active duty military. Mil. Med. 2012, 177, 1125–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, S.; Knapp, K.; Lackie, A.; Lewry, C.; Horvey, K.; Benko, C.; Trinh, J.; Butcher, S. Multimodal high-intensity interval training increases muscle function and metabolic performance in females. Appl. Physiol. Nutr. Metab. 2015, 40, 1157–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kliszczewicz, B.; Feito, Y.; Bycura, D.; Brown, D.; Price, B. Vagal Response To 15-Weeks of High- Intensity Functional Training: A Pilot Study. J. Sport Hum. Perform. 2016, 4, 1–10. [Google Scholar]
- Schneider, C.; Wiewelhove, T.; Raeder, C.; Flatt, A.A.; Hoos, O.; Hottenrott, L.; Schumbera, O.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; et al. Heart rate variability monitoring during strength and high-intensity interval training overload microcycles. Front. Physiol. 2019, 10, 582. [Google Scholar] [CrossRef] [Green Version]
- Borresen, J.; Lambert, M.I. Autonomic control of heart rate during and after exercise: Measurements and implications for monitoring training status. Sports Med. 2008, 38, 633–646. [Google Scholar] [CrossRef]
- Kiviniemi, A.M.; Tulppo, M.P.; Hautala, A.J.; Vanninen, E.; Uusitalo, A.L.T. Altered relationship between R-R interval and R-R interval variability in endurance athletes with overtraining syndrome. Scand. J. Med. Sci. Sport. 2014, 24, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanley, J.; Peake, J.M.; Buchheit, M. Cardiac Parasympathetic Reactivation Following Exercise: Implications for Training Prescription. Sports Med. 2013, 43, 1259–1277. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, L.; Regnard, J.; Millet, G.P. Monitoring fatigue status with HRV measures in elite athletes: An avenue beyond RMSSD? Front. Physiol. 2015, 6, 2013–2015. [Google Scholar] [CrossRef] [Green Version]
- Feito, Y.; Hoffstetter, W.; Serafini, P.; Mangine, G.T. Changes in body composition, bone metabolism, strength, and skill-specific performance resulting from 16-weeks of HIFT. PLoS ONE 2018, 16, e0198324. [Google Scholar] [CrossRef] [PubMed]
Study Duration 11 Weeks | ||||||
---|---|---|---|---|---|---|
Weeks 1–2 | Random Assignment | Week 3 | Weeks 4–6 | Week 7 | Weeks 8–10 | Week 11 |
Baseline HRV & randomization | HRV-guided | Pre-testing VO2max, strength & body composition | HRV- modulated training | Mid-point recalibration of HRV SWC windows | HRV- modulated training | Post-testing VO2max, strength & body composition |
Predetermined | Predetermined training | Predetermined training |
Men (HRV-Guided) (n = 12) | Men (Predetermined) (n = 14) | Female (HRV-Guided) (n = 12) | Female (Predetermined) (n = 17) | |
---|---|---|---|---|
Age (years) | 25.0 ± 5.1 | 23.3 ± 2.8 | 22.4 ± 3.4 | 24.6 ± 4.8 |
Weight (kg) | 83.4 ± 10.8 | 89.8 ± 15.5 | 72.5 ± 21.9 | 71.8 ± 9.6 |
Height (cm) | 181 ± 8 | 182 ± 6 | 164 ± 5 | 165 ± 4 |
HRV-Guided | Predetermined | Between Group | |||||||
---|---|---|---|---|---|---|---|---|---|
Pre | Post | % Change | ES | Pre | Post | % Change | ES | ES | |
Cardiovascular function | |||||||||
Resting heart rate (bpm) | 73.6 ± 9.8 | 69.3 ± 9.0 | −5.84 | 0.46 | 74.6 ± 14.6 | 72.7 ± 11.4 | −2.55 | 0.15 | 0.33 |
Heart rate variability (ms) | 8.4 ± 1.1 | 8.6 ± 1.1 | 2.38 | 0.14 | 8.7 ± 1.2 | 8.7 ± 1.2 | 0 | 0.01 | 0.09 |
CV of HRV (ms) | 10.1 ± 3.9 | 9.0 ± 3.8 | −10.89 | 0.28 | 8.7 ± 3.3 | 9.5 ± 3.1 | 9.20 | −0.24 | 0.14 |
Body composition | |||||||||
Body fat % | 31.8 ± 11.1 | 29.2 ± 9.7 | −8.18 | 0.63 * | 31.8 ± 8.3 | 26.8 ± 8.1 | −15.73 | 0.61 * | 0.27 |
Lean mass (kg) | 54.5 ± 13.5 | 54.8 ± 13.3 | 0.55 | 0.02 | 52.6 ± 11.2 | 54.0 ± 11.5 | 2.66 | −0.12 | 0.06 |
Fat mass (kg) | 23.9 ± 8.8 | 23.5 ± 8.7 | −1.67 | 0.05 | 23.9 ± 8.8 | 20.3 ± 8.5 | −15.06 | 0.42 | 0.37 |
Fitness outcomes | |||||||||
VO2max (mL * kg * min) | 42.1 ± 6.8 | 43.0 ± 7.5 | 2.14 | 0.13 | 44.4 ± 6.4 | 44.2 ± 8.0 | −0.45 | 0.03 | 0.15 |
Work capacity (reps) | 131 ± 36 | 147 ± 35 | 12.21 | 0.45 | 127 ± 24 | 145 ± 26 | 14.17 | −0.70 * | 0.06 |
Squat (kg) | 90.2 ± 44.5 | 103 ± 45.0 | 14.19 | 0.29 | 87.6 ± 33.2 | 99.1 ± 31.5 | 13.13 | −0.36 | 0.10 |
Press (kg) | 41.6 ± 18.9 | 45.3 ± 21.4 | 8.89 | 0.18 | 41.5 ± 16.2 | 45.5 ± 16.4 | 9.64 | −0.25 | 0.01 |
Deadlift (kg) | 103 ± 46 | 116 ± 47 | 12.62 | 0.27 | 107 ± 34 | 121 ± 47 | 13.08 | −0.34 | 0.11 |
CrossFit total (kg) | 232 ± 109 | 259 ± 108 | 11.63 | 0.25 | 237 ± 82 | 266 ± 85 | 12.24 | −0.35 | 0.07 |
HRV-Guided | Predetermined | Between Group | |||
---|---|---|---|---|---|
Mean | 95% CI | Mean | 95% CI | ES | |
Days at high intensity (days) | 12.9 ± 5.6 | 11.7; 14.1 | 26.5 ± 2.6 | 25.4; 14.1 | 3.12 ** |
Training adherence (days completed) | 86.8 ± 9.5 | 84.3; 89.0 | 89.8 ± 7.6 | 87.5; 92.0 | 0.35 |
HRV compliance (% days recorded) | 95.1 ± 4.8 | 93.8; 96.7 | 94.6 ± 5.9 | 92.9; 95.6 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DeBlauw, J.A.; Drake, N.B.; Kurtz, B.K.; Crawford, D.A.; Carper, M.J.; Wakeman, A.; Heinrich, K.M. High-Intensity Functional Training Guided by Individualized Heart Rate Variability Results in Similar Health and Fitness Improvements as Predetermined Training with Less Effort. J. Funct. Morphol. Kinesiol. 2021, 6, 102. https://doi.org/10.3390/jfmk6040102
DeBlauw JA, Drake NB, Kurtz BK, Crawford DA, Carper MJ, Wakeman A, Heinrich KM. High-Intensity Functional Training Guided by Individualized Heart Rate Variability Results in Similar Health and Fitness Improvements as Predetermined Training with Less Effort. Journal of Functional Morphology and Kinesiology. 2021; 6(4):102. https://doi.org/10.3390/jfmk6040102
Chicago/Turabian StyleDeBlauw, Justin A., Nicholas B. Drake, Brady K. Kurtz, Derek A. Crawford, Michael J. Carper, Amanda Wakeman, and Katie M. Heinrich. 2021. "High-Intensity Functional Training Guided by Individualized Heart Rate Variability Results in Similar Health and Fitness Improvements as Predetermined Training with Less Effort" Journal of Functional Morphology and Kinesiology 6, no. 4: 102. https://doi.org/10.3390/jfmk6040102
APA StyleDeBlauw, J. A., Drake, N. B., Kurtz, B. K., Crawford, D. A., Carper, M. J., Wakeman, A., & Heinrich, K. M. (2021). High-Intensity Functional Training Guided by Individualized Heart Rate Variability Results in Similar Health and Fitness Improvements as Predetermined Training with Less Effort. Journal of Functional Morphology and Kinesiology, 6(4), 102. https://doi.org/10.3390/jfmk6040102