Sit-to-Stand Power Is a Stronger Predictor of Gait Speed than Knee Extension Strength
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol Measurements
2.3. Statistical Analysis
3. Results
Associations between KES, STS Power, and Gait Speed Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Middleton, A.; Fritz, S.L.; Lusardi, M. Walking speed: The functional vital sign. J. Aging Phys. Act. 2015, 23, 314–322. [Google Scholar] [CrossRef]
- Newman, A.B.; Simonsick, E.M.; Naydeck, B.L.; Boudreau, R.M.; Kritchevsky, S.B.; Nevitt, M.C.; Pahor, M.; Satterfield, S.; Brach, J.S.; Studenski, S.A.; et al. Association of Long-Distance Corridor Walk Performance with Mortality, Cardiovascular Disease, Mobility Limitation, and Disability. JAMA 2006, 295, 2018. [Google Scholar] [CrossRef] [PubMed]
- Grosicki, G.J.; Zepeda, C.S.; Sundberg, C.W. Single muscle fibre contractile function with ageing. J. Physiol. 2022, 600, 5005–5026. [Google Scholar] [CrossRef] [PubMed]
- Van Kan, G.A.; Rolland, Y.; Andrieu, S.; Bauer, J.; Beauchet, O.; Bonnefoy, M.; Cesari, M.; Donini, L.M.; Gillette-Guyonnet, S.; Inzitari, M.; et al. Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J. Nutr. Health Aging 2009, 13, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Mcgrath, B.M.; Johnson, P.J.; Mcgrath, R.; Cawthon, P.M.; Klawitter, L.; Choi, B. A Matched Cohort Analysis for Examining the Association Between Slow Gait Speed and Shortened Longevity in Older Americans. J. Appl. Gerontol. 2022, 41, 1905–1913. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S. Gait Speed and Survival in Older Adults. JAMA 2011, 305, 50. [Google Scholar] [CrossRef] [PubMed]
- Kuang, K.; Huisingh-Scheetz, M.; Miller, M.J.; Waite, L.; Kotwal, A.A. The association of gait speed and self-reported difficulty walking with social isolation: A nationally-representative study. J. Am. Geriatr. Soc. 2023, 71, 2549–2556. [Google Scholar] [CrossRef] [PubMed]
- Trombetti, A.; Reid, K.F.; Hars, M.; Herrmann, F.R.; Pasha, E.; Phillips, E.M.; Fielding, R.A. Age-associated declines in muscle mass, strength, power, and physical performance: Impact on fear of falling and quality of life. Osteoporos. Int. 2016, 27, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Fragala, M.S.; Alley, D.E.; Shardell, M.D.; Harris, T.B.; McLean, R.R.; Kiel, D.P.; Cawthon, P.M.; Dam, T.-T.L.; Ferrucci, L.; Guralnik, J.M.; et al. Comparison of Handgrip and Leg Extension Strength in Predicting Slow Gait Speed in Older Adults. J. Am. Geriatr. Soc. 2016, 64, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.C.; Neri, S.G.R.; Vainshelboim, B.; Gadelha, A.B.; Bottaro, M.; De Oliveira, R.J.; Lima, R.M. Normative Values of Knee Extensor Isokinetic Strength for Older Women and Implications for Physical Function. J. Geriatr. Phys. Ther. 2019, 42, E25–E31. [Google Scholar] [CrossRef]
- Zanker, J.; Scott, D.; Alajlouni, D.; Kirk, B.; Bird, S.; DeBruin, D.; Vogrin, S.; Bliuc, D.; Tran, T.; Cawthon, P.; et al. Mortality, falls and slow walking speed are predicted by different muscle strength and physical performance measures in women and men. Arch. Gerontol. Geriatr. 2023, 114, 105084. [Google Scholar] [CrossRef] [PubMed]
- Osawa, Y.; Shaffer, N.C.; Shardell, M.D.; Studenski, S.A.; Ferrucci, L. Changes in knee extension peak torque and body composition and their relationship with change in gait speed. J. Cachexia Sarcopenia Muscle 2019, 10, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Prevett, C.; Moncion, K.; Phillips, S.M.; Richardson, J.; Tang, A. Role of Resistance Training in Mitigating Risk for Mobility Disability in Community-Dwelling Older Adults: A Systematic Review and Meta-analysis. Arch. Phys. Med. Rehabil. 2022, 103, P2023–P2035. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huang, W.Y.; Zhao, Y. Efficacy of Exercise on Muscle Function and Physical Performance in Older Adults with Sarcopenia: An Updated Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 8212. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Ohta, J.; Seki, M.; Ao, M.; Okajima, R.; Kuwabara, A.; Takaoka, H.; Aoyama, K.; Tanaka, K. Comparison of lower leg muscle strength and grip strength for diagnosing slower gait speed in the elderly. Osteoporos. Sarcopenia 2017, 3, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Lunt, E.; Ong, T.; Gordon, A.L.; Greenhaff, P.L.; Gladman, J.R.F. The clinical usefulness of muscle mass and strength measures in older people: A systematic review. Age Ageing 2021, 50, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Toonstra, J.; Mattacola, C.G. Test-Retest Reliability and Validity of Isometric Knee-Flexion and -Extension Measurement Using 3 Methods of Assessing Muscle Strength. J. Sport Rehabil. 2013, 22, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Buendía-Romero, Á.; Hernández-Belmonte, A.; Martínez-Cava, A.; García-Conesa, S.; Franco-López, F.; Conesa-Ros, E.; Courel-Ibáñez, J. Isometric knee extension test: A practical, repeatable, and suitable tool for lower-limb screening among institutionalized older adults. Exp. Gerontol. 2021, 155, 111575. [Google Scholar] [CrossRef] [PubMed]
- Reid, K.F.; Fielding, R.A. Skeletal Muscle Power: A Critical Determinant of Physical Functioning in Older Adults. Exerc. Sport Sci. Rev. 2012, 40, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Alcazar, J.; Navarrete-Villanueva, D.; Mañas, A.; Alegre, L.M.; Villa, G.; Gómez-Cabello, A.; Pedrero-Chamizo, R.; Gusi, N.; González-Gross, M.; Casajús, J.A.; et al. ‘Fat but powerful’ paradox: Association of muscle power and adiposity markers with allcause mortality in older adults from the EXERNET multicentre study. Br. J. Sports Med. 2021, 55, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Bean, J.F.; Kiely, D.K.; Herman, S.; Leveille, S.G.; Mizer, K.; Frontera, W.R.; Fielding, R.A. The Relationship Between Leg Power and Physical Performance in Mobility-Limited Older People. J. Am. Geriatr. Soc. 2002, 50, 461–467. [Google Scholar] [PubMed]
- Bean, J.F.; Kiely, D.K.; Larose, S.; Goldstein, R.; Frontera, W.R.; Leveille, S.G. Are changes in leg power responsible for clinically meaningful improvements in mobility in older adults? J. Am. Geriatr. Soc. 2010, 58, 2363–2368. [Google Scholar] [CrossRef] [PubMed]
- Dermott, E.J.M.; Balshaw, T.G.; Brooke-Wavell, K.; Maden-Wilkinson, T.M.; Folland, J.P. Fast and ballistic contractions involve greater neuromuscular power production in older adults during resistance exercise. Eur. J. Appl. Physiol. 2022, 122, 1639–1655. [Google Scholar] [CrossRef] [PubMed]
- Tøien, T.; Malmo, T.; Espedal, L.; Wang, E. Maximal intended velocity enhances strength training-induced neuromuscular stimulation in older adults. Eur. J. Appl. Physiol. 2022, 122, 2627–2636. [Google Scholar] [CrossRef] [PubMed]
- Hvid, L.G.; Strotmeyer, E.S.; Skjødt, M.; Magnussen, L.V.; Andersen, M.; Caserotti, P. Voluntary muscle activation improves with power training and is associated with changes in gait speed in mobility-limited older adults—A randomized controlled trial. Exp. Gerontol. 2016, 80, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Schaun, G.Z.; Bamman, M.M.; Alberton, C.L. High-velocity resistance training as a tool to improve functional performance and muscle power in older adults. Exp. Gerontol. 2021, 156, 111593. [Google Scholar] [CrossRef] [PubMed]
- Lopez, P.; Rech, A.; Petropoulou, M.; Newton, R.U.; Taaffe, D.R.; Galvão, D.A.; Turella, D.J.P.; Freitas, S.R.; Radaelli, R. Does High-Velocity Resistance Exercise Elicit Greater Physical Function Benefits Than Traditional Resistance Exercise in Older Adults? A Systematic Review and Network Meta-Analysis of 79 Trials. J. Gerontol. Ser. A 2023, 78, 1471–1482. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, A.T.; Steele, J.; Angielczyk, D.; Belio, M.; Schoenfeld, B.J.; Quiles, N. Comparison of Power Training vs Traditional Strength Training on Physical Function in Older Adults A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e2211623. [Google Scholar] [CrossRef] [PubMed]
- Freitas, S.; Cruz-Montecinos, C.; Ratel, S.; Pinto, R. Powerpenia: Should it be considered a biomarker of healthy aging? Sports Med.-Open 2024, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Alcazar, J.; Guadalupe-Grau, A.; García-García, F.J.; Ara, I.; Alegre, L.M. Skeletal Muscle Power Measurement in Older People: A Systematic Review of Testing Protocols and Adverse Events. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2018, 73, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Baltasar-Fernandez, I.; Alcazar, J.; Losa-Reyna, J.; Soto-Paniagua, H.; Alegre, L.M.; Takai, Y.; Ruiz-Cárdenas, J.D.; Signorile, J.F.; Rodriguez-Mañas, L.; García-García, F.J.; et al. Comparison of available equations to estimate sit-to-stand muscle power and their association with gait speed and frailty in older people: Practical applications for the 5-rep sit-to-stand test. Exp. Gerontol. 2021, 156, 111619. [Google Scholar] [CrossRef] [PubMed]
- Alcazar, J.; Losa-Reyna, J.; Rodriguez-Lopez, C.; Alfaro-Acha, A.; Rodriguez-Mañas, L.; Ara, I.; García-García, F.J.; Alegre, L.M. The sit-to-stand muscle power test: An easy, inexpensive and portable procedure to assess muscle power in older people. Exp. Gerontol. 2018, 112, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Burbank, C.M.; Branscum, A.; Bovbjerg, M.L.; Hooker, K.; Smit, E. Muscle power predicts frailty status over four years: A retrospective cohort study of the National Health and Aging Trends Study. JFSF 2023, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hetherington-Rauth, M.; Magalhães, J.P.; Alcazar, J.; Rosa, G.B.; Correia, I.R.; Ara, I.; Sardinha, L.B. Relative Sit-to-Stand Muscle Power Predicts an Older Adult’s Physical Independence at Age of 90 Yrs Beyond That of Relative Handgrip Strength, Physical Activity, and Sedentary Time: A Cross-sectional Analysis. Am. J. Phys. Med. Rehabil. 2022, 101, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Simpkins, C.; Yang, F. Muscle power is more important than strength in preventing falls in community-dwelling older adults. J. Biomech. 2022, 134, 111018. [Google Scholar] [CrossRef] [PubMed]
- Hyngstrom, A.S.; Cho, C.C.; Barillas, R.B.; Joshi, M.; Rowley, T.W.; Keenan, K.G.; Staudenmayer, J.; Swartz, A.M.; Strath, S.J. Identification of Latent Classes of Motor Performance in a Heterogenous Population of Adults. Arch. Rehabil. Res. Clin. Transl. 2020, 2, 100080. [Google Scholar] [CrossRef] [PubMed]
- Baltasar-Fernandez, I.; Alcazar, J.; Rodriguez-Lopez, C.; Losa-Reyna, J.; Alonso-Seco, M.; Ara, I.; Alegre, L.M. Sit-to-stand muscle power test: Comparison between estimated and force plate-derived mechanical power and their association with physical function in older adults. Exp. Gerontol. 2021, 145, 111213. [Google Scholar] [CrossRef] [PubMed]
- Kanayama, A.; Minami, M.; Yamamoto, S.; Ohmine, T.; Fujiwara, M.; Murakami, T.; Okuno, S.; Ueba, R.; Iwata, A. Examination of the Impact of Strength and Velocity of the Knee and Ankle on Gait Speed in Community-Dwelling Older Adults. Healthcare 2022, 10, 2093. [Google Scholar] [CrossRef] [PubMed]
- Hafer, J.F.; Boyer, K.A. Comparisons of knee extensor functional demand during gait by age, physical activity level, and the impact of acute exercise and walking speed. J. Appl. Biomech. 2020, 36, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Cuoco, A.; Callahan, D.M.; Sayers, S.; Frontera, W.R.; Bean, J.; Fielding, R.A. Impact of Muscle Power and Force on Gait Speed in Disabled Older Men and Women. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2004, 59, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Izquierdo, M.; García-Hermoso, A.; Ordoñez-Mora, L.T.; Cano-Gutierrez, C.; Campo-Lucumí, F.; Pérez-Sousa, M.Á. Sit to stand muscle power reference values and their association with adverse events in Colombian older adults. Sci. Rep. 2022, 12, 11820. [Google Scholar] [CrossRef] [PubMed]
- Losa-Reyna, J.; Alcazar, J.; Rodríguez-Gómez, I.; Alfaro-Acha, A.; Alegre, L.M.; Rodríguez-Mañas, L.; Ara, I.; García-García, F.J. Low relative mechanical power in older adults: An operational definition and algorithm for its application in the clinical setting. Exp. Gerontol. 2020, 142, 111141. [Google Scholar] [CrossRef] [PubMed]
- Kirk, B.; French, C.; Gebauer, M.; Vogrin, S.; Zanker, J.; Sales, M.; Duque, G. Diagnostic power of relative sit-to-stand muscle power, grip strength, and gait speed for identifying a history of recurrent falls and fractures in older adults. Eur. Geriatr. Med. 2023, 14, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.; Paulson, S.; Powers, M. Maximal, Not Habitual, Walking Velocity is More Highly Correlated to Functional Fitness of Community-Dwelling Older Adults. J. Aging Phys. Act. 2016, 24, 305–310. [Google Scholar] [CrossRef]
- Ferrari, L.; Bochicchio, G.; Bottari, A.; Lucertini, F.; Scarton, A.; Pogliaghi, S. Estimating Muscle Power of the Lower Limbs through the 5-Sit-to-Stand Test: A Comparison of Field vs. Laboratory Method. Appl. Sci. 2022, 12, 11577. [Google Scholar] [CrossRef]
Characteristic | n = 84 1 |
---|---|
Age, years | 66.6 (9.4) |
Female | 47 (56%) |
Race/ethnicity | |
American Indian or Alaska Native | 1 (1.2%) |
Asian | 1 (1.2%) |
Black | 5 (6.0%) |
White | 74 (88%) |
Hispanic | 1 (1.2%) |
Other | 2 (2.4%) |
Highest education completed | |
High school | 14 (17%) |
College | 40 (48%) |
Graduate school | 30 (36%) |
Annual household income | |
<USD 5000 | 1 (1.4%) |
USD 5000–14,999 | 3 (4.2%) |
USD 15,000–24,999 | 9 (13%) |
USD 25,000–34,000 | 12 (17%) |
USD 35,000–49,999 | 11 (15%) |
>USD 50,000 | 36 (50%) |
Did not provide | 12 |
BMI, kg/m2 | 28.1 (5.7) |
Relative knee extension strength, kg/kg | 0.33 (0.10) |
Relative STS power, W/kg | 2.69 (0.97) |
Usual gait speed, m/s | 1.27 (0.35) |
Fast gait speed, m/s | 1.76 (0.65) |
UGS | FGS | |||||
---|---|---|---|---|---|---|
Characteristic | Std. Beta | 95% CI | p-Value | Std. Beta | 95% CI | p-Value |
Age | 0.01 | −0.21, 0.22 | 0.95 | −0.01 | −0.22, 0.19 | 0.91 |
Sex (Male) | 0.02 | −0.21, 0.24 | 0.89 | 0.01 | −0.21, 0.22 | 0.96 |
BMI | −0.26 | −0.49, −0.03 | 0.03 | −0.18 | −0.40, 0.05 | 0.12 |
Relative KES | 0.35 | 0.09, 0.62 | 0.01 | 0.44 | 0.19, 0.70 | <0.001 |
UGS | FGS | |||||
---|---|---|---|---|---|---|
Characteristic | Std. Beta | 95% CI | p-Value | Std. Beta | 95% CI | p-Value |
Age | 0.03 | −0.17, 0.22 | 0.78 | 0.00 | −0.18, 0.17 | 0.96 |
Sex (Male) | 0.08 | −0.12, 0.27 | 0.44 | 0.07 | −0.11, 0.25 | 0.42 |
BMI | −0.28 | −0.48, −0.08 | 0.01 | −0.19 | −0.38, −0.01 | 0.04 |
Relative STS power | 0.42 | 0.21, 0.62 | <0.001 | 0.55 | 0.36, 0.74 | <0.001 |
UGS | FGS | |||||
---|---|---|---|---|---|---|
Characteristic | Std. Beta | 95% CI | p-Value | Std. Beta | 95% CI | p-Value |
Age | 0.04 | −0.16, 0.24 | 0.68 | 0.03 | −0.15, 0.21 | 0.75 |
Sex (Male) | −0.02 | −0.23, 0.19 | 0.87 | −0.04 | −0.23, 0.15 | 0.65 |
BMI | −0.20 | −0.42, 0.02 | 0.07 | −0.10 | −0.30, 0.10 | 0.31 |
Relative KES | 0.22 | −0.04, 0.48 | 0.09 | 0.25 | 0.02, 0.48 | 0.03 |
Relative STS power | 0.37 | 0.15, 0.58 | 0.001 | 0.51 | 0.31, 0.70 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinbrink, G.M.; Martinez, J.; Swartz, A.M.; Strath, S.J. Sit-to-Stand Power Is a Stronger Predictor of Gait Speed than Knee Extension Strength. J. Funct. Morphol. Kinesiol. 2024, 9, 103. https://doi.org/10.3390/jfmk9020103
Steinbrink GM, Martinez J, Swartz AM, Strath SJ. Sit-to-Stand Power Is a Stronger Predictor of Gait Speed than Knee Extension Strength. Journal of Functional Morphology and Kinesiology. 2024; 9(2):103. https://doi.org/10.3390/jfmk9020103
Chicago/Turabian StyleSteinbrink, Garrett M., Julian Martinez, Ann M. Swartz, and Scott J. Strath. 2024. "Sit-to-Stand Power Is a Stronger Predictor of Gait Speed than Knee Extension Strength" Journal of Functional Morphology and Kinesiology 9, no. 2: 103. https://doi.org/10.3390/jfmk9020103
APA StyleSteinbrink, G. M., Martinez, J., Swartz, A. M., & Strath, S. J. (2024). Sit-to-Stand Power Is a Stronger Predictor of Gait Speed than Knee Extension Strength. Journal of Functional Morphology and Kinesiology, 9(2), 103. https://doi.org/10.3390/jfmk9020103