The Efficacy of Flywheel Inertia Training to Enhance Hamstring Strength
Abstract
:1. Introduction
2. Materials and Methods
2.1. Familiarisation
2.2. Inertial Load
2.3. Volume Prescription
2.4. FIT Technique and Exercise Used
2.5. Efficacy of FIT on Hamstring Strength Development
2.6. Fascicle Length
2.7. HSI Injury Risk Reduction Using FIT
3. Practical Guidelines and Discussion
- To maximise the benefits of FIT, it is advised to first perform several familiarisation sessions. Two to four familiarisation sessions are recommended to obtain a stable measure. Less complex exercises such as a flywheel leg curl may require shorter familiarisation periods when compared to more complex exercises, and more experienced athletes may require shorter familiarisation periods than novice athletes.
- Lower inertial loads (0.025 kg·m2) lead to higher peak concentric and eccentric peak power outputs, while medium to higher loads (0.050, 0.075, and 0.100 kg·m2) lead to higher eccentric overload output.
- Although there is no hamstring-specific research available, flywheel squat research suggests that a range of five to 12 repetitions was advised to maintain power output depending on the inertial load. Three to four repetitions are warranted to accelerate the flywheel at the start of the set, to build to maximal effort, and should be viewed as waste repetitions and not counted as working repetitions. Due to large subject variability in FIT, it is essential to individualise the training volume prescription.
- Both the flywheel leg curl and RDL have been shown to increase eccentric hamstring strength in elite level athletes, but more research is needed before a definite conclusion can be made.
- Hamstring specific FIT has been shown to increase fascicle length, specifically in the BFlh. Thus, this architectural adaption could help with a risk reduction of future HSI.
- The most effective technique to achieve an eccentric overload comprises gently resisting the inertial force during the first third of the eccentric action and then exerting a full effort braking action to decelerate the revolving flywheel and bring it to a halt at the end range of motion.
- The flywheel leg curl has been shown to affect the reduction of injuries in elite soccer players positively, but more longitudinal studies are warranted. It may also be interesting to investigate other FIT hamstring specific exercises such as the RDL as injury prevention techniques.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ekstrand, J.; Healy, J.C.; Waldén, M.; Lee, J.C.; English, B.; Hägglund, M. Hamstring muscle injuries in professional football: The correlation of MRI findings with return to play. Br. J. Sports Med. 2012, 46, 112–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orchard, J.; Seward, H. Epidemiology of injuries in the Australian Football League, seasons 1997–2000. Br. J. Sports Med. 2002, 36, 39–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekstrand, J.; Hägglund, M.; Waldén, M. Epidemiology of muscle injuries in professional football (soccer). Br. J. Sports Med. 2011, 45, 1226–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malliaropoulos, N.G. Non contact Hamstring injuries in sports. Muscles Ligaments Tendons J. 2013, 2, 309–311. [Google Scholar] [PubMed]
- Brooks, J.H.M.; Fuller, C.W.; Kemp, S.P.T.; Reddin, D.B. Incidence, Risk, and Prevention of Hamstring Muscle Injuries in Professional Rugby Union. Am. J. Sports Med. 2006, 34, 1297–1306. [Google Scholar] [CrossRef]
- Malliaropoulos, N.; Papacostas, E.; Kiritsi, O.; Rad, P.-M.; Papalada, A.; Gougoulias, N.; Maffulli, N. Posterior Thigh Muscle Injuries in Elite Track and Field Athletes. Am. J. Sports Med. 2010, 38, 1813–1819. [Google Scholar] [CrossRef]
- Sherry, M.A. A Comparison of 2 Rehabilitation Programs in the Treatment of Acute Hamstring Strains. J. Orthop. Sports Phys. Ther. 2004, 34, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Ramos, G.A.; Arliani, G.G.; Astur, D.C.; de Pochini, A.C.; Ejnisman, B.; Cohen, M. Rehabilitation of hamstring muscle injuries: A literature review. Rev. Bras. Ortop. Engl. Ed. 2017, 52, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Slavotinek, J.P.; Verrall, G.M.; Fon, G.T. Hamstring injury in athletes: Using MR imaging measurements to compare extent of muscle injury with amount of time lost from competition. Am. J. Roentgenol. 2002, 179, 1621–1628. [Google Scholar] [CrossRef]
- Askling, C.M.; Malliaropoulos, N.; Karlsson, J. High-speed running type or stretching-type of hamstring injuries makes a difference to treatment and prognosis. Br. J. Sports Med. 2012, 46, 86–87. [Google Scholar] [CrossRef]
- Chumanov, E.S.; Schache, A.G.; Heiderscheit, B.C.; Thelen, D.G. Hamstrings are most susceptible to injury during the late swing phase of sprinting. Br. J. Sports Med. 2012, 46, 90. [Google Scholar] [CrossRef] [Green Version]
- Orchard, J.W. Hamstrings are most susceptible to injury during the early stance phase of sprinting: Table 1. Br. J. Sports Med. 2012, 46, 88–89. [Google Scholar] [CrossRef] [Green Version]
- Danielsson, A.; Horvath, A.; Senorski, C.; Alentorn-Geli, E.; Garrett, W.E.; Cugat, R.; Samuelsson, K.; Hamrin Senorski, E.H. The mechanism of hamstring injuries—A systematic review. BMC Musculoskelet. Disord. 2020, 21, 641. [Google Scholar] [CrossRef]
- Liu, H.; Garrett, W.E.; Moorman, C.T.; Yu, B. Injury rate, mechanism, and risk factors of hamstring strain injuries in sports: A review of the literature. J. Sport Health Sci. 2012, 1, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Picerno, P. The Hamstrings-Injury-Mechanism Debate: Are We Close to an Agreement? J. Sport Rehabil. 2017, 26, 120–121. [Google Scholar] [CrossRef]
- Green, B.; Bourne, M.N.; Van Dyk, N.; Pizzari, T. Recalibrating the risk of hamstring strain injury (HSI): A 2020 systematic review and meta-Analysis of risk factors for index and recurrent hamstring strain injury in sport. Br. J. Sports Med. 2020, 54, 1081–1088. [Google Scholar] [CrossRef]
- Freckleton, G.; Pizzari, T. Risk factors for hamstring muscle strain injury in sport: A systematic review and meta-analysis. Br. J. Sports Med. 2012, 47, 351–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Visser, H.M.; Reijman, M.; Heijboer, M.P.; Bos, P.K. Risk factors of recurrent hamstring injuries: A systematic review. Br. J. Sports Med. 2011, 46, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Opar, D.A.; Williams, M.D.; Shield, A.J. Hamstring strain injuries: Factors that Lead to injury and re-Injury. Sports Med. 2012, 42, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Wing, C.; Bishop, C. Hamstring strain injuries: Incidence, mechanisms, risk factors, and training recommendations. Strength Cond. J. 2020, 42, 40–57. [Google Scholar] [CrossRef]
- Schuermans, J.; Van Tiggelen, D.; Danneels, L.; Witvrouw, E. Susceptibility to Hamstring Injuries in Soccer: A Prospective Study Using Muscle Functional Magnetic Resonance Imaging. Am. J. Sports Med. 2016, 44, 1276–1285. [Google Scholar] [CrossRef]
- Goossens, L.; Witvrouw, E.; Vanden Bossche, L.; De Clercq, D. Lower eccentric hamstring strength and single leg hop for distance predict hamstring injury in PETE students. Eur. J. Sport Sci. 2014, 15, 436–442. [Google Scholar] [CrossRef]
- Freckleton, G.; Cook, J.; Pizzari, T. The predictive validity of a single leg bridge test for hamstring injuries in Australian rules football players. Br. J. Sports Med. 2013, 48, 713–717. [Google Scholar] [CrossRef]
- Opar, D.A.; Williams, M.D.; Timmins, R.G.; Hickey, J.; Duhig, S.J.; Shield, A.J. Eccentric hamstring strength and hamstring injury risk in Australian footballers. Med. Sci. Sports Exerc. 2015, 47, 857–865. [Google Scholar] [CrossRef] [Green Version]
- Vicens-Bordas, J.; Esteve, E.; Fort-Vanmeerhaeghe, A.; Clausen, M.B.; Bandholm, T.; Opar, D.; Shield, A.; Thorborg, K. Eccentric Hamstring Strength is Associated with Age and Duration of Previous Season Hamstring Injury in Male Soccer Players. Int. J. Sports Phys. Ther. 2020, 15, 246–253. [Google Scholar] [CrossRef]
- Berg, H.E.; Tesch, P.A.; Allen, W.J.C.; Allen, W.J.C.; De Keijzer, K.L.; Raya-gonzález, J.; Castillo, D.; Coratella, G.; Beato, M.; Allen, W.J.C.; et al. A gravity-independent ergometer to be used for resistance training in space. Aviat. Space Environ. Med. 1994, 21, 1031–1041. [Google Scholar] [CrossRef]
- Dudley, G.A.; Tesch, P.A.; Miller, B.J.; Buchanan, P. Importance of eccentric actions in performance adaptations to resistance training. Aviat. Space Environ. Med. 1991, 62, 543–550. [Google Scholar]
- Beato, M.; Dello Iacono, A. Implementing Flywheel (Isoinertial) Exercise in Strength Training: Current Evidence, Practical Recommendations, and Future Directions. Front. Physiol. 2020, 11, 569. [Google Scholar] [CrossRef] [PubMed]
- Tesch, P.A.; Fernandez-Gonzalo, R.; Lundberg, T.R. Clinical Applications of Iso-Inertial, Eccentric-Overload (YoYoTM) Resistance Exercise. Front. Physiol. 2017, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Petré, H.; Wernstål, F.; Mattsson, C.M.; Maroto-Izquierdo, S.; García-lópez, D.; Fernandez-Gonzalo, R.; Moreira, O.C.; González-Gallego, J.; de Paz, J.A.; Vicens-Bordas, J.; et al. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. J. Sci. Med. Sport 2017, 20, 943–951. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; García-López, D.; De Paz, J.A. Functional and Muscle-Size Effects of Flywheel Resistance Training with Eccentric-Overload in Professional Handball Players. J. Hum. Kinet. 2017, 60, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Tous-Fajardo, J.; Maldonado, R.A.; Quintana, J.M.; Pozzo, M.; Tesch, P.A. The flywheel leg-curl machine: Offering eccentric overload for hamstring development. Int. J. Sports Physiol. Perform. 2006, 1, 293–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galiano, C.; Floria, P.; Muñoz-López, A.; Nuñez, F.J. Lack of experience in the use the rotational inertia device is a limitation to mechanical squat performance. Retos 2021, 42, 12–17. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing Eccentric Resistance Training—Part 1: A Brief Review of Existing Methods. J. Funct. Morphol. Kinesiol. 2019, 4, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piqueras-Sanchiz, F.; Sabido, R.; Raya-González, J.; Madruga-Parera, M.; Romero-Rodríguez, D.; Beato, M.; de Hoyo, M.; Nakamura, F.Y.; Hernández-Davó, J.L. Effects of Different Inertial Load Settings on Power Output Using a Flywheel Leg Curl Exercise and its Inter-Session Reliability. J. Hum. Kinet. 2020, 74, 215–226. [Google Scholar] [CrossRef]
- Sabido, R.; Hernández-Davó, J.L.; Pereyra-Gerber, G.T. Influence of different inertial loads on basic training variables during the flywheel squat exercise. Int. J. Sports Physiol. Perform. 2018, 13, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Aranda, L.M.; Fernandez-Gonzalo, R. Effects of inertial setting on power, force, work, and eccentric overload during flywheel resistance exercise in women and men. J. Strength Cond. Res. 2017, 31, 1653–1661. [Google Scholar] [CrossRef]
- Brien, A.J.O.; Browne, D.; Earls, D.; Lodge, C. The effects of varying inertial loadings on power variables in the flywheel romanian deadlift exercise. Biol. Sport 2022, 39, 499–503. [Google Scholar] [CrossRef]
- Berg, H.E.; Tesch, P.A. Force and power characteristics of a resistive exercise device for use in space. Acta Astronaut. 1998, 42, 219–230. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 1—Biological basis of maximal power production. Sports Med. 2011, 41, 17–38. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing Eccentric Resistance Training—Part 2: Practical Recommendations. J. Funct. Morphol. Kinesiol. 2019, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Eccentric Exercise: Physiological Characteristics and Acute Responses. Sports Med. 2017, 47, 663–675. [Google Scholar] [CrossRef]
- Askling, C.M.; Karlsson, J.; Thorstensson, A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand. J. Med. Sci. Sports 2003, 13, 244–250. [Google Scholar] [CrossRef]
- De Hoyo, M.; Pozzo, M.; Sañudo, B.; Carrasco, L.; Gonzalo-Skok, O.; Domínguez-Cobo, S.; Morán-Camacho, E. Effects of a 10-week in-season eccentric-overload training program on muscle-injury prevention and performance in junior elite soccer players. Int. J. Sports Physiol. Perform. 2015, 10, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojanović, M.D.M.; Mikić, M.; Drid, P.; Calleja-González, J.; Maksimović, N.; Belegišanin, B.; Sekulović, V. Greater power but not strength gains using flywheel versus equivolumed traditional strength training in junior basketball players. Int. J. Environ. Res. Public Health 2021, 18, 1181. [Google Scholar] [CrossRef] [PubMed]
- Presland, J.D.; Opar, D.A.; Williams, M.D.; Hickey, J.T.; Maniar, N.; Lee Dow, C.; Bourne, M.N.; Timmins, R.G. Hamstring strength and architectural adaptations following inertial flywheel resistance training. J. Sci. Med. Sport 2020, 23, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Timmins, R.G.; Filopoulos, D.; Nguyen, V.; Giannakis, J.; Ruddy, J.D.; Hickey, J.T.; Maniar, N.; Opar, D.A. Sprinting, Strength, and Architectural Adaptations Following Hamstring Training in Australian Footballers. Scand. J. Med. Sci. Sports 2021, 31, 1276–1289. [Google Scholar] [CrossRef]
- Fernandez-Gonzalo, R.; Tesch, P.A.; Linnehan, R.M.; Kreider, R.B.; Di Salvo, V.; Suarez-Arrones, L.; Alomar, X.; Men-dez-Villanueva, A.; Rodas, G.; Vlachopoulos, D.; et al. Individual Muscle use in Hamstring Exercises by Soccer Players Assessed using Functional MRI The effect of a high-impact jumping intervention on bone mass, bone stiffness and fitness parameters in adolescent athletes. Int. J. Sports Med. 2016, 37, 559–564. [Google Scholar]
- Bourne, M.N.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of exercise selection on hamstring muscle activation. Br. J. Sports Med. 2017, 51, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): A prospective cohort study. Br. J. Sports Med. 2016, 50, 1524–1535. [Google Scholar] [CrossRef]
- Presland, J.D.; Timmins, R.G.; Bourne, M.N.; Williams, M.D.; Opar, D.A. The effect of Nordic hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand. J. Med. Sci. Sports 2018, 28, 1775–1783. [Google Scholar] [CrossRef]
- Opar, D.A.; Piatkowski, T.; Williams, M.D.; Shield, A.J. A Novel Device Using the Nordic Hamstring Exercise to Assess Eccentric Knee Flexor Strength: A Reliability and Retrospective Injury Study. J. Orthop. Sports Phys. Ther. 2013, 43, 636–640. [Google Scholar] [CrossRef] [Green Version]
- Brockett, C.L.; Morgan, D.L.; Proske, U. Predicting Hamstring Strain Injury in Elite Athletes. Med. Sci. Sports Exerc. 2004, 36, 379–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brockett, C.L.; Morgan, D.L.; Proske, U. Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med. Sci. Sports Exerc. 2001, 33, 783–790. [Google Scholar] [CrossRef] [Green Version]
- Timmins, R.G.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Biceps femoris long head architecture: A reliability and retrospective injury study. Med. Sci. Sports Exerc. 2015, 47, 905–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuthbert, M.; Ripley, N.; McMahon, J.J.; Evans, M.; Haff, G.G.; Comfort, P. The Effect of Nordic Hamstring Exercise Intervention Volume on Eccentric Strength and Muscle Architecture Adaptations: A Systematic Review and Meta-analyses. Sports Med. 2020, 50, 83–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourne, M.N.; Timmins, R.G.; Opar, D.A.; Pizzari, T.; Ruddy, J.D.; Sims, C.; Williams, M.D.; Shield, A.J. An Evidence-Based Framework for Strengthening Exercises to Prevent Hamstring Injury. Sports Med. 2017, 48, 251–267. [Google Scholar] [CrossRef]
- Bourne, M.N.; Duhig, S.J.; Timmins, R.G.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: Implications for injury prevention. Br. J. Sports Med. 2017, 51, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Jönhagen, S.; Nemeth, G.; Eriksson, E. Hamstring Injuries in Sprinters: The Role of Concentric and Eccentric Hamstring Muscle Strength and Flexibility. Am. J. Sports Med. 1994, 22, 262–266. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’ Brien, J.; Browne, D.; Earls, D.; Lodge, C. The Efficacy of Flywheel Inertia Training to Enhance Hamstring Strength. J. Funct. Morphol. Kinesiol. 2022, 7, 14. https://doi.org/10.3390/jfmk7010014
O’ Brien J, Browne D, Earls D, Lodge C. The Efficacy of Flywheel Inertia Training to Enhance Hamstring Strength. Journal of Functional Morphology and Kinesiology. 2022; 7(1):14. https://doi.org/10.3390/jfmk7010014
Chicago/Turabian StyleO’ Brien, Joey, Declan Browne, Des Earls, and Clare Lodge. 2022. "The Efficacy of Flywheel Inertia Training to Enhance Hamstring Strength" Journal of Functional Morphology and Kinesiology 7, no. 1: 14. https://doi.org/10.3390/jfmk7010014
APA StyleO’ Brien, J., Browne, D., Earls, D., & Lodge, C. (2022). The Efficacy of Flywheel Inertia Training to Enhance Hamstring Strength. Journal of Functional Morphology and Kinesiology, 7(1), 14. https://doi.org/10.3390/jfmk7010014