Reverse Shoulder Arthroplasty Biomechanics
Abstract
:1. Reverse Shoulder Arthroplasty: Form and Function
2. Grammont Reverse Shoulder
3. rTSA Prosthesis Design Considerations on Biomechanics
4. rTSA Implant Positioning Considerations on Biomechanics
5. rTSA Patient-Specific Considerations on Biomechanics
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lippitt, S.B.; Vanderhooft, J.E.; Harris, S.L.; Sidles, J.A.; Harryman, D.T., 2nd; Matsen, F.A., 3rd. Glenohumeral stability from concavity-compression: A quantitative analysis. J. Shoulder Elb. Surg. 1993, 2, 27–35. [Google Scholar] [CrossRef]
- Mura, N.; O’Driscoll, S.W.; Zobitz, M.E.; Heers, G.; Jenkyn, T.R.; Chou, S.M.; Halder, A.M.; An, K.N. The effect of infraspinatus disruption on glenohumeral torque and superior migration of the humeral head: A biomechanical study. J. Shoulder Elb. Surg. 2003, 12, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Parsons, I.M.; Apreleva, M.; Fu, F.H.; Woo, S.L. The effect of rotator cuff tears on reaction forces at the glenohumeral joint. J. Orthop. Res. 2002, 20, 439–446. [Google Scholar] [CrossRef]
- Sharkey, N.A.; Marder, R.A. The rotator cuff opposes superior translation of the humeral head. Am. J. Sports Med. 1995, 23, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Halder, A.M.; Zhao, K.D.; Odriscoll, S.W.; Morrey, B.F.; An, K.N. Dynamic contributions to superior shoulder stability. J. Orthop. Res. 2001, 19, 206–212. [Google Scholar] [CrossRef]
- Labriola, J.E.; Lee, T.Q.; Debski, R.E.; McMahon, P.J. Stability and instability of the glenohumeral joint: The role of shoulder muscles. J. Shoulder Elb. Surg. 2005, 14 (Suppl. S1), 32S–38S. [Google Scholar] [CrossRef]
- Henninger, H.B.; Barg, A.; Anderson, A.E.; Bachus, K.N.; Burks, R.T.; Tashjian, R.Z. Effect of lateral offset center of rotation in reverse total shoulder arthroplasty: A biomechanical study. J. Shoulder Elb. Surg. 2012, 21, 1128–1135. [Google Scholar] [CrossRef]
- Roche, C.P.; Diep, P.; Hamilton, M.; Crosby, L.A.; Flurin, P.H.; Wright, T.W.; Zuckerman, J.D.; Routman, H.D. Impact of inferior glenoid tilt, humeral retroversion, bone grafting, and design parameters on muscle length and deltoid wrapping in reverse shoulder arthroplasty. Bull. Hosp. Jt. Dis. 2013, 71, 284–293. [Google Scholar]
- Routman, H.D.; Flurin, P.H.; Wright, T.; Zuckerman, J.; Hamilton, M.; Roche, C. Reverse shoulder arthroplasty prosthesis design classification system. Bull. Hosp. Jt. Dis. 2015, 73 (Suppl. 1), S5–S14. [Google Scholar]
- Saltzman, M.D.; Mercer, D.M.; Warme, W.J.; Bertelsen, A.L.; Matsen, F.A., 3rd. A method for documenting the change in center of rotation with reverse total shoulder arthroplasty and its application to a consecutive series of 68 shoulders having reconstruction with one of two different reverse prostheses. J. Shoulder Elb. Surg. 2010, 19, 1028–1033. [Google Scholar] [CrossRef]
- Ackland, D.C.; Roshan-Zamir, S.; Richardson, M.; Pandy, M.G. Moment arms of the shoulder musculature after reverse total shoulder arthroplasty. J. Bone Jt. Surg. Am. 2010, 92, 1221–1230. [Google Scholar] [CrossRef]
- Boileau, P.; Watkinson, D.J.; Hatzidakis, A.M.; Balg, F. Grammont reverse prosthesis: Design, rationale, and biomechanics. J. Shoulder Elb. Surg. 2005, 14 (Suppl. 1), 147S–161S. [Google Scholar] [CrossRef]
- De Wilde, L.F.; Audenaert, E.A.; Berghs, B.M. Shoulder prostheses treating cuff tear arthropathy: A comparative biomechanical study. J. Orthop. Res. 2004, 22, 1222–1230. [Google Scholar] [CrossRef]
- Jobin, C.M.; Brown, G.D.; Bahu, M.J.; Gardner, T.R.; Bigliani, L.U.; Levine, W.N.; Ahmad, C.S. Reverse total shoulder arthroplasty for cuff tear arthropathy: The clinical effect of deltoid lengthening and center of rotation medialization. J. Shoulder Elb. Surg. 2012, 21, 1269–1277. [Google Scholar] [CrossRef]
- Otis, J.C.; Jiang, C.C.; Wickiewicz, T.L.; Peterson, M.G.; Warren, R.F.; Santner, T.J. Changes in the moment arms of the rotator cuff and deltoid muscles with abduction and rotation. J. Bone Jt. Surg. Am. 1994, 76, 667–676. [Google Scholar] [CrossRef]
- Elwell, J.A.; Athwal, G.S.; Willing, R. Development and validation of a muscle wrapping model applied to intact and reverse total shoulder arthroplasty shoulders. J. Orthop. Res. 2018, 36, 3308–3317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, A.; Gilot, G.J.; Hamilton, M.A.; Greene, A.; Flurin, P.H.; Wright, T.W.; Zuckerman, J.D.; Roche, C.P. Glenohumeral Anatomic Study. A Comparison of Male and Female Shoulders with Similar Average Age and BMI. Bull. Hosp. Jt. Dis. 2015, 73 (Suppl. 1), S68–S78. [Google Scholar]
- Poppen, N.K.; Walker, P.S. Forces at the glenohumeral joint in abduction. Clin. Orthop. Relat. Res. 1978, 135, 165–170. [Google Scholar] [CrossRef]
- Roche, C.P.; Hamilton, M.A.; Diep, P.; Wright, T.W.; Flurin, P.H.; Zuckerman, J.D.; Routman, H.D. Optimizing Deltoid Efficiency with Reverse Shoulder Arthroplasty Using a Novel Inset Center of Rotation Glenosphere Design. Bull. Hosp. Jt. Dis. 2015, 73 (Suppl. 1), S37–S41. [Google Scholar]
- Hamilton, M.A.; Diep, P.; Roche, C.; Flurin, P.H.; Wright, T.W.; Zuckerman, J.D.; Routman, H. Effect of reverse shoulder design philosophy on muscle moment arms. J. Orthop. Res. 2015, 33, 605–613. [Google Scholar] [CrossRef]
- Kontaxis, A.; Johnson, G.R. The biomechanics of reverse anatomy shoulder replacement-a modeling study. Clin. Biomech. 2009, 24, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Terrier, A.; Reist, A.; Merlini, F.; Farron, A. Simulated joint and muscle forces in reversed and anatomic shoulder prostheses. J. Bone Jt. Surg. Br. 2008, 90, 751–756. [Google Scholar] [CrossRef] [Green Version]
- Kuechle, D.K.; Newman, S.R.; Itoi, E.; Morrey, B.F.; An, K.N. Shoulder muscle moment arms during horizontal flexion and elevation. J. Shoulder Elb. Surg. 1997, 6, 429–439. [Google Scholar] [CrossRef]
- Roche, C.P.; Diep, P.; Hamilton, M.A.; Wright, T.W.; Flurin, P.H.; Zuckerman, J.D.; Routman, H.D. Impact of Posterior Wear on Muscle Length with Reverse Shoulder Arthroplasty. Bull. Hosp. Jt. Dis. 2015, 73 (Suppl. 1), S63–S67. [Google Scholar]
- Herrmann, S.; König, C.; Heller, M.; Perka, C.; Greiner, S. Reverse shoulder arthroplasty leads to significant biomechanical changes in the remaining rotator cuff. J. Orthop. Surg. Res. 2011, 16, 42. [Google Scholar] [CrossRef] [Green Version]
- Lädermann, A.; Walch, G.; Lubbeke, A.; Drake, G.N.; Melis, B.; Bacle, G.; Collin, P.; Edwards, T.; Sirveaux, F. Influence of arm lengthening in reverse shoulder arthroplasty. J. Shoulder Elb. Surg. 2012, 21, 336–341. [Google Scholar] [CrossRef]
- Lädermann, A.; Williams, M.D.; Melis, B.; Hoffmeyer, P.; Walch, G. Objective evaluation of lengthening in reverse shoulder arthroplasty. J. Shoulder Elb. Surg. 2009, 18, 588–595. [Google Scholar] [CrossRef]
- Walker, D.; Matsuki, K.; Struk, A.M.; Wright, T.W.; Banks, S.A. Scapulohumeral rhythm in shoulders with reverse shoulder arthroplasty. J. Shoulder Elb. Surg. 2015, 24, 1129–1134. [Google Scholar] [CrossRef]
- Reeves, B.; Jobbins, B.; Flowers, F.; Dowson, D.; Wright, V. Some problems in the development of a total shoulder endo-prosthesis. Ann. Rheum. Dis. 1972, 31, 425–426. [Google Scholar] [CrossRef] [Green Version]
- Neer, C.S., 2nd. Shoulder Reconstruction; WB Saunders: Philadelphia, PA, USA, 1990. [Google Scholar]
- Flatow, E.L.; Harrison, A.K. A history of reverse total shoulder arthroplasty. Clin. Orthop. Relat. Res. 2011, 469, 2432–2439. [Google Scholar] [CrossRef] [Green Version]
- Broström, L.A.; Wallensten, R.; Olsson, E.; Anderson, D. The Kessel prosthesis in total shoulder arthroplasty. A five-year experience. Clin. Orthop. Relat. Res. 1992, 277, 155–160. [Google Scholar] [CrossRef]
- Fenlin, J.M., Jr. Semi-constrained prosthesis for the rotator cuff deficient patient. Orthop. Trans. 1985, 9, 55. [Google Scholar]
- Redfern, T.R.; Wallace, W.A. History of shoulder replacement surgery. In Joint Replacement in the Shoulder and Elbow; Wallace, W.A., Ed.; Butterworth and Heinemann: Oxford, UK, 1998; pp. 6–16. [Google Scholar]
- Reeves, B.; Jobbins, B.; Dowson, D.; Wright, V. A total shoulder endoprosthesis. Eng. Med. 1974, 1, 64–67. [Google Scholar] [CrossRef]
- Wretenberg, P.F.; Wallensten, R. The Kessel total shoulder arthroplasty. A 13- to 16-year retrospective followup. Clin. Orthop. Relat. Res. 1999, 365, 100–103. [Google Scholar] [CrossRef]
- Grammont, P.; Trouilloud, P.; Laffay, J.P.; Deries, X. Etude et Realisation D’une Novelle Prosthese D’Paule. Rhumatologie 1987, 39, 17–22. [Google Scholar]
- Grammont, P.M.; Baulot, E. Delta shoulder prosthesis for rotator cuff rupture. Orthopedics 1993, 16, 65–68. [Google Scholar] [CrossRef]
- Boileau, P.; Watkinson, D.; Hatzidakis, A.M.; Hovorka, I. Neer Award 2005: The Grammont reverse shoulder prosthesis: Results in cuff tear arthritis, fracture sequelae, and revision arthroplasty. J. Shoulder Elb. Surg. 2006, 15, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Roche, C.P.; Diep, P.; Hamilton, M.A.; Flurin, P.H.; Routman, H.D. Comparison of bone removed with reverse total shoulder arthroplasty. Bull. Hosp. Jt. Dis. 2013, 71 (Suppl. 2), S36–S40. [Google Scholar]
- Friedman, R.; Stroud, N.; Glattke, K.; Flurin, P.H.; Wright, T.W.; Zuckerman, J.D.; Roche, C.P. The Impact of Posterior Wear on Reverse Shoulder Glenoid Fixation. Bull. Hosp. Jt. Dis. 2015, 73 (Suppl. 1), S15–S20. [Google Scholar]
- Roche, C.P.; Stroud, N.J.; Flurin, P.H.; Wright, T.W.; Zuckerman, J.D.; DiPaola, M.J. Reverse shoulder glenoid baseplate fixation: A comparison of flat-back versus curved-back designs and oval versus circular designs with 2 different offset glenospheres. J. Shoulder Elb. Surg. 2014, 23, 1388–1394. [Google Scholar] [CrossRef]
- Roche, C.P.; Stroud, N.J.; Martin, B.L.; Steiler, C.A.; Flurin, P.H.; Wright, T.W.; DiPaola, M.J.; Zuckerman, J.D. The impact of scapular notching on reverse shoulder glenoid fixation. J. Shoulder Elb. Surg. 2013, 22, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Roche, C.P.; Stroud, N.J.; Martin, B.L.; Steiler, C.A.; Flurin, P.H.; Wright, T.W.; Zuckerman, J.D.; Dipaola, M.J. Achieving fixation in glenoids with superior wear using reverse shoulder arthroplasty. J. Shoulder Elb. Surg. 2013, 22, 1695–1701. [Google Scholar] [CrossRef] [PubMed]
- Roche, C.P.; Stroud, N.J.; Palomino, P.; Flurin, P.H.; Wright, T.W.; Zuckerman, J.D.; DiPaola, M.J. The Impact of Anterior Glenoid Defects on Reverse Shoulder Glenoid Fixation in a Composite Scapula Model. Bull. Hosp. Jt. Dis. 2018, 76, 116–122. [Google Scholar]
- Stroud, N.; DiPaola, M.J.; Flurin, P.H.; Roche, C.P. Reverse shoulder glenoid loosening: An evaluation of the initial fixation associated with six different reverse shoulder designs. Bull. Hosp. Jt. Dis. 2013, 71 (Suppl. 2), S12–S17. [Google Scholar]
- Stroud, N.J.; DiPaola, M.J.; Martin, B.L.; Steiler, C.A.; Flurin, P.H.; Wright, T.W.; Zuckerman, J.D.; Roche, C.P. Initial glenoid fixation using two different reverse shoulder designs with an equivalent center of rotation in a low-density and high-density bone substitute. J. Shoulder Elb. Surg. 2013, 22, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Harman, M.; Frankle, M.; Vasey, M.; Banks, S. Initial glenoid component fixation in "reverse" total shoulder arthroplasty: A biomechanical evaluation. J. Shoulder Elb. Surg. 2005, 14 (Suppl. S1), 162S–167S. [Google Scholar] [CrossRef]
- Chou, J.; Malak, S.F.; Anderson, I.A.; Astley, T.; Poon, P.C. Biomechanical evaluation of different designs of glenospheres in the SMR reverse total shoulder prosthesis: Range of motion and risk of scapular notching. J. Shoulder Elb. Surg. 2009, 18, 354–359. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Levy, J.C.; Lee, W.E., 3rd; Keller, T.S.; Maitland, M.E. Center of rotation affects abduction range of motion of reverse shoulder arthroplasty. Clin. Orthop. Relat. Res. 2007, 458, 78–82. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Comiskey, C.A., 4th; Luo, Z.P.; Pupello, D.R.; Frankle, M.A. Range of impingement-free abduction and adduction deficit after reverse shoulder arthroplasty. Hierarchy of surgical and implant-design-related factors. J. Bone Jt. Surg. Am. 2008, 90, 2606–2615. [Google Scholar] [CrossRef]
- Langohr, G.D.; Giles, J.W.; Athwal, G.S.; Johnson, J.A. The effect of glenosphere diameter in reverse shoulder arthroplasty on muscle force, joint load, and range of motion. J. Shoulder Elb. Surg. 2015, 24, 972–979. [Google Scholar] [CrossRef]
- Roche, C.; Flurin, P.H.; Wright, T.; Crosby, L.A.; Mauldin, M.; Zuckerman, J.D. Geometric analysis of the Grammont reverse shoulder prosthesis: An evaluation of the relationship between prosthetic design parameters and clinical failure modes. In Proceedings of the 2006 ISTA Meeting, Zurich, Switzerland, 26–29 June 2006. [Google Scholar]
- Roche, C.; Flurin, P.H.; Wright, T.; Crosby, L.A.; Mauldin, M.; Zuckerman, J.D. An evaluation of the relationships between reverse shoulder design parameters and range of motion, impingement, and stability. J. Shoulder Elb. Surg. 2009, 18, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Roche, C.P.; Marczuk, Y.; Wright, T.W.; Flurin, P.H.; Grey, S.G.; Jones, R.B.; Routman, H.D.; Gilot, G.J.; Zuckerman, J.D. Scapular notching in reverse shoulder arthroplasty: Validation of a computer impingement model. Bull. Hosp. Jt. Dis. 2013, 71, 278–283. [Google Scholar]
- Lévigne, C.; Garret, J.; Boileau, P.; Alami, G.; Favard, L.; Walch, G. Scapular notching in reverse shoulder arthroplasty: Is it important to avoid it and how? Clin. Orthop. Relat. Res. 2011, 469, 2512–2520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirveaux, F.; Favard, L.; Oudet, D.; Huquet, D.; Walch, G.; Molé, D. Grammont inverted total shoulder arthroplasty in the treatment of glenohumeral osteoarthritis with massive rupture of the cuff. Results of a multicentre study of 80 shoulders. J. Bone Jt. Surg. Br. 2004, 86, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Werner, C.M.; Steinmann, P.A.; Gilbart, M.; Gerber, C. Treatment of painful pseudoparesis due to irreparable rotator cuff dysfunction with the Delta III reverse-ball-and-socket total shoulder prosthesis. J. Bone Jt. Surg. Am. 2005, 87, 1476–1486. [Google Scholar] [CrossRef]
- Simovitch, R.W.; Zumstein, M.A.; Lohri, E.; Helmy, N.; Gerber, C. Predictors of scapular notching in patients managed with the Delta III reverse total shoulder replacement. J. Bone Jt. Surg. Am. 2007, 89, 588–600. [Google Scholar] [CrossRef]
- Mollon, B.; Mahure, S.A.; Roche, C.P.; Zuckerman, J.D. Impact of scapular notching on clinical outcomes after reverse total shoulder arthroplasty: An analysis of 476 shoulders. J. Shoulder Elb. Surg. 2017, 26, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Simovitch, R.; Flurin, P.H.; Wright, T.W.; Zuckerman, J.D.; Roche, C. Impact of scapular notching on reverse total shoulder arthroplasty midterm outcomes: 5-year minimum follow-up. J. Shoulder Elb. Surg. 2019, 28, 2301–2307. [Google Scholar] [CrossRef] [PubMed]
- Giles, J.W.; Langohr, G.D.; Johnson, J.A.; Athwal, G.S. Implant Design Variations in Reverse Total Shoulder Arthroplasty Influence the Required Deltoid Force and Resultant Joint Load. Clin. Orthop. Relat. Res. 2015, 473, 3615–3626. [Google Scholar] [CrossRef] [Green Version]
- Liou, W.; Yang, Y.; Petersen-Fitts, G.R.; Lombardo, D.J.; Stine, S.; Sabesan, V.J. Effect of lateralized design on muscle and joint reaction forces for reverse shoulder arthroplasty. J. Shoulder Elb. Surg. 2017, 26, 564–572. [Google Scholar] [CrossRef] [PubMed]
- King, J.J.; Dalton, S.S.; Gulotta, L.V.; Wright, T.W.; Schoch, B.S. How common are acromial and scapular spine fractures after reverse shoulder arthroplasty? A systematic review. Bone Jt. J. 2019, 101-B, 627–634. [Google Scholar] [CrossRef]
- Roche, C.; Crosby, L. Kinematics and Biomechanics of Reverse Total Shoulder Arthroplasty. In Orthopaedic Knowledge Update: Shoulder and Elbow; American Academy of Orthopaedic Surgeons: Rosemont, IL, USA, 2013; Volume 4, pp. 45–54. [Google Scholar]
- Billuart, F.; Gagey, O.; Skalli, W.; Mitton, D. Biomechanics of the deltoideus. Surg. Radiol. Anat. 2006, 28, 76–81. [Google Scholar] [CrossRef]
- De Wilde, L.; Audenaert, E.; Barbaix, E.; Audenaert, A.; Soudan, K. Consequences of deltoid muscle elongation on deltoid muscle performance: A computerised study. Clin. Biomech. 2002, 17, 499–505. [Google Scholar] [CrossRef]
- Gagey, O.; Hue, E. Mechanics of the deltoid muscle. A new approach. Clin. Orthop. Relat. Res. 2000, 375, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, P.O.; Hagemeister, N.; Tétreault, P.; Nuño, N. Influence of the medial offset of the proximal humerus on the glenohumeral destabilising forces during arm elevation: A numerical sensitivity study. Comput. Methods Biomech. Biomed. Eng. 2013, 16, 103–111. [Google Scholar] [CrossRef]
- Roche, C.; Diep, P.; Hamilton, M.; Wright, T.; Flurin, P.H.; Zuckerman, J.; Routman, H. Biomechanical analysis of 3 commercially available reverse shoulder designs in a normal and medially eroded scapula. In Proceedings of the 59th Annual Orthopaedic Research Society Meeting, San Antonio, TX, USA, 26–29 January 2013. [Google Scholar]
- Crosby, L.A.; Wright, T.W.; Yu, S.; Zuckerman, J.D. Conversion to Reverse Total Shoulder Arthroplasty with and without Humeral Stem Retention: The Role of a Convertible-Platform Stem. J. Bone Jt. Surg. Am. 2017, 99, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.B.; Williams, M.D.; Labriola, J.E.; Elkousy, H.A.; Gartsman, G.M.; O’Connor, D.P. Subscapularis insufficiency and the risk of shoulder dislocation after reverse shoulder arthroplasty. J. Shoulder Elb. Surg. 2009, 18, 892–896. [Google Scholar] [CrossRef] [PubMed]
- Routman, H.D. The role of subscapularis repair in reverse total shoulder arthroplasty. Bull. Hosp. Jt. Dis. 2013, 71 (Suppl. 2), 108–112. [Google Scholar]
- Clark, J.C.; Ritchie, J.; Song, F.S.; Kissenberth, M.J.; Tolan, S.J.; Hart, N.D.; Hawkins, R.J. Complication rates, dislocation, pain, and postoperative range of motion after reverse shoulder arthroplasty in patients with and without repair of the subscapularis. J. Shoulder Elb. Surg. 2012, 21, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Friedman, R.J.; Flurin, P.H.; Wright, T.W.; Zuckerman, J.D.; Roche, C.P. Comparison of reverse total shoulder arthroplasty outcomes with and without subscapularis repair. J. Shoulder Elb. Surg. 2017, 26, 662–668. [Google Scholar] [CrossRef]
- Boileau, P.; Moineau, G.; Roussanne, Y.; O’Shea, K. Bony increased-offset reversed shoulder arthroplasty: Minimizing scapular impingement while maximizing glenoid fixation. Clin. Orthop. Relat. Res. 2011, 469, 2558–2567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Routman, H.D.; Simovitch, R.W.; Wright, T.W.; Flurin, P.H.; Zuckerman, J.D.; Roche, C.P. Outcomes of and Risk Factors for Acromial or Scapular Fractures after Reverse Shoulder Arthroplasty with a Medialized Glenoid/Lateralized Humeral Implant. J. Bone Jt. Surg. Am. 2020, 102, 1724–1733. [Google Scholar] [CrossRef]
- Ascione, F.; Kilian, C.M.; Laughlin, M.S.; Bugelli, G.; Domos, P.; Neyton, L.; Godeneche, A.; Edwards, T.B.; Walch, G. Increased scapular spine fractures after reverse shoulder arthroplasty with a humeral onlay short stem: An analysis of 485 consecutive cases. J. Shoulder Elb. Surg. 2018, 27, 2183–2190. [Google Scholar] [CrossRef] [PubMed]
- Haidamous, G.; Lädermann, A.; Frankle, M.A.; Gorman, R.A., 2nd; Denard, P.J. The risk of postoperative scapular spine fracture following reverse shoulder arthroplasty is increased with an onlay humeral stem. J. Shoulder Elb. Surg. 2020, 29, 2556–2563. [Google Scholar] [CrossRef] [PubMed]
- Werthel, J.D.; Walch, G.; Vegehan, E.; Deransart, P.; Sanchez-Sotelo, J.; Valenti, P. Lateralization in reverse shoulder arthroplasty: A descriptive analysis of different implants in current practice. Int. Orthop. 2019, 43, 2349–2360. [Google Scholar] [CrossRef]
- Nyffeler, R.W.; Werner, C.M.; Gerber, C. Biomechanical relevance of glenoid component positioning in the reverse Delta III total shoulder prosthesis. J. Shoulder Elb. Surg. 2005, 14, 524–528. [Google Scholar] [CrossRef]
- Bateman, E.; Donald, S.M. Reconstruction of massive uncontained glenoid defects using a combined autograft-allograft construct with reverse shoulder arthroplasty: Preliminary results. J. Shoulder Elb. Surg. 2012, 21, 925–934. [Google Scholar] [CrossRef]
- Jones, R.B.; Wright, T.W.; Roche, C.P. Bone Grafting the Glenoid Versus Use of Augmented Glenoid Baseplates with Reverse Shoulder Arthroplasty. Bull. Hosp. Jt. Dis. 2015, 73 (Suppl. 1), S129–S135. [Google Scholar]
- Middernacht, B.; De Roo, P.J.; Van Maele, G.; De Wilde, L.F. Consequences of scapular anatomy for reversed total shoulder arthroplasty. Clin. Orthop. Relat. Res. 2008, 466, 1410–1418. [Google Scholar] [CrossRef] [Green Version]
- Paisley, K.C.; Kraeutler, M.J.; Lazarus, M.D.; Ramsey, M.L.; Williams, G.R.; Smith, M.J. Relationship of scapular neck length to scapular notching after reverse total shoulder arthroplasty by use of plain radiographs. J. Shoulder Elb. Surg. 2014, 23, 882–887. [Google Scholar] [CrossRef]
- Roche, C.P.; Marczuk, Y.; Wright, T.W.; Flurin, P.H.; Grey, S.; Jones, R.; Routman, H.D.; Gilot, G.; Zuckerman, J.D. Scapular notching and osteophyte formation after reverse shoulder replacement: Radiological analysis of implant position in male and female patients. Bone Jt. J. 2013, 95, 530–535. [Google Scholar] [CrossRef]
- Norris, T.R.; Kelly, J.D.; Humphrey, C.S. Management of glenoid bone defects in revision shoulder arthroplasty: A new application of the reverse total shoulder prosthesis. Tech. Shoulder Elb. Surg. 2007, 8, 37–46. [Google Scholar] [CrossRef]
- Virk, M.; Yip, M.; Liuzza, L.; Abdelshahed, M.; Paoli, A.; Grey, S.; Wright, T.; Flurin, P.H.; Roche, C.; Zuckerman, J.D. Clinical and radiographic outcomes with a posteriorly augmented glenoid for Walch B2, B3, and C glenoids in reverse total shoulder arthroplasty. J. Shoulder Elb. Surg. 2020, 29, e196–e204. [Google Scholar] [CrossRef] [PubMed]
- Gulotta, L.V.; Grey, S.G.; Flurin, P.H.; Wright, T.W.; Zuckerman, J.D.; Roche, C.P. Clinical Outcomes of Augmented rTSAGlenoid Baseplates Seminars in Arthroplasty. J. Shoulder Elb. Surg. 2021, 29, E168–E169. [Google Scholar] [CrossRef]
- Liuzza, L.; Mai, D.H.; Grey, S.; Wright, T.W.; Flurin, P.H.; Roche, C.P.; Zuckerman, J.D.; Virk, M.S. Reverse Total Shoulder Arthroplasty with a Superior Augmented Glenoid Component for Favard Type-E1, E2, and E3 Glenoids. J. Bone Jt. Surg. Am. 2020, 102, 1865–1873. [Google Scholar] [CrossRef]
- Michael, R.J.; Schoch, B.S.; King, J.J.; Wright, T.W. Managing Glenoid Bone Deficiency-The Augment Experience in Anatomic and Reverse Shoulder Arthroplasty. Am. J. Orthop. 2018, 47. [Google Scholar] [CrossRef] [PubMed]
- Sabesan, V.J.; Lima, D.J.L.; Yang, Y.; Stankard, M.C.; Drummond, M.; Liou, W.W. The role of greater tuberosity healing in reverse shoulder arthroplasty: A finite element analysis. J. Shoulder Elb. Surg. 2020, 29, 347–354. [Google Scholar] [CrossRef]
- Kumar, V.; Roche, C.; Overman, S.; Simovitch, R.; Flurin, P.H.; Wright, T.; Zuckerman, J.; Routman, H.; Teredesai, A. What Is the Accuracy of Three Different Machine Learning Techniques to Predict Clinical Outcomes After Shoulder Arthroplasty? Clin. Orthop. Relat. Res. 2020, 478, 2351–2363. [Google Scholar] [CrossRef]
- Kumar, V.; Roche, C.; Overman, S.; Simovitch, R.; Flurin, P.H.; Wright, T.; Zuckerman, J.; Routman, H.; Teredesai, A. Using machine learning to predict clinical outcomes after shoulder arthroplasty with a minimal feature set. J. Shoulder Elb. Surg. 2021, 30, e225–e236. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Roche, C.; Overman, S.; Simovitch, R.; Flurin, P.H.; Wright, T.; Zuckerman, J.; Routman, H.; Teredesai, A. Use of Machine Learning to Assess the Predictive Value of 3 Commonly Used Clinical Measures to Quantify Outcomes After Total Shoulder Arthroplasty. Semin. Arthroplast. JSES 2021, 31, 263–271. [Google Scholar] [CrossRef]
- Kumar, V.; Allen, C.; Overman, S.; Teredesai, A.; Simovitch, R.; Flurin, P.H.; Wright, T.; Zuckerman, J.; Routman, H.; Roche, C. Development of a Predictive Model for a Machine Learning Derived Shoulder Arthroplasty Clinical Outcome Score. Semin. Arthroplast. JSES, 2021; in press. [Google Scholar]
- Kumar, V.; Schoch, B.S.; Allen, C.; Overman, S.; Teredesai, A.; Aibinder, W.; Parsons, M.; Watling, J.; Ko, J.K.; Gobbato, B.; et al. Using Machine Learning to Predict Internal Rotation after Anatomic and Reverse Total Shoulder Arthroplasty. J. Shoulder Elb. Surg. 2021; in press. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roche, C.P. Reverse Shoulder Arthroplasty Biomechanics. J. Funct. Morphol. Kinesiol. 2022, 7, 13. https://doi.org/10.3390/jfmk7010013
Roche CP. Reverse Shoulder Arthroplasty Biomechanics. Journal of Functional Morphology and Kinesiology. 2022; 7(1):13. https://doi.org/10.3390/jfmk7010013
Chicago/Turabian StyleRoche, Christopher P. 2022. "Reverse Shoulder Arthroplasty Biomechanics" Journal of Functional Morphology and Kinesiology 7, no. 1: 13. https://doi.org/10.3390/jfmk7010013
APA StyleRoche, C. P. (2022). Reverse Shoulder Arthroplasty Biomechanics. Journal of Functional Morphology and Kinesiology, 7(1), 13. https://doi.org/10.3390/jfmk7010013