Exploring the Molecular Adaptations, Benefits, and Future Direction of Exercise Training: Updated Insights into Cardiovascular Health
Abstract
:1. Introduction
2. Discussion
2.1. ET Guidelines
2.2. Cardiorespiratory Fitness (CRF) and Mortality
2.3. Muscular Strength (MusS) and Mortality
2.4. Muscle Mass and Mortality
2.5. The Case of the Unfit
2.6. DLD and ET
2.7. Glucose Regulation and ET
2.8. Renal Adaptations with ET
2.9. Vascular Adaptations with ET
2.10. Heart Failure and ET
2.11. Atrial Fibrillation and ET
2.12. Malignancy and ET
2.13. Future Directions and Diverse Modalities of Personalized ET Approaches
3. Conclusions
Funding
Conflicts of Interest
References
- U.S. Department of Health and Human Services. 2018 Physical Activity Guidelines Advisory Committee Scientific Report. Available online: https://health.gov/our-work/nutrition-physical-activity/physical-activity-guidelines/current-guidelines/scientific-report (accessed on 25 February 2024).
- American Heart Association Recommendations for Physical Activity in Adults and Kids. Available online: https://www.heart.org/en/healthy-living/fitness/fitness-basics/aha-recs-for-physical-activity-in-adults (accessed on 25 February 2024).
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- World Health Organization. Fact Sheets: Physical Activity. Available online: http://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 11 November 2018).
- Clyne, N.; Anding-Rost, K. Exercise training in chronic kidney disease—Effects, expectations and adherence. Clin. Kidney J. 2021, 14, ii3–ii14. [Google Scholar] [CrossRef]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.-P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.-T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef] [PubMed]
- Sulague, R.M.; Suan, N.N.M.; Mendoza, M.F.; Lavie, C.J. The associations between exercise and lipid biomarkers. Prog. Cardiovasc. Dis. 2022, 75, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lee, D.-C.; Li, Y.; Zhu, W.; Zhang, R.; Sui, X.; Lavie, C.J.; Blair, S.N. Associations of Resistance Exercise with Cardiovascular Disease Morbidity and Mortality. Med. Sci. Sports Exerc. 2019, 51, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.F.; Lavie, C.J. Clinical associations between exercise and lipoproteins. Curr. Opin. Infect. Dis. 2022, 33, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Katzmarzyk, P.T.; Church, T.S.; Blair, S.N. Cardiorespiratory Fitness Attenuates the Effects of the Metabolic Syndrome on All-Cause and Cardiovascular Disease Mortality in Men. Arch. Intern. Med. 2004, 164, 1092–1097. [Google Scholar] [CrossRef]
- Mora, S.; Redberg, R.F.; Cui, Y.; Whiteman, M.K.; Flaws, J.A.; Sharrett, A.R.; Blumenthal, R.S. Ability of Exercise Testing to Predict Cardiovascular and All-Cause Death in Asymptomatic Women. JAMA 2003, 290, 1600–1607. [Google Scholar] [CrossRef]
- Mendoza, M.V.F.; Kachur, S.M.; Lavie, C.J. Updated Clinical Guide to Exercise and Lipids. In Clinical Lipidology: A Companion to Braunwald’s Heart Disease, 3rd ed.; Ballantyne, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 132–140.e2. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780323882866000157 (accessed on 26 February 2024).
- Garatachea, N.; Santos-Lozano, A.; Sanchis-Gomar, F.; Fiuza-Luces, C.; Pareja-Galeano, H.; Emanuele, E.; Lucia, A. Elite Athletes Live Longer than the General Population: A Meta-Analysis. Mayo Clin. Proc. 2014, 89, 1195–1200. [Google Scholar] [CrossRef]
- Kettunen, O.; Vuorimaa, T.; Vasankari, T. A 12-month exercise intervention decreased stress symptoms and increased mental resources among working adults—Results perceived after a 12-month follow-up. Int. J. Occup. Med. Environ. Health 2015, 28, 157–168. [Google Scholar] [CrossRef]
- Aengevaeren, V.L.; Mosterd, A.; Sharma, S.; Braber, T.L.; Thompson, P.D.; Velthuis, B.K.; Eijsvogels, T.M. Coronary Atherosclerosis in Athletes. JACC Cardiovasc. Imaging 2019, 12, 1587–1589. [Google Scholar] [CrossRef]
- Franklin, B.A.; Thompson, P.D.; Al-Zaiti, S.S.; Albert, C.M.; Hivert, M.-F.; Levine, B.D.; Lobelo, F.; Madan, K.; Sharrief, A.Z.; Eijsvogels, T.M.; et al. Exercise-Related Acute Cardiovascular Events and Potential Deleterious Adaptations Following Long-Term Exercise Training: Placing the Risks Into Perspective–An Update: A Scientific Statement From the American Heart Association. Circulation 2020, 141, E705–E736. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of Physical Activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [PubMed]
- University of Virginia School of Medicine Exercise Physiology Core Laboratory. VO2 Max Testing. Available online: https://med.virginia.edu/exercise-physiology-core-laboratory/fitness-assessment-for-community-members/vo2-max-testing/ (accessed on 5 April 2024).
- Artero, E.G.; Lee, D.-C.; Lavie, C.J.; España-Romero, V.; Sui, X.; Church, T.S.; Blair, S.N.P. Effects of Muscular Strength on Cardiovascular Risk Factors and Prognosis. J. Cardiopulm. Rehabil. Prev. 2012, 32, 351–358. [Google Scholar] [CrossRef]
- Li, R.; Xia, J.; Zhang, X.; Gathirua-Mwangi, W.G.; Guo, J.; Li, Y.; Mckenzie, S.; Song, Y. Associations of Muscle Mass and Strength with All-Cause Mortality among US Older Adults. Med. Sci. Sports Exerc. 2018, 50, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Liao, T.; Guo, T.; Zeng, Z.; Wang, S.; Yang, G.; Wang, X.; Wang, X.; Zhu, J.; Zhao, P.; et al. The relationship between sarcopenia and mortality in Chinese community-dwelling adults: A 7-year cohort study with propensity score matching and Mendelian randomization. Front. Endocrinol. 2023, 14, 1215512. [Google Scholar] [CrossRef] [PubMed]
- Indicator Metadata Registry Details. Available online: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3416 (accessed on 26 February 2024).
- Yang, Y.; Xu, H.; Liu, X.; Li, J.; Liew, Z.; Liu, X.; Huang, C.; Zhu, J.; Zhang, J.; Chen, L.; et al. Joint association of smoking and physical activity with mortality in elderly hypertensive patients: A Chinese population-based cohort study in 2007-2018. Front. Public Health 2022, 10, 1005260. [Google Scholar] [CrossRef]
- Kawakami, S.; Yasuno, T.; Kawakami, S.; Ito, A.; Fujimi, K.; Matsuda, T.; Nakashima, S.; Masutani, K.; Uehara, Y.; Higaki, Y.; et al. The moderate-intensity continuous exercise maintains renal blood flow and does not impair the renal function. Physiol. Rep. 2022, 10, e15420. [Google Scholar] [CrossRef]
- Kokkinos, P.; Faselis, C.; Samuel, I.B.H.; Pittaras, A.; Doumas, M.; Murphy, R.; Heimall, M.S.; Sui, X.; Zhang, J.; Myers, J. Cardiorespiratory Fitness and Mortality Risk Across the Spectra of Age, Race, and Sex. J. Am. Coll. Cardiol. 2022, 80, 598–609. [Google Scholar] [CrossRef]
- Halverstadt, A.; Phares, D.A.; Wilund, K.R.; Goldberg, A.P.; Hagberg, J.M. Endurance exercise training raises high-density lipoprotein cholesterol and lowers small low-density lipoprotein and very low-density lipoprotein independent of body fat phenotypes in older men and women. Metabolism 2007, 56, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Leon, A.S.; Sanchez, O.A. Response of blood lipids to exercise training alone or combined with dietary intervention. Med. Sci. Sports Exerc. 2001, 33, S502–S515. [Google Scholar] [CrossRef] [PubMed]
- Tambalis, K.; Panagiotakos, D.B.; Kavouras, S.A.; Sidossis, L.S. Responses of Blood Lipids to Aerobic, Resistance, and Combined Aerobic with Resistance Exercise Training: A Systematic Review of Current Evidence. Angiology 2008, 60, 614–632. [Google Scholar] [CrossRef] [PubMed]
- Bowe, B.; Xie, Y.; Xian, H.; Balasubramanian, S.; Zayed, M.A.; Al-Aly, Z. High Density Lipoprotein Cholesterol and the Risk of All-Cause Mortality among U.S. Veterans. Clin. J. Am. Soc. Nephrol. 2016, 11, 1784–1793. [Google Scholar] [CrossRef]
- Ko, D.T.; Alter, D.A.; Guo, H.; Koh, M.; Lau, G.; Austin, P.C.; Booth, G.L.; Hogg, W.; Jackevicius, C.A.; Lee, D.S.; et al. High-Density Lipoprotein Cholesterol and Cause-Specific Mortality in Individuals without Previous Cardiovascular Conditions. J. Am. Coll. Cardiol. 2016, 68, 2073–2083. [Google Scholar] [CrossRef] [PubMed]
- Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: Two prospective cohort studies. Eur. Heart J. 2017, 38, 2478–2486. [Google Scholar] [CrossRef] [PubMed]
- Rong, S.; Li, B.; Chen, L.; Sun, Y.; Du, Y.; Liu, B.; Robinson, J.G.; Bao, W. Association of Low-Density Lipoprotein Cholesterol Levels with More than 20-Year Risk of Cardiovascular and All-Cause Mortality in the General Population. J. Am. Heart Assoc. 2022, 11, e023690. [Google Scholar] [CrossRef] [PubMed]
- Nye, E.R.; Carlson, K.; Kirstein, P.; Rössner, S. Changes in high density lipoprotein subfractions and other lipoproteins induced by exercise. Clin. Chim. Acta 1981, 113, 51–57. [Google Scholar] [CrossRef]
- Franczyk, B.; Gluba-Brzózka, A.; Ciałkowska-Rysz, A.; Ławiński, J.; Rysz, J. The Impact of Aerobic Exercise on HDL Quantity and Quality: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 4653. [Google Scholar] [CrossRef]
- Kontush, A. HDL particle number and size as predictors of cardiovascular disease. Front. Pharmacol. 2015, 6, 218. [Google Scholar] [CrossRef]
- Durstine, J.L.; Grandjean, P.W.; Cox, C.A.; Thompson, P.D. Lipids, Lipoproteins, and Exercise. J. Cardiopulm. Rehabil. 2002, 22, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Kelley, G.A.; Kelley, K. Aerobic exercise and HDL2-C: A meta-analysis of randomized controlled trials. Atherosclerosis 2006, 184, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Wosornu, D.; Bedford, D.; Ballantyne, D. A comparison of the effects of strength and aerobic exercise training on exercise capacity and lipids after coronary artery bypass surgery. Eur. Heart J. 1996, 17, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-M.; Li, L.S.-W.; Ho, H.; Lau, C.-P. Long-term changes in exercise capacity, quality of life, body anthropometry, and lipid profiles after a cardiac rehabilitation program in obese patients with coronary heart disease. Am. J. Cardiol. 2003, 91, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsen, L.; Sanne, H.; Elmfeldt, D.; Grimby, G.; Tibblin, G.; Wedel, H. A controlled trial of physical training after myocardial infarction. Prev. Med. 1975, 4, 491–508. [Google Scholar] [CrossRef] [PubMed]
- Marti, B.; Suter, E.; Riesen, W.F.; Tschopp, A.; Wanner, H.-U.; Gutzwiller, F. Effects of long-term, self-monitored exercise on the serum lipoprotein and apolipoprotein profile in middle-aged men. Atherosclerosis 1990, 81, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Belardinelli, R.; Paolini, I.; Cianci, G.; Piva, R.; Georgiou, D.; Purcaro, A. Exercise training intervention after coronary angioplasty: The ETICA trial. J. Am. Coll. Cardiol. 2001, 37, 1891–1900. [Google Scholar] [CrossRef] [PubMed]
- Després, J.P.; Moorjani, S.; Tremblay, A.; Poehlman, E.T.; Lupien, P.J.; Nadeau, A.; Bouchard, C. Heredity and changes in plasma lipids and lipoproteins after short-term exercise training in men. Arter. Off. J. Am. Heart Assoc. Inc. 1988, 8, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Church, T.S.; LaMonte, M.J.; Barlow, C.E.; Blair, S.N. Cardiorespiratory Fitness and Body Mass Index as Predictors of Cardiovascular Disease Mortality Among Men with Diabetes. Arch. Intern. Med. 2005, 165, 2114–2120. [Google Scholar] [CrossRef]
- Stöckli, J.; Fazakerley, D.J.; James, D.E. GLUT4 exocytosis. J. Cell Sci. 2011, 124, 4147–4159. [Google Scholar] [CrossRef]
- Kjøbsted, R.; Pedersen, A.J.; Hingst, J.R.; Sabaratnam, R.; Birk, J.B.; Kristensen, J.M.; Højlund, K.; Wojtaszewski, J.F. Intact Regulation of the AMPK Signaling Network in Response to Exercise and Insulin in Skeletal Muscle of Male Patients with Type 2 Diabetes: Illumination of AMPK Activation in Recovery From Exercise. Diabetes 2016, 65, 1219–1230. [Google Scholar] [CrossRef]
- Flores-Opazo, M.; McGee, S.L.; Hargreaves, M. Exercise and GLUT4. Exerc. Sport Sci. Rev. 2020, 48, 110–118. [Google Scholar] [CrossRef]
- Diabetes Mellitus: A Major Risk Factor for Cardiovascular Disease. Circulation 1999, 100, 1132–1133. [CrossRef]
- Kuo, C.H.; Browning, K.S.; Ivy, J.L. Regulation of GLUT4 protein expression and glycogen storage after prolonged exercise. Acta Physiol. Scand. 1999, 165, 193–201. [Google Scholar] [CrossRef]
- Kraniou, G.N.; Cameron-Smith, D.; Hargreaves, M. Effect of short-term training on GLUT-4 mRNA and protein expression in human skeletal muscle. Exp. Physiol. 2004, 89, 559–563. [Google Scholar] [CrossRef]
- American Diabetes Association. Understanding Blood Glucose and Exercise. Available online: https://diabetes.org/health-wellness/fitness/blood-glucose-and-exercise (accessed on 18 March 2024).
- Strasser, B.; Pesta, D. Resistance Training for Diabetes Prevention and Therapy: Experimental Findings and Molecular Mechanisms. BioMed Res. Int. 2013, 2013, 805217. [Google Scholar] [CrossRef]
- Speakman, J.R.; Selman, C. Physical activity and resting metabolic rate. Proc. Nutr. Soc. 2003, 62, 621–634. [Google Scholar] [CrossRef]
- Bacchi, E.; Negri, C.; Zanolin, M.E.; Milanese, C.; Faccioli, N.; Trombetta, M.; Zoppini, G.; Cevese, A.; Bonadonna, R.C.; Schena, F.; et al. Metabolic Effects of Aerobic Training and Resistance Training in Type 2 Diabetic Subjects: A randomized controlled trial (the RAED2 study). Diabetes Care 2012, 35, 676–682. [Google Scholar] [CrossRef]
- Cauza, E.; Hanusch-Enserer, U.; Strasser, B.; Ludvik, B.; Metz-Schimmerl, S.; Pacini, G.; Wagner, O.; Georg, P.; Prager, R.; Kostner, K.; et al. The Relative Benefits of Endurance and Strength Training on the Metabolic Factors and Muscle Function of People with Type 2 Diabetes Mellitus. Arch. Phys. Med. Rehabil. 2005, 86, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- MacKinnon, H.J.; Wilkinson, T.J.; Clarke, A.L.; Gould, D.W.; O’sullivan, T.F.; Xenophontos, S.; Watson, E.L.; Singh, S.J.; Smith, A.C. The association of physical function and physical activity with all-cause mortality and adverse clinical outcomes in nondialysis chronic kidney disease: A systematic review. Ther. Adv. Chronic Dis. 2018, 9, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K.L.; Painter, P. Exercise in Individuals with CKD. Am. J. Kidney Dis. 2012, 59, 126–134. [Google Scholar] [CrossRef]
- Martins, P.; Marques, E.A.; Leal, D.V.; Ferreira, A.; Wilund, K.R.; Viana, J.L. Association between physical activity and mortality in end-stage kidney disease: A systematic review of observational studies. BMC Nephrol. 2021, 22, 227. [Google Scholar] [CrossRef]
- Mallamaci, F.; Pisano, A.; Tripepi, G. Physical activity in chronic kidney disease and the EXerCise Introduction to Enhance trial. Nephrol. Dial. Transplant. 2020, 35 (Suppl. S2), ii18–ii22. [Google Scholar] [CrossRef]
- Weiner, D.E.; Liu, C.K.; Miao, S.; Fielding, R.; Katzel, L.I.; Giffuni, J.; Well, A.; Seliger, S.L. Effect of Long-term Exercise Training on Physical Performance and Cardiorespiratory Function in Adults with CKD: A Randomized Controlled Trial. Am. J. Kidney Dis. 2023, 81, 59–66. [Google Scholar] [CrossRef]
- Padilla, J.; Krasnoff, J.; Da Silva, M.; Hsu, C.-Y.; Frassetto, L.; Johansen, K.L.; Painter, P. Physical functioning in patients with chronic kidney disease. J. Nephrol. 2008, 21, 550–559. [Google Scholar]
- Baker, L.A.; March, D.S.; Wilkinson, T.J.; Billany, R.E.; Bishop, N.C.; Castle, E.M.; Chilcot, J.; Davies, M.D.; Graham-Brown, M.P.M.; Greenwood, S.A.; et al. Clinical practice guideline exercise and lifestyle in chronic kidney disease. BMC Nephrol. 2022, 23, 75. [Google Scholar] [CrossRef]
- Beddhu, S.; Baird, B.C.; Zitterkoph, J.; Neilson, J.; Greene, T. Physical Activity and Mortality in Chronic Kidney Disease (NHANES III). Clin. J. Am. Soc. Nephrol. 2009, 4, 1901–1906. [Google Scholar] [CrossRef]
- Bote, M.E.; Garcia, J.J.; Hinchado, M.D.; Ortega, E. An exploratory study of the effect of regular aquatic exercise on the function of neutrophils from women with fibromyalgia: Role of IL-8 and noradrenaline. Brain Behav. Immun. 2014, 39, 107–112. [Google Scholar] [CrossRef]
- Hong, S.; Dimitrov, S.; Pruitt, C.; Shaikh, F.; Beg, N. Benefit of physical fitness against inflammation in obesity: Role of beta adrenergic receptors. Brain Behav. Immun. 2013, 39, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Aldahr, M.H.S.; El-Kader, S.M.A. Impact of exercise on renal function, oxidative stress, and systemic inflammation among patients with type 2 diabetic nephropathy. Afr. Health Sci. 2022, 22, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Watson, E.L.; Viana, J.L.; Wimbury, D.; Martin, N.; Greening, N.J.; Barratt, J.; Smith, A.C. The Effect of Resistance Exercise on Inflammatory and Myogenic Markers in Patients with Chronic Kidney Disease. Front. Physiol. 2017, 8, 541. [Google Scholar] [CrossRef] [PubMed]
- Baião, V.M.; Cunha, V.A.; Duarte, M.P.; Andrade, F.P.; Ferreira, A.P.; Nóbrega, O.T.; Viana, J.L.; Ribeiro, H.S. Effects of Exercise on Inflammatory Markers in Individuals with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Metabolites 2023, 13, 795. [Google Scholar] [CrossRef] [PubMed]
- Arazi, H.; Mohabbat, M.; Saidie, P.; Falahati, A.; Suzuki, K. Effects of Different Types of Exercise on Kidney Diseases. Sports 2022, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Stein, G.Y.; Herscovici, G.; Korenfeld, R.; Matetzky, S.; Gottlieb, S.; Alon, D.; Gevrielov-Yusim, N.; Iakobishvili, Z.; Fuchs, S. Type-II Myocardial Infarction—Patient Characteristics, Management and Outcomes. PLoS ONE 2014, 9, e84285. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.; Hu, J.; Liu, W.; Li, C.; Xu, Q.; Lu, S.; Aledan, A.K.O.; Wang, Y.; Wang, Z. Causal Association between Anemia and Cardiovascular Disease: A 2-Sample Bidirectional Mendelian Randomization Study. J. Am. Heart Assoc. 2023, 12, e029689. [Google Scholar] [CrossRef]
- Dziembowska, I.; Wójcik, M.; Bukowski, J.; Żekanowska, E. Physical Training Increases Erythroferrone Levels in Men. Biology 2021, 10, 1215. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, H.d.L.; Alfaro-Magallanes, V.M.; Moura, S.R.G.; Neves, R.V.P.; Deus, L.A.; Honorato, F.S.; Silva, V.L.; Raab, A.T.O.; Maia, B.C.H.; Padula, I.A.; et al. Does the Combined Effect of Resistance Training with EPO and Iron Sulfate Improve Iron Metabolism in Older Individuals with End-Stage Renal Disease? Nutrients 2021, 13, 3250. [Google Scholar] [CrossRef]
- Rossi, A.M.; Moullec, G.; Lavoie, K.L.; Gour-Provençal, G.; Bacon, S.L. The Evolution of a Canadian Hypertension Education Program Recommendation: The Impact of Resistance Training on Resting Blood Pressure in Adults as an Example. Can. J. Cardiol. 2013, 29, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Pescatello, L.S.; Franklin, B.A.; Fagard, R.; Farquhar, W.B.; Kelley, G.A.; Ray, C.A. Exercise and Hypertension. Med. Sci. Sports Exerc. 2004, 36, 533–553. [Google Scholar] [CrossRef]
- Eicher, J.D.; Maresh, C.M.; Tsongalis, G.J.; Thompson, P.D.; Pescatello, L.S. The additive blood pressure lowering effects of exercise intensity on post-exercise hypotension. Am. Heart J. 2010, 160, 513–520. [Google Scholar] [CrossRef]
- Song, Y.; Jia, H.; Hua, Y.; Wu, C.; Li, S.; Li, K.; Liang, Z.; Wang, Y. The Molecular Mechanism of Aerobic Exercise Improving Vascular Remodeling in Hypertension. Front. Physiol. 2022, 13, 792292. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, Y.-S.; Chien, S. Shear Stress–Initiated Signaling and Its Regulation of Endothelial Function. Arter. Thromb. Vasc. Biol. 2014, 34, 2191–2198. [Google Scholar] [CrossRef] [PubMed]
- Ruivo, J.A.; Alcântara, P. Hipertensão arterial e exercício físico. Rev. Port. Cardiol. 2012, 31, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Walker, S.; Ciani, O.; Warren, F.; Smart, N.A.; Piepoli, M.; Davos, C.H. Exercise-based cardiac rehabilitation for chronic heart failure: The EXTRAMATCH II individual participant data meta-analysis. Health Technol. Assess. 2019, 23, 1–98. [Google Scholar] [CrossRef]
- O’connor, C.M.; Whellan, D.J.; Lee, K.L.; Keteyian, S.J.; Cooper, L.S.; Ellis, S.J.; Leifer, E.S.; Kraus, W.E.; Kitzman, D.W.; Blumenthal, J.A.; et al. Efficacy and Safety of Exercise Training in Patients with Chronic Heart Failure. JAMA 2009, 301, 1439–1450. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Li, Z.B.; Zhu, M.; Cao, Y.M. Effects of exercise training on left ventricular remodelling in heart failure patients: An updated meta-analysis of randomised controlled trials. Int. J. Clin. Pract. 2012, 66, 782–791. [Google Scholar] [CrossRef]
- Hsu, C.; Fu, T.; Wang, C.; Huang, T.; Cherng, W.; Wang, J. High-Intensity Interval Training Is Associated with Improved 10-Year Survival by Mediating Left Ventricular Remodeling in Patients with Heart Failure with Reduced and Mid-Range Ejection Fraction. J. Am. Heart Assoc. 2024, 13, e031162. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Cao, P.; Zhou, W.; Sun, W.; Zhang, X.; Li, R.; Shao, W.; Wang, L.; Zou, L.; Zheng, Y. Effect of early cardiac rehabilitation on prognosis in patients with heart failure following acute myocardial infarction. BMC Sports Sci. Med. Rehabil. 2021, 13, 139. [Google Scholar] [CrossRef] [PubMed]
- Vega, R.B.; Konhilas, J.P.; Kelly, D.P.; Leinwand, L.A. Molecular Mechanisms Underlying Cardiac Adaptation to Exercise. Cell Metab. 2017, 25, 1012–1026. [Google Scholar] [CrossRef] [PubMed]
- da Silva, V.L.; Mota, G.A.F.; de Souza, S.L.B.; de Campos, D.H.S.; Melo, A.B.; Vileigas, D.F.; Coelho, P.M.; Sant’ana, P.G.; Padovani, C.; Lima-Leopoldo, A.P.; et al. Aerobic Exercise Training Improves Calcium Handling and Cardiac Function in Rats with Heart Failure Resulting from Aortic Stenosis. Int. J. Mol. Sci. 2023, 24, 12306. [Google Scholar] [CrossRef]
- ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Available online: https://academic.oup.com/eurheartj/article/42/5/373/5899003 (accessed on 18 April 2024).
- Elliott, A.D.; Verdicchio, C.V.; Mahajan, R.; Middeldorp, M.E.; Gallagher, C.; Mishima, R.S.; Hendriks, J.M.; Pathak, R.K.; Thomas, G.; Lau, D.H.; et al. An Exercise and Physical Activity Program in Patients with Atrial Fibrillation. JACC Clin. Electrophysiol. 2023, 9, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Ravens, U.; Peyronnet, R. Electrical Remodelling in Cardiac Disease. Cells 2023, 12, 230. [Google Scholar] [CrossRef]
- Zacher, J.; Dillschnitter, K.; Freitag, N.; Kreutz, T.; Bjarnason-Wehrens, B.; Bloch, W.; Predel, H.-G.; Schumann, M. Exercise training in the treatment of paroxysmal atrial fibrillation: Study protocol of the Cologne ExAfib Trial. BMJ Open 2020, 10, e040054. [Google Scholar] [CrossRef] [PubMed]
- Muhandiramge, J.; Zalcberg, J.R.; van Londen, G.J.; Warner, E.T.; Carr, P.R.; Haydon, A.; Orchard, S.G. Cardiovascular Disease in Adult Cancer Survivors: A Review of Current Evidence, Strategies for Prevention and Management, and Future Directions for Cardio-oncology. Curr. Oncol. Rep. 2022, 24, 1579–1592. [Google Scholar] [CrossRef] [PubMed]
- Physical Activity and Cancer Fact Sheet—NCI. 2020. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk/obesity/physical-activity-fact-sheet (accessed on 19 April 2024).
- Moore, S.C.; Lee, I.M.; Weiderpass, E.; Campbell, P.T.; Sampson, J.N.; Kitahara, C.M.; Keadle, S.K.; Arem, H.; de Gonzalez, A.B.; Hartge, P.; et al. Association of Leisure-Time Physical Activity with Risk of 26 Types of Cancer in 1.44 Million Adults. JAMA Intern. Med. 2016, 176, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.E.; Moore, S.C.; Arem, H.; Cook, M.B.; Trabert, B.; Håkansson, N.; Larsson, S.C.; Wolk, A.; Gapstur, S.M.; Lynch, B.M.; et al. Amount and Intensity of Leisure-Time Physical Activity and Lower Cancer Risk. J. Clin. Oncol. 2020, 38, 686–697. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Han, X.; Sun, J.; Li, C.; Adhikari, B.K.; Zhang, J.; Miao, X.; Chen, Z. Cardio-Oncology: A Myriad of Relationships between Cardiovascular Disease and Cancer. Front. Cardiovasc. Med. 2022, 9, 727487. [Google Scholar] [CrossRef]
- Jaiswal, S.; Natarajan, P.; Silver, A.J.; Gibson, C.J.; Bick, A.G.; Shvartz, E.; McConkey, M.; Gupta, N.; Gabriel, S.; Ardissino, D.; et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 111–121. [Google Scholar] [CrossRef]
- Severson, E.A.; Riedlinger, G.M.; Connelly, C.F.; Vergilio, J.-A.; Goldfinger, M.; Ramkissoon, S.; Frampton, G.M.; Ross, J.S.; Fratella-Calabrese, A.; Gay, L.; et al. Detection of clonal hematopoiesis of indeterminate potential in clinical sequencing of solid tumor specimens. Blood 2018, 131, 2501–2505. [Google Scholar] [CrossRef]
- Asada, S.; Kitamura, T. Clonal hematopoiesis and associated diseases: A review of recent findings. Cancer Sci. 2021, 112, 3962–3971. [Google Scholar] [CrossRef]
- Silver, A.J.; Jaiswal, S. Clonal hematopoiesis: Pre-cancer PLUS. Adv. Cancer Res. 2019, 141, 85–128. [Google Scholar] [CrossRef]
- Jaiswal, S.; Ebert, B.L. Clonal hematopoiesis in human aging and disease. Science 2019, 366, eaan4673. [Google Scholar] [CrossRef]
- Steensma, D.P.; Bejar, R.; Jaiswal, S.; Lindsley, R.C.; Sekeres, M.A.; Hasserjian, R.P.; Ebert, B.L. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015, 126, 9–16. [Google Scholar] [CrossRef]
- American College of Cardiology. Shared Modifiable Risk Factors between Cancer, C.V.D. Available online: https://www.acc.org/Latest-in-Cardiology/Articles/2017/04/26/08/01/Shared-Modifiable-Risk-Factors-Between-Cancer-and-CVD (accessed on 22 April 2024).
- Spanoudaki, M.; Giaginis, C.; Karafyllaki, D.; Papadopoulos, K.; Solovos, E.; Antasouras, G.; Sfikas, G.; Papadopoulos, A.N.; Papadopoulou, S.K. Exercise as a Promising Agent against Cancer: Evaluating Its Anti-Cancer Molecular Mechanisms. Cancers 2023, 15, 5135. [Google Scholar] [CrossRef]
- Hosseini, M.M.; Hosseini, S.T.M.; Qayumi, K.; Hosseinzadeh, S.; Tabar, S.S.S. Smartwatches in healthcare medicine: Assistance and monitoring; a scoping review. BMC Med. Inform. Decis. Mak. 2023, 23, 248. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Hinde, K.; White, G.; Armstrong, N. Wearable Devices Suitable for Monitoring Twenty Four Hour Heart Rate Variability in Military Populations. Sensors 2021, 21, 1061. [Google Scholar] [CrossRef]
- Shei, R.-J.; Holder, I.G.; Oumsang, A.S.; Paris, B.A.; Paris, H.L. Wearable activity trackers–advanced technology or advanced marketing? Eur. J. Appl. Physiol. 2022, 122, 1975–1990. [Google Scholar] [CrossRef]
- Passler, S.; Bohrer, J.; Blöchinger, L.; Senner, V. Validity of Wrist-Worn Activity Trackers for Estimating VO2max and Energy Expenditure. Int. J. Environ. Res. Public Health 2019, 16, 3037. [Google Scholar] [CrossRef]
- Hamad, A.; Jia, B. How Virtual Reality Technology Has Changed Our Lives: An Overview of the Current and Potential Applications and Limitations. Int. J. Environ. Res. Public Health 2022, 19, 11278. [Google Scholar] [CrossRef]
- Segura-Ortí, E.; García-Testal, A. Intradialytic virtual reality exercise: Increasing physical activity through technology. Semin. Dial. 2019, 32, 331–335. [Google Scholar] [CrossRef]
- Dibben, G.; Faulkner, J.; Oldridge, N.; Rees, K.; Thompson, D.R.; Zwisler, A.-D.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2021, 2021, CD001800. [Google Scholar] [CrossRef]
- Ito, S. High-intensity interval training for health benefits and care of cardiac diseases—The key to an efficient exercise protocol. World J. Cardiol. 2019, 11, 171–188. [Google Scholar] [CrossRef]
- Weston, K.S.; Wisløff, U.; Coombes, J.S. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: A systematic review and meta-analysis. Br. J. Sports Med. 2014, 48, 1227–1234. [Google Scholar] [CrossRef]
- Kristiansen, J.; Sjúrðarson, T.; Grove, E.L.; Rasmussen, J.; Kristensen, S.D.; Hvas, A.-M.; Mohr, M. Feasibility and impact of whole-body high-intensity interval training in patients with stable coronary artery disease: A randomised controlled trial. Sci. Rep. 2022, 12, 17295. [Google Scholar] [CrossRef]
- Keech, A.; Holgate, K.; Fildes, J.; Indraratna, P.; Cummins, L.; Lewis, C.; Yu, J. High-intensity interval training for patients with coronary artery disease: Finding the optimal balance. Int. J. Cardiol. 2020, 298, 8–14. [Google Scholar] [CrossRef]
- Atakan, M.M.; Li, Y.; Koşar, N.; Turnagöl, H.H.; Yan, X. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. Int. J. Environ. Res. Public Health 2021, 18, 7201. [Google Scholar] [CrossRef]
- Claudino, J.G.; Gabbett, T.J.; Bourgeois, F.; Souza, H.d.S.; Miranda, R.C.; Mezêncio, B.; Soncin, R.; Filho, C.A.C.; Bottaro, M.; Hernandez, A.J.; et al. CrossFit Overview: Systematic Review and Meta-analysis. Sports Med.-Open 2018, 4, 11. [Google Scholar] [CrossRef]
- Poston, W.S.C.; Haddock, C.K.; Heinrich, K.M.; Jahnke, S.A.; Jitnarin, N.; Batchelor, D.B. Is High-Intensity Functional Training (HIFT)/CrossFit Safe for Military Fitness Training? Mil. Med. 2016, 181, 627–637. [Google Scholar] [CrossRef]
- Cleveland Clinic. Three Ways Your Body Uses up Energy. Available online: https://health.clevelandclinic.org/metabolic-pathways-metabolic-conditioning (accessed on 25 April 2024).
- Wagener, S.; Hoppe, M.W.; Hotfiel, T.; Engelhardt, M.; Javanmardi, S.; Baumgart, C.; Freiwald, J. CrossFit®—Development, Benefits and Risks. Sports Orthop. Traumatol. 2020, 36, 241–249. [Google Scholar] [CrossRef]
- Sprey, J.W.; Ferreira, T.; de Lima, M.V.; Duarte, A.; Jorge, P.B.; Santili, C. An Epidemiological Profile of CrossFit Athletes in Brazil. Orthop. J. Sports Med. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Burrows, E.K.; Tabb, L.P. A 4-Year Analysis of the Incidence of Injuries Among CrossFit-Trained Participants. Orthop. J. Sports Med. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Hak, P.T.; Hodzovic, E.; Hickey, B. The nature and prevalence of injury during CrossFit training. J. Strength Cond. Res. 2013. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.T.; Hessner, A.L.; Ishøi, L.; Langberg, H.; Christensen, J. Injuries in Novice Participants during an Eight-Week Start up CrossFit Program—A Prospective Cohort Study. Sports 2020, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Elkin, J.L.; Kammerman, J.S.; Kunselman, A.R.; Gallo, R.A. Likelihood of Injury and Medical Care between CrossFit and Traditional Weightlifting Participants. Orthop. J. Sports Med. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Klimek, C.; Ashbeck, C.; Brook, A.J.; Durall, C. Are Injuries More Common with CrossFit Training than Other Forms of Exercise? J. Sport Rehabil. 2018, 27, 295–299. [Google Scholar] [CrossRef]
- Summitt, R.J.; Cotton, R.A.; Kays, A.C.; Slaven, E.J. Shoulder Injuries in Individuals Who Participate in CrossFit Training. Sports Health Multidiscip. Approach 2016, 8, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Dominski, F.H.; Serafim, T.T.; Siqueira, T.C.; Andrade, A. Psychological variables of CrossFit participants: A systematic review. Sport Sci. Health 2020, 17, 21–41. [Google Scholar] [CrossRef] [PubMed]
- Redwood-Brown, A.; Wilson, J.; Felton, P. Impact on habitual crossfit participant’s exercise behavior, health, and well-being: A cross-sectional survey of UK COVID-19 lockdowns. Health Sci. Rep. 2023, 6, e1140. [Google Scholar] [CrossRef]
Mode | |
---|---|
Aerobic ET | Brisk walking, running/jogging, swimming, bicycling, stair climbing, rowing, aerobic dancing, skiing |
Resistance ET | Lifting weights, resistance/elastic bands, bodyweight exercises, heavy gardening, calisthenics |
Duration | |
Aerobic ET | 150–300 min/week (moderate intensity); 75–150 min/week (vigorous intensity); Or an equivalent combination of moderate to vigorous intensity |
Resistance ET | 8 to 12 repetitions to fatigue; at least 1 set for all muscle groups; 60 to 80% intensity of single maximum repetition (70% in elderly) |
Frequency | |
Aerobic ET | Most days of the week (preferably 6–7 days/week) |
Resistance ET | 2–3 non-consecutive days/week |
Intensity | |
Aerobic ET | Moderate to vigorous intensity |
Resistance ET | Moderate to vigorous intensity |
Variable | Hazard Ratio (HR) | p-Value |
---|---|---|
Fitness Levels | ||
Least | 4.09 (3.94 to 4.24) | <0.001 |
Low | 2.88 (2.78 to 2.99) | <0.001 |
Moderate | 2.13 (2.05 to 2.21) | <0.001 |
Fit | 1.66 (1.60 to 1.73) | <0.001 |
High | 1.39 (1.34 to 1.45) | <0.001 |
Comorbidities | ||
Chronic kidney disease | 1.49 (1.46 to 1.52) | <0.001 |
Smoking | 1.40 (1.39 to 1.42) | <0.001 |
Diabetes | 1.34 (1.33 to 1.36) | <0.001 |
Atrial fibrillation | 1.34 (1.31 to 1.36) | <0.001 |
Cancer (all) | 1.33 (1.30 to 1.35) | <0.001 |
CV Disease | 1.28 (1.27 to 1.29) | <0.001 |
Hypertension | 1.14 (1.13 to 1.16) | <0.001 |
Age | 1.06 (1.06 to 1.06) | <0.001 |
Body Mass Index | 0.98 (0.97 to 0.98) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza, M.F.; Suan, N.M.; Lavie, C.J. Exploring the Molecular Adaptations, Benefits, and Future Direction of Exercise Training: Updated Insights into Cardiovascular Health. J. Funct. Morphol. Kinesiol. 2024, 9, 131. https://doi.org/10.3390/jfmk9030131
Mendoza MF, Suan NM, Lavie CJ. Exploring the Molecular Adaptations, Benefits, and Future Direction of Exercise Training: Updated Insights into Cardiovascular Health. Journal of Functional Morphology and Kinesiology. 2024; 9(3):131. https://doi.org/10.3390/jfmk9030131
Chicago/Turabian StyleMendoza, Michael F., Nina M. Suan, and Carl J. Lavie. 2024. "Exploring the Molecular Adaptations, Benefits, and Future Direction of Exercise Training: Updated Insights into Cardiovascular Health" Journal of Functional Morphology and Kinesiology 9, no. 3: 131. https://doi.org/10.3390/jfmk9030131
APA StyleMendoza, M. F., Suan, N. M., & Lavie, C. J. (2024). Exploring the Molecular Adaptations, Benefits, and Future Direction of Exercise Training: Updated Insights into Cardiovascular Health. Journal of Functional Morphology and Kinesiology, 9(3), 131. https://doi.org/10.3390/jfmk9030131