Dry-Land Force–Velocity, Power–Velocity, and Swimming-Specific Force Relation to Single and Repeated Sprint Swimming Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Dry-Land Strength and Tethered Force Evaluation
2.3.1. Maximum Strength Test in Bench Press
2.3.2. Tethered Swimming Test
2.4. Swimming Performance Tests and Training Set
2.5. Statistical Analysis
3. Results
3.1. Swimming Performance
3.1.1. Dry-Land Strength Variables and Swimming Performance
3.1.2. In-Water Strength Variables and Swimming Performance
3.1.3. Impulse and Swimming Performance
3.2. Swimming Technique
3.2.1. Dry-Land Strength and Kinematic Variables
3.2.2. In-Water Strength and Kinematic Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MS | Maximum strength |
P | Maximum power |
F@P | Strength corresponding to P |
MV | Maximum velocity |
V@P | Velocity corresponding to P |
TF | Tethered force |
IMP | Impulse |
T | Performance time |
SR | Arm stroke rate |
SL | Arm stroke length |
SI | Arm stroke index |
References
- Barbosa, T.M.; Bragada, J.A.; Reis, V.M.; Marinho, D.A.; Carvalho, C.; Silva, A.J. Energetics and biomechanics as determining factors of swimming performance: Updating the State of the Art. J. Sci. Med. Sport. 2010, 13, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Barbosa, A.; Nocentini, R.; Pereira, L.; Kobal, R.; Kitamura, K.; Abad, C.; Figueiredo, P.; Nakamura, F. A Correlational analysis of tethered swimming, swim sprint performance and dry-land power assessments. Int. J. Sports Med. 2015, 37, 211–218. [Google Scholar] [CrossRef]
- Amara, S.; Chortane, O.G.; Negra, Y.; Hammami, R.; Khalifa, R.; Chortane, S.G.; van den Tillaar, R. Relationship between swimming performance, biomechanical variables and the calculated predicted 1-RM push-up in competitive swimmers. Int. J. Environ. Res. Public Health 2021, 18, 11395. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, K.; Pereira, G.; Papoti, M.; Bento, P.C.; Rodacki, A. Propulsive force asymmetry during tethered-swimming. Int. J. Sports Med. 2013, 34, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Morouço, P.G.; Marinho, D.A.; Keskinen, K.L.; Badillo, J.J.; Marques, M.C. Tethered swimming can be used to evaluate force contribution for short-distance swimming performance. J. Strength Cond. Res. 2014, 28, 3093–3099. [Google Scholar] [CrossRef] [PubMed]
- Kalva-Filho, C.; Zagatto, A.; da Silva, A.; Castanho, M.; Gobbi, R.; Gobatto, C.; Papoti, M. Relationships among the tethered 3-min all-out test, MAOD and swimming performance. Int. J. Sports Med. 2017, 38, 353–358. [Google Scholar] [CrossRef]
- Garrido, N.; Marinho, D.A.; Barbosa, T.M.; Costa, A.M.; Silva, A.J.; Pérez Turpin, J.A.; Marques, M.C. Relationships between dry land strength, power variables and short sprint performance in young competitive swimmers. J. Hum. Sport Exerc. 2010, 5, 240–249. [Google Scholar] [CrossRef]
- Morouço, P.; Neiva, H.; González-Badillo, J.; Garrido, N.; Marinho, D.; Marques, M. Associations between dry land strength and power measurements with swimming performance in elite athletes: A pilot study. J. Hum. Kinet. 2011, 29, 105–112. [Google Scholar] [CrossRef]
- Espada, M.C.; Costa, M.; Costa, A.M.; Silva, A.J.; Barbosa, T.M.; Pereira, A.I. Relationship between performance, dry-land power and kinematics in master swimmers. Acta Bioeng. Biomech. 2016, 18, 145–151. [Google Scholar]
- Jidovtseff, B.; Harris, N.K.; Crielaard, J.M.; Cronin, J.B. Using the load-velocity relationship for 1RM prediction. J. Strength Cond. Res. 2011, 25, 267–270. [Google Scholar] [CrossRef]
- García-Ramos, A.; Jaric, S.; Padial, P.; Feriche, B. Force–velocity relationship of upper body muscles: Traditional versus ballistic bench press. J. Appl. Biomech. 2016, 32, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Navarro, J.J.; Gay, A.; Cuenca-Fernández, F.; López-Belmonte, Ó.; Morales-Ortíz, E.; López-Contreras, G.; Arellano, R. The relationship between tethered swimming, anaerobic critical velocity, dry-land strength, and swimming performance. Int. J. Perform. Anal. Sport 2022, 22, 407–421. [Google Scholar] [CrossRef]
- Santos, K.B.; Bento, P.C.B.; Pereira, G.; Rodacki, A.L.F. The relationship between propulsive force in tethered swimming and 200-m front crawl performance. J. Strength Cond. Res. 2016, 30, 2500–2507. [Google Scholar] [CrossRef] [PubMed]
- Castro, F.A.S.; Felipe, C.M.; Carlos, B.M. Relationship between 200m front crawl stroke performance and tethered swimming test kinetics variables. Rev. Bras. Ciênc. Esporte 2010, 31, 161–176. [Google Scholar] [CrossRef]
- Jaric, S. Force-velocity relationship of muscles performing multi-joint maximum performance tasks. Int. J. Sports Med. 2015, 36, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Toubekis, A.G.; Gourgoulis, V.; Tokmakidis, S.P. Tethered swimming as an evaluation tool of single arm-stroke force. In Biomechanics and Medicine in Swimming; Norwegian School of Sport Science: Oslo, Norway, 2010; pp. 296–299. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Bucher, A. G*Power 3: A flexible statistical power analysis program for social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Pérez-Olea, J.I.; Valenzuela, P.L.; Aponte, C.; Izquierdo, M. Relationship between dryland strength and swimming performance. J. Strength Cond. Res. 2018, 32, 1637–1642. [Google Scholar] [CrossRef]
- Sadowski, J.; Mastalerz, A.; Gromisz, W. Transfer of dry-land resistance training modalities to swimming performance. J. Hum. Kinet. 2020, 74, 195–203. [Google Scholar] [CrossRef]
- Kawamori, N.; Haff, G.G. The optimal training load for the development of muscular power. J. Strength Cond. Res. 2004, 18, 675–684. [Google Scholar] [CrossRef]
- Marinho, D.A.; Neiva, H.P.; Branquinho, L.; Ferraz, R. Determinants of sports performance in young national level swimmers: A correlational study between anthropometric variables, muscle strength, and performance. Sport Mont 2021, 19, 75–82. [Google Scholar] [CrossRef]
- Langendorfer, S.J. Swimming anatomy. Int. J. Aquat. Res Educ. 2010, 4, 101–103. [Google Scholar] [CrossRef]
- Tan, J.Q.J.; Lee, M.J.C.; Boey, D.; Lum, D.; Barbosa, T.M. The transfer of dry-land strength & power into thrust in competitive swimming. Sports Biomech. 2021, 1–12. [Google Scholar] [CrossRef]
- Gomes, L.E.; Batista, I.T.S.; de Jesus, B.L.C.F. Repetibilidade e aplicação de testes de nado estacionário para nadadores recreacionais. Rev. Bras. Cineatropom Hum. Perf. 2018, 20, 164–171. [Google Scholar] [CrossRef]
- Morouço, P.; Keskinen, K.L.; Vilas-Boas, J.P.; Fernandes, R.J. Relationship between tethered forces and the four swimming techniques performance. J. Appl. Biomech. 2011, 27, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Valkoumas, I.; Gourgoulis, V.; Aggeloussis, N.; Antoniou, P. The influence of an 11-week resisted swim training program on the inter-arm coordination in front crawl swimmers. Sports Biomech. 2023, 22, 940–952. [Google Scholar] [CrossRef]
Variables | Overall (n = 15) | Male (n = 9) | Female (n = 6) |
---|---|---|---|
Age (yrs.) | 16.7 ± 3.1 | 17.3 ± 3.6 | 15.7 ± 1.9 |
Body mass (kg) | 60.7 ± 8.3 | 62.4 ± 9.8 | 58.2 ± 5.0 |
Body height (cm) | 170.3 ± 9.3 | 173.3 ± 9.7 | 165.8 ± 7.4 |
Body mass index (kg/m2) | 20.9 ± 1.8 | 20.6 ± 2.1 | 21.2 ± 1.3 |
Body fat (%) | 16.3 ± 4.4 | 14.1 ± 3.9 | 19.7 ± 2.8 |
100 m front crawl performance time (s) | 71.37 ± 5.59 | 68.45 ± 4.30 | 75.76 ± 4.40 |
FINA points (100 m front crawl) | 386.8 ± 118.3 | 392.0 ± 114.5 | 378.4 ± 137.3 |
Competitive training experience (yrs.) | 7.9 ± 1.6 | 8.2 ± 1.9 | 7.5 ± 1.1 |
Variables | Mean ± SD (95% CL) |
---|---|
Dry-Land variables | |
P (W) | 132.17 ± 69.73 (96.88–167.46) |
F@P (N) | 353.95 ± 105.75 (300.48–407.51) |
MS (N) | 704.41 ± 211.20 (597.54–811.29) |
V@P (m·s−1) | 0.36 ± 0.11 (0.30–0.41) |
MV (m·s−1) | 0.74 ± 0.21 (0.63–0.85) |
In-water strength variables | |
TF (N) | 89.93 ± 26.14 (76.70–103.15) |
IMP (N·s−1) | 28.96 ± 11.07 (23.36–34.56) |
Swimming Performance Variables | |
T50 (s) | 31.84 ± 2.99 (30.33–33.35) |
T100 (s) | 71.37 ± 5.59 (68.54–74.20) |
T200 (s) | 149.88 ± 13.59 (143.00–156.75) |
T400 (s) | 318.47 ± 27.35 (304.63–332.32) |
T4×50 (s) | 33.81 ± 2.59 (32.50–35.12) |
Kinematic Variables | |
50 m | |
SR50 (cycles·min−1) | 46.59 ± 4.22 (44.46–48.73) |
SL50 (m·cycle−1) | 2.04 ± 0.14 (1.97–2.11) |
SI50 (m2·s−1·cycle−1) | 3.24 ± 0.43 (3.02–3.46) |
100 m | |
SR100 (cycles·min−1) | 39.74 ± 4.35 (37.54–41.94) |
SL100 (m·cycle−1) | 2.15 ± 0.23 (2.03–2.26) |
SI100 (m2·s−1·cycle−1) | 3.03 ± 0.45 (2.80–3.26) |
200 m | |
SR200 (cycles·min−1) | 37.68 ± 4.49 (35.41–39.96) |
SL200 (m·cycle−1) | 2.17 ± 0.23 (2.05–2.29) |
SI200 (m2·s−1·cycle−1) | 2.94 ± 0.41 (2.74–3.15) |
400 m | |
SR400 (cycles·min−1) | 35.22 ± 3.37 (33.51–36.92) |
SL400 (m·cycle−1) | 2.18 ± 0.23 (2.06–2.30) |
SI400 (m2·s−1·cycle−1) | 2.79 ± 0.44 (2.57–3.01) |
4 × 50 m training sets | |
SR4×50 (cycles·min−1) | 42.71 ± 4.48 (40.44–44.98) |
SL4×50 (m·cycle−1) | 2.11 ± 0.20 (2.00–2.21) |
SI4×50 (m2·s−1·cycle−1) | 3.14 ± 0.42 (2.93–3.35) |
Variables | P | F@P | MS | V@P | MV | TF | IMP |
---|---|---|---|---|---|---|---|
T50 | −0.71 * | −0.66 * | −0.59 * | −0.67 * | −0.55 * | −0.84 * | −0.71 * |
T100 | −0.77 * | −0.68 * | −0.62 * | −0.77 * | −0.61 * | −0.76 * | −0.64 * |
T200 | −0.78 * | −0.68 * | −0.61 * | −0.80 * | −0.65 * | −0.68 * | −0.57 * |
T400 | −0.64 * | −0.64 * | −0.56 * | −0.64 * | −0.45 | −0.66 * | −0.48 |
T4×50 | −0.61 * | −0.58 * | −0.52 * | −0.58 * | −0.40 | −0.76 * | −0.65 * |
Variables | P | F@P | MS | V@P | MV | TF | IMP |
---|---|---|---|---|---|---|---|
SR50 (cycles·min−1) | 0.55 * | 0.42 | 0.35 | 0.45 | 0.47 | 0.69 * | 0.66 * |
SL50 (m·cycle−1) | 0.26 | 0.34 | 0.34 | 0.34 | 0.17 | 0.23 | 0.11 |
SI50 (m2·s−1·cycle−1) | 0.63 * | 0.62 * | 0.56 * | 0.64 * | 0.49 | 0.71 * | 0.57 * |
SR100 (cycles·min−1) | 0.17 | 0.04 | −0.02 | 0.16 | 0.25 | 0.27 | 0.32 |
SL100 (m·cycle−1) | 0.37 | 0.42 | 0.45 | 0.37 | 0.18 | 0.25 | 0.11 |
SI100 (m2·s−1·cycle−1) | 0.68 * | 0.65 * | 0.63 * | 0.69 * | 0.48 | 0.58 * | 0.41 |
SR200 (cycles·min−1) | 0.43 | 0.39 | 0.32 | 0.40 | 0.47 | 0.42 | 0.46 |
SL200 (m·cycle−1) | 0.14 | 0.08 | 0.10 | 0.29 | 0.02 | 0.05 | −0.07 |
SI200 (m2·s−1·cycle−1) | 0.64 * | 0.51 | 0.48 | 0.68 * | 0.47 | 0.48 | 0.31 |
SR400 (cycles·min−1) | 0.31 | 0.29 | 0.25 | 0.25 | 0.35 | 0.17 | 0.18 |
SL400 (m·cycle−1) | 0.20 | 0.21 | 0.19 | 0.23 | 0.01 | 0.37 | 0.19 |
SI400 (m2·s−1·cycle−1) | 0.50 | 0.51 | 0.45 | 0.48 | 0.27 | 0.63 * | 0.38 |
SR4×50 (cycles·min−1) | 0.31 | 0.24 | 0.18 | 0.21 | 0.34 | 0.42 | 0.53 * |
SL4×50 (m·cycle−1) | 0.12 | 0.15 | 0.17 | 0.12 | 0.09 | 0.12 | −0.07 |
SI4×50 (m2·s−1·cycle−1) | 0.42 | 0.41 | 0.38 | 0.40 | 0.17 | 0.50 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalkiadakis, I.; Arsoniadis, G.G.; Toubekis, A.G. Dry-Land Force–Velocity, Power–Velocity, and Swimming-Specific Force Relation to Single and Repeated Sprint Swimming Performance. J. Funct. Morphol. Kinesiol. 2023, 8, 120. https://doi.org/10.3390/jfmk8030120
Chalkiadakis I, Arsoniadis GG, Toubekis AG. Dry-Land Force–Velocity, Power–Velocity, and Swimming-Specific Force Relation to Single and Repeated Sprint Swimming Performance. Journal of Functional Morphology and Kinesiology. 2023; 8(3):120. https://doi.org/10.3390/jfmk8030120
Chicago/Turabian StyleChalkiadakis, Ioannis, Gavriil G. Arsoniadis, and Argyris G. Toubekis. 2023. "Dry-Land Force–Velocity, Power–Velocity, and Swimming-Specific Force Relation to Single and Repeated Sprint Swimming Performance" Journal of Functional Morphology and Kinesiology 8, no. 3: 120. https://doi.org/10.3390/jfmk8030120
APA StyleChalkiadakis, I., Arsoniadis, G. G., & Toubekis, A. G. (2023). Dry-Land Force–Velocity, Power–Velocity, and Swimming-Specific Force Relation to Single and Repeated Sprint Swimming Performance. Journal of Functional Morphology and Kinesiology, 8(3), 120. https://doi.org/10.3390/jfmk8030120