Ten-Minute Physical Activity Breaks Improve Attention and Executive Functions in Healthcare Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Physical Activity Break Interventions
2.4. Cognitive Outcomes
2.4.1. Selective Attention Assessment
2.4.2. Executive Functions Assessment
2.5. Statistical Analysis
3. Results
3.1. Trail Making Test (TMT)
3.2. Stroop Color and Word Test (SCWT)
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buckley, J.P.; Hedge, A.; Yates, T.; Copeland, R.J.; Loosemore, M.; Hamer, M.; Bradley, G.; Dunstan, D.W. The sedentary office: An expert statement on the growing case for change towards better health and productivity. Br. J. Sports Med. 2015, 49, 1357–1362. [Google Scholar] [CrossRef]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S.; Alter, D.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: A systematic review and meta-analysis. Ann. Intern. Med. 2015, 162, 123–132. [Google Scholar] [CrossRef]
- Jahrami, H.; BaHammam, A.S.; Stubbs, B.; Sabah, A.; Saif, Z.; Bragazzi, N.L.; Vitiello, M.V. Eight-week high-intensity interval training is associated with improved sleep quality and cardiorespiratory fitness in patients with depressive disorders. Sleep Breath. 2022, 26, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Galper, D.I.; Trivedi, M.H.; Barlow, C.E.; Dunn, A.L.; Kampert, J.B. Inverse association between physical inactivity and mental health in men and women. Med. Sci. Sports Exerc. 2006, 38, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Deng, K.; Lin, Z.; Huang, Z.; Gong, X.; Tan, J.; Huang, B.; Gao, Y. The effects of physical activity and sedentary behavior in the associations between cardiovascular diseases and depression: A four-way decomposition. J. Affect. Disord. 2020, 275, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Stamatakis, E. Prospective study of sedentary behavior, risk of depression, and cognitive impairment. Med. Sci. Sports Exerc. 2014, 46, 718. [Google Scholar] [CrossRef]
- Magnon, V.; Vallet, G.T.; Auxiette, C. Sedentary behavior at work and cognitive functioning: A systematic review. Front. Public Health 2018, 6, 401440. [Google Scholar] [CrossRef]
- Vance, D.E.; Wadley, V.G.; Ball, K.K.; Roenker, D.L.; Rizzo, M. The effects of physical activity and sedentary behavior on cognitive health in older adults. J. Aging Phys. Act. 2005, 13, 294–313. [Google Scholar] [CrossRef]
- Banday, A.H.; Want, F.A.; Alris, F.F.A.; Alrayes, M.F.; Alenzi, M.J. A cross-sectional study on the prevalence of physical activity among primary health care physicians in Aljouf region of Saudi Arabia. Mater. Socio-Med. 2015, 27, 263–266. [Google Scholar] [CrossRef]
- Sanabria-Rojas, H.; Tarqui-Mamani, C.; Portugal-Benavides, W.; Pereyra-Zaldívar, H.; Mamani-Castillo, L. The physical activity level of people working at a regional health office in Lima, Peru. Rev. De Salud Pública 2014, 16, 53–62. [Google Scholar]
- Ibrahim, M.I.; Zubair, I.U.; Yaacob, N.M.; Ahmad, M.I.; Shafei, M.N. Low back pain and its associated factors among nurses in public hospitals of Penang, Malaysia. Int. J. Environ. Res. Public Health 2019, 16, 4254. [Google Scholar] [CrossRef] [PubMed]
- Thivel, D.; Tremblay, A.; Genin, P.M.; Panahi, S.; Rivière, D.; Duclos, M. Physical activity, inactivity, and sedentary behaviors: Definitions and implications in occupational health. Front. Public Health 2018, 6, 376089. [Google Scholar] [CrossRef] [PubMed]
- Hallgren, M.; Owen, N.; Stubbs, B.; Vancampfort, D.; Lundin, A.; Dunstan, D.; Bellocco, R.; Lagerros, Y.T. Cross-sectional and prospective relationships of passive and mentally active sedentary behaviours and physical activity with depression. Br. J. Psychiatry 2020, 217, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Smith, L. Sedentary behaviour and depression. In Sedentary Behaviour Epidemiology; Springer International Publishing: Cham, Switzerland, 2023; pp. 337–350. [Google Scholar]
- Simon, H.A. Information-processing models of cognition. J. Am. Soc. Inf. Sci. 1981, 32, 364–377. [Google Scholar] [CrossRef]
- Bayne, T.; Brainard, D.; Byrne, R.W.; Chittka, L.; Clayton, N.; Heyes, C.; Mather, J.; Ölveczky, B.; Shadlen, M.; Suddendorf, T.; et al. What is cognition? Curr. Biol. 2019, 29, R608–R615. [Google Scholar] [CrossRef] [PubMed]
- Burkhalter, S.D. The risks of sedentary work & prolonged sitting and the effects of physical activity in the workplace. Exerc. Sport Nutr. Rev. 2019, 1, 10. [Google Scholar]
- Satapathy, S.; Realyvasquez, A.; Mishra, M. Occupational Health Safety Factors and Their Impact on the Mental Health of Workers; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Mundhe, E.S. A Study of Workplace Stress and Work Stress. Res. Journey 2019, 123, 123–127. [Google Scholar]
- Bagdonaitė, E. The Preventive and risk factors for developing cognitive impairment among medical workers in Lithuania. In Proceedings of the ECNP Seminar in Neuropsychopharmacology, Palanga, Lithuania, 29–31 March 2019; Psychiatry Clinic at Lithuanian University of Health Sciences, Lithuanian Society of Biological Psychiatry, Young Psychiatrist Association, European College of Neuropsychopharmacology: Utrecht, The Netherlands, 2019. [Google Scholar]
- Carter, S.E.; Draijer, R.; Thompson, A.; Thijssen, D.H.; Hopkins, N.D. Relationship between sedentary behavior and physical activity at work and cognition and mood. J. Phys. Act. Health 2020, 17, 1140–1152. [Google Scholar] [CrossRef]
- Bojsen-Møller, E.; Boraxbekk, C.J.; Ekblom, Ö.; Blom, V.; Ekblom, M.M. Relationships between physical activity, sedentary behaviour and cognitive functions in office workers. Int. J. Environ. Res. Public Health 2019, 16, 4721. [Google Scholar] [CrossRef]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef]
- Pantzar, A.; Jonasson, L.S.; Ekblom, Ö.; Boraxbekk, C.J.; Ekblom, M.M. Relationships between aerobic fitness levels and cognitive performance in Swedish office workers. Front. Psychol. 2018, 9, 424453. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Pinilla, F.; Hillman, C. The influence of exercise on cognitive abilities. Compr. Physiol. 2013, 3, 403. [Google Scholar] [PubMed]
- Chandrasekaran, B.; Pesola, A.J.; Rao, C.R.; Arumugam, A. Does breaking up prolonged sitting improve cognitive functions in sedentary adults? A mapping review and hypothesis formulation on the potential physiological mechanisms. BMC Musculoskelet. Disord. 2021, 22, 274. [Google Scholar] [CrossRef]
- Truxillo, D.M.; Cadiz, D.M.; Hammer, L.B. Supporting the aging workforce: A review and recommendations for workplace intervention research. Annu. Rev. Organ. Psychol. Organ. Behav. 2015, 2, 351–381. [Google Scholar] [CrossRef]
- Trougakos, J.P.; Hideg, I. Momentary work recovery: The role of within-day work breaks. In Current Perspectives on Job-Stress Recovery; Emerald Group Publishing Limited: Bradford, UK, 2009; pp. 37–84. [Google Scholar]
- Lyubykh, Z.; Gulseren, D.; Premji, Z.; Wingate, T.G.; Deng, C.; Bélanger, L.J.; Turner, N. Role of work breaks in well-being and performance: A systematic review and future research agenda. J. Occup. Health Psychol. 2022, 27, 470. [Google Scholar] [CrossRef] [PubMed]
- Kar, G.; Hedge, A. Effect of workstation configuration on musculoskeletal discomfort, productivity, postural risks, and perceived fatigue in a sit-stand-walk intervention for computer-based work. Appl. Ergon. 2021, 90, 103211. [Google Scholar] [CrossRef] [PubMed]
- Tuckwell, G.A.; Vincent, G.E.; Gupta, C.C.; Ferguson, S.A. Does breaking up sitting in office-based settings result in cognitive performance improvements which last throughout the day? A review of the evidence. Ind. Health 2022, 60, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Riggs, N.R.; Jahromi, L.B.; Razza, R.P.; Dillworth-Bart, J.E.; Mueller, U. Executive function and the promotion of social–emotional competence. J. Appl. Dev. Psychol. 2006, 27, 300–309. [Google Scholar] [CrossRef]
- Alvarez-Bueno, C.; Cunha, P.G.; Martinez-Vizcaino, V.; Pozuelo-Carrascosa, D.P.; Visier-Alfonso, M.E.; Jimenez-Lopez, E.; Cavero-Redondo, I. Arterial stiffness and cognition among adults: A systematic review and meta-analysis of observational and longitudinal studies. J. Am. Heart Assoc. 2020, 9, e014621. [Google Scholar] [CrossRef]
- Paterson, C.; Fryer, S.; Zieff, G.; Stone, K.; Credeur, D.P.; Gibbs, B.B.; Padilla, J.; Parker, J.K.; Stoner, L. The effects of acute exposure to prolonged sitting, with and without interruption, on vascular function among adults: A meta-analysis. Sports Med. 2020, 50, 1929–1942. [Google Scholar] [CrossRef]
- Watson, A.; Timperio, A.; Brown, H.; Hesketh, K. A pilot primary school active break program (ACTI-BREAK): Effects on academic and physical activity outcomes for students in Years 3 and 4. J. Sci. Med. Sport 2019, 22, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Brazaitis, M.; Satas, A. Regular short-duration breaks do not prevent mental fatigue and decline in cognitive efficiency in healthy young men during an office-like simulated mental working day: An EEG study. Int. J. Psychophysiol. 2023, 188, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Michishita, R.; Jiang, Y.; Ariyoshi, D.; Yoshida, M.; Moriyama, H.; Yamato, H. The practice of active rest by workplace units improves personal relationships, mental health, and physical activity among workers. J. Occup. Health 2017, 59, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Egger, F.; Benzing, V.; Conzelmann, A.; Schmidt, M. Boost your brain, while having a break! The effects of long-term cognitively engaging physical activity breaks on children’s executive functions and academic achievement. PLoS ONE 2019, 14, e0212482. [Google Scholar] [CrossRef] [PubMed]
- Wollseiffen, P.; Ghadiri, A.; Scholz, A.; Strüder, H.K.; Herpers, R.; Peters, T.; Schneider, S. Short bouts of intensive exercise during the workday have a positive effect on neuro-cognitive performance. Stress Health 2016, 32, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Herold, F.; Ludyga, S.; Cheval, B.; Zhang, Z.; Mücke, M.; Kramer, A.F.; Li, J.; Kong, Z.; Zou, L. Neurobehavioral mechanisms underlying the effects of physical exercise break on episodic memory during prolonged sitting. Complement. Ther. Clin. Pract. 2022, 48, 101553. [Google Scholar] [CrossRef] [PubMed]
- Heinze, K.; Cumming, J.; Dosanjh, A.; Palin, S.; Poulton, S.; Bagshaw, A.P.; Broome, M.R. Neurobiological evidence of longer-term physical activity interventions on mental health outcomes and cognition in young people: A systematic review of randomised controlled trials. Neurosci. Biobehav. Rev. 2021, 120, 431–441. [Google Scholar] [CrossRef]
- Mahalakshmi, B.; Maurya, N.; Lee, S.D.; Bharath Kumar, V. Possible neuroprotective mechanisms of physical exercise in neurodegeneration. Int. J. Mol. Sci. 2020, 21, 5895. [Google Scholar] [CrossRef]
- Wang, Z.; van Praag, H. Exercise and the brain: Neurogenesis, synaptic plasticity, spine density, and angiogenesis. In Functional Neuroimaging in Exercise and Sport Sciences; Springer: New York, NY, USA, 2012; pp. 3–24. [Google Scholar]
- McMorris, T.; Corbett, J. Neurobiological changes as an explanation of benefits of exercise. In The Exercise Effect on Mental Health; CRC Press: Boca Raton, FL, USA, 2018; pp. 30–66. [Google Scholar]
- Schmidt, M.; Benzing, V.; Kamer, M. Classroom-based physical activity breaks and children’s attention: Cognitive engagement works! Front. Psychol. 2016, 7, 208144. [Google Scholar] [CrossRef] [PubMed]
- Pontifex, M.B.; Hillman, C.H.; Fernhall, B.O.; Thompson, K.M.; Valentini, T.A. The effect of acute aerobic and resistance exercise on working memory. Med. Sci. Sports Exerc. 2009, 41, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D.; McCullick, B.; Pendleton, D.M.; Pesce, C. Exercise and children’s cognition: The role of exercise characteristics and a place for metacognition. J. Sport Health Sci. 2015, 4, 47–55. [Google Scholar] [CrossRef]
- Salehinejad, M.A.; Nitsche, M.A. Cognition-Engaging Physical Exercises. A Framework for Improving Executive Functions. Reti Saperi Linguaggi 2019, 6, 200–219. [Google Scholar]
- Oberer, N.; Gashaj, V.; Roebers, C.M. Executive functions, visual-motor coordination, physical fitness and academic achievement: Longitudinal relations in typically developing children. Hum. Mov. Sci. 2018, 58, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Mavilidi, M.F.; Ruiter, M.; Schmidt, M.; Okely, A.D.; Loyens, S.; Chandler, P.; Paas, F. A narrative review of school-based physical activity for enhancing cognition and learning: The importance of relevancy and integration. Front. Psychol. 2018, 9, 348600. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Benzing, V.; Wallman-Jones, A.; Mavilidi, M.F.; Lubans, D.R.; Paas, F. Embodied learning in the classroom: Effects on primary school children’s attention and foreign language vocabulary learning. Psychol. Sport Exerc. 2019, 43, 45–54. [Google Scholar] [CrossRef]
- Wu, C.; Yi, Q.; Zheng, X.; Cui, S.; Chen, B.; Lu, L.; Tang, C. Effects of mind-body exercises on cognitive function in older adults: A meta-analysis. J. Am. Geriatr. Soc. 2019, 67, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, C.; Zou, L.; Liu, X.; Song, W. The effects of mind-body exercise on cognitive performance in elderly: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2018, 15, 2791. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yin, H.; Jia, Y.; Zhao, L.; Wang, L.; Chen, L.I. Effects of mind-body exercise on cognitive function in older adults with cognitive impairment: A systematic review and meta-analysis. J. Nerv. Ment. Dis. 2018, 206, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Seidler, R.D.; Bernard, J.A.; Burutolu, T.B.; Fling, B.W.; Gordon, M.T.; Gwin, J.T.; Kwak, Y.; Lipps, D.B. Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neurosci. Biobehav. Rev. 2010, 34, 721–733. [Google Scholar] [CrossRef]
- Zapparoli, L.; Mariano, M.; Paulesu, E. How the motor system copes with aging: A quantitative meta-analysis of the effect of aging on motor function control. Commun. Biol. 2022, 5, 79. [Google Scholar] [CrossRef] [PubMed]
- Coxon, J.P.; Goble, D.J.; Van Impe, A.; De Vos, J.; Wenderoth, N.; Swinnen, S.P. Reduced basal ganglia function when elderly switch between coordinated movement patterns. Cereb. Cortex 2010, 20, 2368–2379. [Google Scholar] [CrossRef]
- De Bloom, J.; Kinnunen, U.; Korpela, K. Exposure to nature versus relaxation during lunch breaks and recovery from work: Development and design of an intervention study to improve workers’ health, well-being, work performance and creativity. BMC Public Health 2014, 14, 488. [Google Scholar] [CrossRef] [PubMed]
- Noseworthy, M.; Peddie, L.; Buckler, E.J.; Park, F.; Pham, M.; Pratt, S.; Singh, A.; Puterman, E.; Liu-Ambrose, T. The effects of outdoor versus indoor exercise on psychological health, physical health, and physical activity behaviour: A systematic review of longitudinal trials. Int. J. Environ. Res. Public Health 2023, 20, 1669. [Google Scholar] [CrossRef] [PubMed]
- Brito, H.S.; Carraca, E.V.; Palmeira, A.L.; Ferreira, J.P.; Vleck, V.; Araujo, D. Benefits to performance and well-being of nature-based exercise: A critical systematic review and meta-analysis. Environ. Sci. Technol. 2021, 56, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Palac, D.; Bullard, T.; Cohen, J.D.; Nguyen, L.T.; Mudar, R.A.; Mullen, S.P. Effects of traditional vs. iPad-enhanced aerobic exercise on wayfinding efficacy and cognition: A pilot randomized controlled trial. Int. J. Environ. Res. Public Health 2019, 16, 3495. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Lee, J.E.; Zeng, N.; Pope, Z.C.; Zhang, Y.; Li, X. Home-based exergaming on preschoolers’ energy expenditure, cardiovascular fitness, body mass index and cognitive flexibility: A randomized controlled trial. J. Clin. Med. 2019, 8, 1745. [Google Scholar] [CrossRef]
- Shah, S.H.H.; Karlsen, A.S.T.; Solberg, M.; Hameed, I.A. A social VR-based collaborative exergame for rehabilitation: Codesign, development and user study. Virtual Real. 2023, 27, 3403–3420. [Google Scholar] [CrossRef]
- da Silva, D.N.F.B.; Faro, H.K.C.; Tavares, M.P.M.; do Nascimento Neto, L.I.; Agrícola, P.M.D.; da Silva Machado, D.G. Influence of workplace exercise on workers’ cognitive performance. Rev. Bras. De Med. Do Trab. 2021, 19, 157. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Plante, T.G.; Cage, C.; Clements, S.; Stover, A. Psychological benefits of exercise paired with virtual reality: Outdoor exercise energizes whereas indoor virtual exercise relaxes. Int. J. Stress Manag. 2006, 13, 108. [Google Scholar] [CrossRef]
- Greco, G.; Centrone, C.; Poli, L.; Silva, A.F.; Russo, L.; Cataldi, S.; Giustino, V.; Fischetti, F. Impact of Coastal Walking Outdoors and Virtual Reality Indoor Walking on Heart Rate, Enjoyment Levels and Mindfulness Experiences in Healthy Adults. J. Funct. Morphol. Kinesiol. 2023, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Stebbins, G. Neuropsychological Testing, 3rd ed.; Saunders Elsevier: Philadelphia, PA, USA, 2007; pp. 539–557. [Google Scholar]
- Arbuthnott, K.; Frank, J. Trail making test, part B as a measure of executive control: Validation using a set-switching paradigm. J. Clin. Exp. Neuropsychol. 2000, 22, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Brugnolo, A.; De Carli, F.; Accardo, J.; Amore, M.; Bosia, L.E.; Bruzzaniti, C.; Cappa, S.F.; Cocito, L.; Colazzo, G.; Ferrara, M.; et al. An updated Italian normative dataset for the Stroop color word test (SCWT). Neurol. Sci. 2016, 37, 365–372. [Google Scholar] [CrossRef]
- IBM Corp. Corp IBM SPSS Statistics for Windows, Version 26.0; IBM Corp: Armonk, NY, USA, 2018. [Google Scholar]
- Etnier, J.L.; Nowell, P.M.; Landers, D.M.; Sibley, B.A. A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Res. Rev. 2006, 52, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Basso, J.C.; Suzuki, W.A. The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A review. Brain Plast. 2017, 2, 127–152. [Google Scholar] [CrossRef] [PubMed]
- McMorris, T.; Hale, B.J. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain Cogn. 2012, 80, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Ludyga, S.; Gerber, M.; Brand, S.; Holsboer-Trachsler, E.; Pühse, U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology 2016, 53, 1611–1626. [Google Scholar] [CrossRef]
- Sibley, B.A.; Etnier, J.L.; Le Masurier, G.C. Effects of an acute bout of exercise on cognitive aspects of Stroop performance. J. Sport Exerc. Psychol. 2006, 28, 285–299. [Google Scholar] [CrossRef]
- Chang, Y.K.; Pesce, C.; Chiang, Y.T.; Kuo, C.Y.; Fong, D.Y. Antecedent acute cycling exercise affects attention control: An ERP study using attention network test. Front. Hum. Neurosci. 2015, 9, 156. [Google Scholar] [CrossRef]
- Yanagisawa, H.; Dan, I.; Tsuzuki, D.; Kato, M.; Okamoto, M.; Kyutoku, Y.; Soya, H. Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage 2010, 50, 1702–1710. [Google Scholar] [CrossRef]
- Hansen, C.J.; Stevens, L.C.; Coast, J.R. Exercise duration and mood state: How much is enough to feel better? Health Psychol. 2001, 20, 267. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, W.D.; Biwer, C.J.; Kalscheuer, L.K. Effects of long versus short bout exercise on fitness and weight loss in overweight females. J. Am. Coll. Nutr. 2001, 20, 494–501. [Google Scholar] [CrossRef]
- Lahart, I.; Darcy, P.; Gidlow, C.; Calogiuri, G. The effects of green exercise on physical and mental wellbeing: A systematic review. Int. J. Environ. Res. Public Health 2019, 16, 1352. [Google Scholar] [CrossRef] [PubMed]
- Pretty, J.; Peacock, J.; Sellens, M.; Griffin, M. The mental and physical health outcomes of green exercise. Int. J. Environ. Health Res. 2005, 15, 319–337. [Google Scholar] [CrossRef]
- Chen, C.; Nakagawa, S. Physical activity for cognitive health promotion: An overview of the underlying neurobiological mechanisms. Ageing Res. Rev. 2023, 86, 101868. [Google Scholar] [CrossRef] [PubMed]
- Aghjayan, S.L.; Lesnovskaya, A.; Esteban-Cornejo, I.; Peven, J.C.; Stillman, C.M.; Erickson, K.I. Aerobic exercise, cardiorespiratory fitness, and the human hippocampus. Hippocampus 2021, 31, 817–844. [Google Scholar] [CrossRef]
- Ng, Y.L.; Ma, F.; Ho, F.K.; Ip, P.; Fu, K.W. Effectiveness of virtual and augmented reality-enhanced exercise on physical activity, psychological outcomes, and physical performance: A systematic review and meta-analysis of randomized controlled trials. Comput. Hum. Behav. 2019, 99, 278–291. [Google Scholar] [CrossRef]
- Ludyga, S.; Brand, S.; Gerber, M.; Weber, P.; Brotzmann, M.; Habibifar, F.; Pühse, U. An event-related potential investigation of the acute effects of aerobic and coordinative exercise on inhibitory control in children with ADHD. Dev. Cogn. Neurosci. 2017, 28, 21–28. [Google Scholar] [CrossRef]
- Erickson, K.I.; Leckie, R.L.; Weinstein, A.M. Physical activity, fitness, and gray matter volume. Neurobiol. Aging 2014, 35, S20–S28. [Google Scholar] [CrossRef]
- Staiano, A.E.; Calvert, S.L. Exergames for physical education courses: Physical, social, and cognitive benefits. Child Dev. Perspect. 2011, 5, 93–98. [Google Scholar] [CrossRef]
- Gajewski, P.D.; Falkenstein, M.; Thönes, S.; Wascher, E. Stroop task performance across the lifespan: High cognitive reserve in older age is associated with enhanced proactive and reactive interference control. NeuroImage 2020, 207, 116430. [Google Scholar] [CrossRef]
- Moret, B.; Nucci, M.; Campana, G. Effects of exergames on mood and cognition in healthy older adults: A randomized pilot study. Front. Psychol. 2022, 13, 1018601. [Google Scholar] [CrossRef] [PubMed]
- Adcock, M.; Sonder, F.; Schättin, A.; Gennaro, F.; de Bruin, E.D. A usability study of a multicomponent video game-based training for older adults. Eur. Rev. Aging Phys. Act. 2020, 17, 3. [Google Scholar] [CrossRef]
- Shahmoradi, L.; Mohammadian, F.; Rahmani Katigari, M. A systematic review on serious games in attention rehabilitation and their effects. Behav. Neurol. 2022, 2022, 2017975. [Google Scholar] [CrossRef]
- Nahum, M.; Bavelier, D. Video games as rich environments to foster brain plasticity. Handb. Clin. Neurol. 2020, 168, 117–136. [Google Scholar] [PubMed]
- Schättin, A.; Pickles, J.; Flagmeier, D.; Schärer, B.; Riederer, Y.; Niedecken, S.; Villiger, S.; Jurt, R.; Kind, N.; Scott, S.N.; et al. Development of a novel home-based exergame with on-body feedback: Usability study. JMIR Serious Games 2022, 10, e38703. [Google Scholar] [CrossRef] [PubMed]
- Schättin, A.; Arner, R.; Gennaro, F.; de Bruin, E.D. Adaptations of prefrontal brain activity, executive functions, and gait in healthy elderly following exergame and balance training: A randomized-controlled study. Front. Aging Neurosci. 2016, 8, 278. [Google Scholar] [CrossRef]
- Glass, B.D.; Maddox, W.T.; Love, B.C. Real-time strategy game training: Emergence of a cognitive flexibility trait. PLoS ONE 2013, 8, e70350. [Google Scholar] [CrossRef]
- Kempermann, G.; Fabel, K.; Ehninger, D.; Babu, H.; Leal-Galicia, P.; Garthe, A.; Wolf, S.A. Why and how physical activity promotes experience-induced brain plasticity. Front. Neurosci. 2010, 4, 189. [Google Scholar] [CrossRef]
- Fabel, K.; Kempermann, G. Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromolecular Med. 2008, 10, 59–66. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.M.; Knight, T.M.; Pullin, A.S. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health 2010, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Bratman, G.N.; Daily, G.C.; Levy, B.J.; Gross, J.J. The benefits of nature experience: Improved affect and cognition. Landsc. Urban Plan. 2015, 138, 41–50. [Google Scholar] [CrossRef]
- Araújo, R.A.; Oliveira, J.M.; Ferreira, S.B.; Alves, J.G.B.; Guedes, D.V.; Guimarães, F.L.; Cavalcanti, A.P.S.; Santos, V.C.; Freitas, M.P.; Coelho, V.R.; et al. Outdoor physical activity enhances executive functioning in institutionalized older adults: A randomized controlled trial. Front. Aging Neurosci. 2019, 11, 107. [Google Scholar]
- Bailey, D.P.; Marques, E.; Silva, C. The effect of outdoor activity on cognitive performance in school children: A systematic review. Sports Med. 2018, 48, 2061–2078. [Google Scholar]
- Brito, R.G.; Marinho, V.; Pequeno, A.L.; Costa, F.S.; Lemos, T.; Braga, A.M. Physical exercise and executive functions in institutionalized older adults: A randomized controlled trial. Aging Clin. Exp. Res. 2021, 33, 109–115. [Google Scholar]
- Gidlow, C.J.; Jones, M.V.; Hurst, G.; Masterson, D.; Clark-Carter, D.; Tarvainen, M.P.; Smith, G.; Nieuwenhuijsen, M. Where to put your best foot forward: Psycho-physiological responses to walking in natural and urban environments. J. Environ. Psychol. 2016, 45, 22–29. [Google Scholar] [CrossRef]
- Hansen, M.M.; Jones, R.; Tocchini, K. Shinrin-yoku (forest bathing) and nature therapy: A state-of-the-art review. Int. J. Environ. Res. Public Health 2017, 14, 851. [Google Scholar] [CrossRef]
- Dadvand, P.; Tischer, C.; Estarlich, M.; Llop, S.; Dalmau-Bueno, A.; López-Vicente, M.; Valentín, A.; de Keijzer, C.; Fernández-Somoano, A.; Lertxundi, N.; et al. Lifelong residential exposure to green space and attention: A population-based prospective study. Environ. Health Perspect. 2017, 125, 097016. [Google Scholar] [CrossRef]
- Rogerson, M.; Wood, C.; Pretty, J.; Schoenmakers, P.; Bloomfield, D.; Barton, J. Regular doses of nature: The efficacy of green exercise interventions for mental wellbeing. Int. J. Environ. Res. Public Health 2020, 17, 1526. [Google Scholar] [CrossRef]
- McMahan, E.A. Happiness comes naturally: Engagement with nature as a route to positive subjective well-being. In Handbook of Well-Being; Diener, E., Oishi, S., Tay, L., Eds.; DEF Publishers: Salt Lake City, UT, USA, 2018. [Google Scholar]
- Isacco, L.; Miles-Chan, J.L. Gender-specific considerations in physical activity, thermogenesis and fat oxidation: Implications for obesity management. Obes. Rev. 2018, 19, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Lodi, E.; Rodighiero, E.; Donati, F.; Pergreffi, M.; D’Antonio, L.; Guicciardi, C.; Morales, J.R.; Lodi, G.; Modena, M.G. Sex and physical exercise: One only size does not fit all. Differences between men and women in regulation and adaptations in response to exercise. Ital. J. Gend.-Specif. Med. 2022, 8, 163–171. [Google Scholar]
- Parthimos, T.; Smyrnis, N.; Pappageorgiou, S.G.; Zalonis, I. Does intensive aerobic training influences cognition in middle-aged men? Int. J. Sports Exerc. Med. 2017, 3, 53. [Google Scholar] [CrossRef]
- Sepahvand, H.; Zareian, E.; Aghaei, H.; Sahraei, H. Cognitive function in male track and field Iranian national team athletes. Annu. Res. Rev. Biol. 2015, 8, 1–9. [Google Scholar] [CrossRef]
- Cox, R.H.; Thomas, T.R.; Hinton, P.S.; Donahue, O.M. Effects of Acute Bouts of Aerobic Exercise of Varied Intensity on Subjective Mood Experiences in Women of Different Age Groups Across Time. J. Sport Behav. 2006, 29, 40. [Google Scholar]
- Rocheleau, C.A.; Webster, G.D.; Bryan, A.; Frazier, J. Moderators of the relationship between exercise and mood changes: Gender, exertion level, and workout duration. Psychol. Health 2004, 19, 491–506. [Google Scholar] [CrossRef]
Cognitive Variables | Mean | Std. Deviation |
---|---|---|
TMT—A score | ||
NPAB | 84.0 | 11.77 |
OPAB | 56.0 | 10.97 |
PABEx | 48.78 | 9.47 |
TMT—B score | ||
NPAB | 178.89 | 20.80 |
OPAB | 136.56 | 13.70 |
PABEx | 125.67 | 18.63 |
SCWT interference/time score | ||
NPAB | 32.06 | 7.67 |
OPAB | 23.10 | 4.74 |
PABEx | 24.88 | 5.07 |
SCWT interference/error score | ||
NPAB | 2.91 | 0.75 |
OPAB | 2.02 | 0.28 |
PABEx | 2.63 | 0.68 |
Cognitive Variables | NPAB | OPAB | PABEx | Test Statistic | Asymptotic Sig. |
---|---|---|---|---|---|
TMT-A mean rank | 3.00 a,***,b,*** | 1.78 a,*** | 1.22 b,*** | 44.66 | <0.001 |
TMT-B mean rank | 3.00 a,***,b,*** | 1.89 a,***,c,* | 1.11 b,***,c,* | 48.67 | <0.001 |
SCWT Interference-Time mean rank | 3.00 a,***,b,*** | 1.56 a,*** | 1.44 b,*** | 40.67 | <0.001 |
SCWT interference-Error mean rank | 2.56 a,*** | 1.17 a,***,c,*** | 2.28 c,*** | 32.81 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischetti, F.; Pepe, I.; Greco, G.; Ranieri, M.; Poli, L.; Cataldi, S.; Vimercati, L. Ten-Minute Physical Activity Breaks Improve Attention and Executive Functions in Healthcare Workers. J. Funct. Morphol. Kinesiol. 2024, 9, 102. https://doi.org/10.3390/jfmk9020102
Fischetti F, Pepe I, Greco G, Ranieri M, Poli L, Cataldi S, Vimercati L. Ten-Minute Physical Activity Breaks Improve Attention and Executive Functions in Healthcare Workers. Journal of Functional Morphology and Kinesiology. 2024; 9(2):102. https://doi.org/10.3390/jfmk9020102
Chicago/Turabian StyleFischetti, Francesco, Ilaria Pepe, Gianpiero Greco, Maurizio Ranieri, Luca Poli, Stefania Cataldi, and Luigi Vimercati. 2024. "Ten-Minute Physical Activity Breaks Improve Attention and Executive Functions in Healthcare Workers" Journal of Functional Morphology and Kinesiology 9, no. 2: 102. https://doi.org/10.3390/jfmk9020102
APA StyleFischetti, F., Pepe, I., Greco, G., Ranieri, M., Poli, L., Cataldi, S., & Vimercati, L. (2024). Ten-Minute Physical Activity Breaks Improve Attention and Executive Functions in Healthcare Workers. Journal of Functional Morphology and Kinesiology, 9(2), 102. https://doi.org/10.3390/jfmk9020102