Machine-Based Resistance Training Improves Functional Capacity in Older Adults: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion/Exclusion Criteria
2.2. Data Extraction
2.3. Methodological Quality
2.4. Statistical Analysis
3. Results
3.1. Search Results
3.2. Quality Assessment
3.3. Participant Characteristics
3.4. Exercise Selection and Resistance Type
3.5. Study Duration and Frequency
3.6. Volume, Effort, Load, and Repetition Duration
3.7. Functional Outcomes
3.8. Strength Outcomes
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clark, B.C.; Manini, T.M. Sarcopenia ≠ Dynapenia. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Demontiero, O.; Vidal, C.; Duque, G. Aging and bone loss: New insights for the clinician. Ther. Adv. Musculoskelet. Dis. 2012, 4, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Boros, K.; Freemont, T. Physiology of ageing of the musculoskeletal system. Best Pract. Res. Clin. Rheumatol. 2017, 31, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Sui, X.; Lobelo, F.; Morrow, J.R.; Jackson, A.W.; Sjostrom, M.; Blair, S.N. Association between muscular strength and mortality in men: Prospective cohort study. BMJ 2008, 337, 439. [Google Scholar] [CrossRef]
- Srikanthan, P.; Karlamangla, A.S. Muscle mass index as a predictor of longevity in older adults. Am. J. Med. 2014, 127, 547–553. [Google Scholar] [CrossRef]
- Correia, R.R.; Veras, A.S.C.; Tebar, W.R.; Rufino, J.C.; Batista, V.R.G.; Teixeira, G.R. Strength training for arterial hypertension treatment: A systematic review and meta-analysis of randomized clinical trials. Sci. Rep. 2023, 13, 201. [Google Scholar] [CrossRef]
- O’Bryan, S.J.; Giuliano, C.; Woessner, M.N.; Vogrin, S.; Smith, C.; Duque, G.; Levinger, I. Progressive resistance training for concomitant increases in muscle strength and bone mineral density in older adults: A systematic review and meta-analysis. Sports Med. 2022, 52, 1939–1960. [Google Scholar] [CrossRef]
- Ihalainen, J.K.; Inglis, A.; Mäkinen, T.; Newton, R.U.; Kainulainen, H.; Kyröläinen, H.; Walker, S. Strength training improves metabolic health markers in older individual regardless of training frequency. Front. Physiol. 2019, 10, 32. [Google Scholar] [CrossRef]
- Chmelo, E.A.; Crotts, C.I.; Newman, J.C.; Brinkley, T.E.; Lyles, M.F.; Leng, X.; Marsh, A.P.; Nicklas, B.J. Heterogeneity of physical function responses to exercise training in older adults. J. Am. Geriatr. Soc. 2015, 63, 462–469. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Morat, T.; Mechling, H. Training in the functional movement circle to promote strength and mobility-related activities in older adults: A randomized controlled trial. Eur. J. Ageing 2014, 18, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.J.; Shiroy, D.M.; Jones, L.Y.; Clark, D.O. Systematic review of functional training on muscle strength, physical functioning, and activities of daily living in older adults. Eur. Rev. Aging Phys. Act. 2014, 11, 95–106. [Google Scholar] [CrossRef]
- Spitz, R.W.; Kataoka, R.; Dankel, S.J.; Bell, Z.W.; Song, J.S.; Wong, V.; Yamada, Y.; Loenneke, J.P. Quantifying the Generality of Strength Adaptation: A Meta-Analysis. Sports Med. 2023, 53, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Buckner, S.L.; Kuehne, T.E.; Yitzchaki, N.; Zhu, W.G.; Humphries, M.N.; Loenneke, J.P. The generality of strength adaptation. J. Trainol. 2019, 8, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Mende, E.; Moeinnia, N.; Schaller, N.; Weiß, M.; Haller, B.; Halle, M.; Siegrist, M. Progressive machine-based resistance training for prevention and treatment of sarcopenia in the oldest old: A systematic review and meta-analysis. Exp. Gerontol. 2022, 163, 111767. [Google Scholar] [CrossRef]
- Safons, M.P.; de Lima, M.S.; Gonçalves, K.F.; de Souza Junior, G.A.; Barreto, T.L.; Oliveira, A.J.S.; Ribiero, A.L.A.; Dos Santos Couta Paz, C.C.; Gentil, P.; Bottaro, M.; et al. Effects of Resistance Training With Machines and Elastic Tubes on Functional Capacity and Muscle Strength in Community-Living Older Women: A Randomized Clinical Trial. J. Aging Phys. Act. 2021, 29, 959–967. [Google Scholar] [CrossRef]
- Kerr, Z.Y.; Collins, C.L.; Comstock, R.D. Epidemiology of weight training-related injuries presenting to United States emergency departments, 1990 to 2007. Am. J. Sports Med. 2010, 38, 765–771. [Google Scholar] [CrossRef]
- Fisher, J.; Steele, J.; Bruce-Low, S.; Smith, D. Evidence based resistance training recommendations. Med. Sport. 2011, 15, 147–162. [Google Scholar] [CrossRef]
- Fisher, J.; Steele, J.; Smith, D. Evidence-based resistance training recommendations for muscular hypertrophy. Med. Sport. 2013, 17, 217–235. [Google Scholar]
- Fisher, J.P.; Steele, J.; Gentil, P.; Giessing, J.; Westcott, W.L. A minimal dose approach to resistance training for the older adult; the prophylactic for aging. Exp. Gerontol. 2017, 99, 80–86. [Google Scholar] [CrossRef]
- Winett, R.A.; Williams, D.M.; Davy, B.M. Initiating and maintaining resistance training in older adults: A social cognitive theory-based approach. Br. J. Sports Med. 2009, 43, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 29, 372. [Google Scholar]
- Unhjem, R.; van den Hoven, L.T.; Nygård, M.; Hoff, J.; Wang, E. Functional Performance With Age: The Role of Long-Term Strength Training. J. Geriatr. Phys. Ther. 2019, 42, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Sprint, G.; Cook, D.J.; Weeks, D.L. Toward Automating Clinical Assessments: A Survey of the Timed Up and Go. IEEE Rev. Biomed. Eng. 2015, 8, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar]
- Balachandran, A.T.; Gandia, K.; Jacobs, K.A.; Streiner, D.L.; Eltoukhy, M.; Signorile, J.F. Power training using pneumatic machines vs. plate-loaded machines to improve muscle power in older adults. Exp. Gerontol. 2017, 98, 134–142. [Google Scholar] [CrossRef]
- Muñoz-Bermejo, L.; Adsuar, J.C.; Mendoza-Muñoz, M.; Barrios-Fernández, S.; Garcia-Gordillo, M.A.; Pérez-Gómez, J.; Carlos-Vivas, J. Test-Retest Reliability of Five Times Sit to Stand Test (FTSST) in Adults: A Systematic Review and Meta-Analysis. Biology 2021, 10, 510. [Google Scholar] [CrossRef]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport. 1999, 70, 113–119. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Bubela, D.J.; Magasi, S.R.; Wang, Y.C.; Gershon, R.C. Sit-to-stand test: Performance and determinants across the age-span. Isokinet. Exerc. Sci. 2010, 18, 235–240. [Google Scholar] [CrossRef]
- Lajeunesse, M.J. Juicr: Automated and Manual Extraction of Numerical Data from Scientific Images. 2021. Available online: https://cran.r-project.org/web/packages/juicr/juicr.pdf (accessed on 22 April 2024).
- Borges-Silva, F.; Martínez-Pascual, M.; Colomer-Poveda, D.; Márquez, G.; Romero-Arenas, S. Does Heavy-Resistance Training Improve Mobility and Perception of Quality of Life in Older Women? Biology 2022, 11, 626. [Google Scholar] [CrossRef] [PubMed]
- Buskard, A.N.L.; Jacobs, K.A.; Eltoukhy, M.M.; Strand, K.L.; Villanueva, L.; Desai, P.P.; Signorile, J.F. Optimal Approach to Load Progressions during Strength Training in Older Adults. Med. Sci. Sports Exerc. 2019, 51, 2224–2233. [Google Scholar] [CrossRef] [PubMed]
- Filho, M.M.; Venturini, G.R.D.O.; Moreira, O.C.; Leitão, L.; Mira, P.A.C.; de Castro, J.B.P.; Aidar, F.J.; Novaes, J.D.S.; Vianna, J.M.; Caputo Ferreira, M.E. Effects of Different Types of Resistance Training and Detraining on Functional Capacity, Muscle Strength, and Power in Older Women: A Randomized Controlled Study. J. Strength. Cond. Res. 2022, 36, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Hanson, E.D.; Srivatsan, S.R.; Agrawal, S.; Menon, K.S.; Delmonico, M.J.; Wang, M.Q.; Hurley, B.F. Effects of strength training on physical function: Influence of power, strength, and body composition. J. Strength. Cond. Res. 2009, 23, 2627–2637. [Google Scholar] [CrossRef] [PubMed]
- Johnen, B.; Schott, N. Feasibility of a machine vs free weight strength training program and its effects on physical performance in nursing home residents: A pilot study. Aging Clin. Exp. Res. 2018, 30, 819–828. [Google Scholar] [CrossRef]
- Lee, S.Y.; Goh, A.; Tan, K.; Choo, P.L.; Ong, P.H.; Wong, W.P.; Wee, S.L. Effectiveness of a community-delivered pneumatic machine resistance training programme (Gym Tonic) for older adults at neighbourhood senior centres—A randomized controlled trial. Eur. Rev. Aging Phys. Act. 2021, 18, 21. [Google Scholar] [CrossRef]
- Leenders, M.; Verdijk, L.B.; van der Hoeven, L.; van Kranenburg, J.; Nilwik, R.; van Loon, L.J. Elderly men and women benefit equally from prolonged resistance-type exercise training. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 769–779. [Google Scholar] [CrossRef]
- Moura, B.M.; Sakugawa, R.L.; Orssatto, L.B.D.R.; de Lima, L.A.P.; Pinto, R.S.; Walker, S.; Diefenthaeler, F. Functional capacity improves in-line with neuromuscular performance after 12 weeks of non-linear periodization strength training in the elderly. Aging Clin. Exp. Res. 2018, 30, 959–968. [Google Scholar] [CrossRef]
- Pinto, R.S.; Correa, C.S.; Radaelli, R.; Cadore, E.L.; Brown, L.E.; Bottaro, M. Short-term strength training improves muscle quality and functional capacity of elderly women. Age 2014, 36, 365–372. [Google Scholar] [CrossRef]
- Raj, I.S.; Bird, S.R.; Westfold, B.A.; Shield, A.J. Effects of eccentrically biased versus conventional weight training in older adults. Med. Sci. Sports Exerc. 2012, 44, 1167–1176. [Google Scholar] [CrossRef]
- Roma, M.F.; Busse, A.L.; Betoni, R.A.; Melo, A.C.; Kong, J.; Santarem, J.M.; Filho, W.J. Effects of resistance training and aerobic exercise in elderly people concerning physical fitness and ability: A prospective clinical trial. Einstein 2013, 11, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Sayers, S.P.; Gibson, K.; Bryan Mann, J. Improvement in functional performance with high-speed power training in older adults is optimized in those with the highest training velocity. Eur. J. Appl. Physiol. 2016, 116, 2327–2336. [Google Scholar] [CrossRef] [PubMed]
- Schaun, G.Z.; Bamman, M.M.; Andrade, L.S.; David, G.B.; Krüger, V.L.; Marins, E.F.; Nunes, G.N.; Häfele, M.S.; Mendes, G.F.; Gomes, M.L.B.; et al. High-velocity resistance training mitigates physiological and functional impairments in middle-aged and older adults with and without mobility-limitation. Geroscience. 2022, 44, 1175–1197. [Google Scholar] [CrossRef] [PubMed]
- Schlicht, J.; Camaione, D.N.; Owen, S.V. Effect of intense strength training on standing balance, walking speed, and sit-to-stand performance in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M281–M286. [Google Scholar] [CrossRef]
- Walker, S.; Haff, G.G.; Häkkinen, K.; Newton, R.U. Moderate-Load Muscular Endurance Strength Training Did Not Improve Peak Power or Functional Capacity in Older Men and Women. Front. Physiol. 2017, 8, 743. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Androulakis-Korakakis, P.; Pinero, A.; Coleman, M.; Burke, R. Standards Method for Assessment of Resistance Training in Longitudinal Designs (SMART-LD): Explanations of Items. 2023, Pre-print. Available online: https://osf.io/preprints/osf/nhva2 (accessed on 22 April 2024).
- Cumming, G. The new statistics: Why and how. Psychol. Sci. 2014, 25, 7–29. [Google Scholar] [CrossRef]
- Kruschke, J.K.; Liddell, T.M. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon. Bull. Rev. 2018, 25, 178–206. [Google Scholar] [CrossRef]
- Ushey, K.; Wickham, H.; Software, P. PBC. Renv: Project Environments. 2023. Available online: https://rstudio.github.io/renv/ (accessed on 22 April 2024).
- Landau, W.M.; Warkentin, M.T.; Edmondson, M.; Oliver, S.; Mahr, T.; Company E L. Targets: Dynamic Function-Oriented ’Make’-Like Declarative Pipelines. 2023. Available online: https://ropensci.r-universe.dev/targets (accessed on 22 April 2024).
- Viechtbauer, W. Metafor: Meta-Analysis Package for R. 2023. Available online: https://cran.r-project.org/web/packages/metafor/index.html (accessed on 22 April 2024).
- Bürkner, P.C.; Gabry, J.; Weber, S.; Johnson, A.; Modrak, M.; Badr, H.S.; Weber, F.; Ben-Shachar, M.S.; Rabel, H.; Mills, S.C.; et al. Brms: Bayesian Regression Models Using ‘Stan’. 2023. Available online: https://paulbuerkner.com/brms/ (accessed on 22 April 2024).
- Kay, M.; Mastny, T. Tidybayes: Tidy Data and ‘Geoms’ for Bayesian Models. 2023. Available online: https://mjskay.github.io/tidybayes/reference/tidybayes-package.html (accessed on 22 April 2024).
- Arel-Bundock, V.; Diniz, M.A.; Greifer, N.; Bacher, E. Marginaleffects: Predictions, Comparisons, Slopes, Marginal Means, and Hypothesis Tests. 2023. Available online: https://cran.r-project.org/web/packages/marginaleffects/marginaleffects.pdf (accessed on 22 April 2024).
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H.; Dunnington, D.; Posit PBC. Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. 2023. Available online: https://search.r-project.org/CRAN/refmans/ggplot2/html/ggplot2-package.html (accessed on 22 April 2024).
- Pedersen, T.L. Patchwork: The Composer of Plots. 2023. Available online: https://thomasp85.r-universe.dev/patchwork (accessed on 22 April 2024).
- Hong, H.; Chu, H.; Zhang, J.; Carlin, B.P. A Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons. Res. Synth. Methods 2016, 7, 6–22. [Google Scholar] [CrossRef]
- Becker, B.J. Synthesizing standardized mean-change measures. Br. J. Math. Stat. Psychol. 1988, 41, 257–278. [Google Scholar] [CrossRef]
- Haff, G.G.; Triplett, N.T. Essentials of Strength Training and Conditioning, 4th ed.; Human kinetics: Champaign, IL, USA, 2015. [Google Scholar]
- Steele, J.; Fisher, J.P.; Smith, D.; Schoenfeld, B.J.; Yang, Y.; Nakagawa, S. Meta-analysis of variation in sport and exercise science: Examples of application within resistance training research. J. Sports Sci. 2023, 41, 1617–1634. [Google Scholar] [CrossRef]
- Steele, J.; Fisher, J.P.; Giessing, J.; Androulakis-Korakakis, P.; Wolf, M.; Kroeske, B.; Reuters, R. Long-Term Time-Course of Strength Adaptation to Minimal Dose Resistance Training Through Retrospective Longitudinal Growth Modeling. Res. Q. Exerc. Sport. 2023, 94, 913–930. [Google Scholar] [CrossRef] [PubMed]
- Haynes, E.M.K.; Neubauer, N.A.; Cornett, K.M.D.; O’Connor, B.P.; Jones, G.R.; Jakobi, J.M. Age and sex-related decline of muscle strength across the adult lifespan: A scoping review of aggregated data. Appl. Physiol Nutr. Metab. 2020, 45, 1185–1196. [Google Scholar] [CrossRef] [PubMed]
- Saeidifard, F.; Medina-Inojosa, J.R.; West, C.P.; Olson, T.P.; Somers, V.K.; Bonikowske, A.R.; Prokop, L.J.; Vinciguerra, M.; Lopez-Jimenez, F. The association of resistance training with mortality: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2019, 26, 1647–1665. [Google Scholar] [CrossRef] [PubMed]
- Shailendra, P.; Baldock, K.L.; Li, L.S.K.; Bennie, J.A.; Boyle, T. Resistance Training and Mortality Risk: A Systematic Review and Meta-Analysis. Am. J. Prev. Med. 2022, 63, 277–285. [Google Scholar] [CrossRef]
- Pagan, J.I.; Bradshaw, B.A.; Bejte, B.; Hart, J.N.; Perez, V.; Knowles, K.S.; Beausejour, J.P.; Luzadder, M.; Menger, R.; Osorio, C.; et al. Task-specific resistance training adaptations in older adults: Comparing traditional and functional exercise interventions. Front. Aging 2024, 30, 1335534. [Google Scholar] [CrossRef]
Authors | Participant Characteristics by Group | Intervention Duration | Training Frequency | Training Volume | Training Load | Repetition Duration | Effort |
---|---|---|---|---|---|---|---|
Balachandran, et al., 2017 [27] | Plate loaded; n = 17 (8 female), 68.8 ± 5.0 years Pneumatic; n = 19 (12 female), 68.9 ± 4.9 years | 12 weeks | 2x/week | Weeks 1–7: 3 sets of 10 repetitions Weeks 8–12: 3 sets of 8 repetitions | DNS | Conc = as fast as possible, Ecc = 2 s | RPE of 6–8/10 |
Borges-Silva, et al., 2022 [32] | Traditional Resistance Training; (n = 15 female), 64.2 ± 4.0 years Circuit Resistance training; (n = 15 female), 64.7 ± 4.4 years | 12 weeks | 2x/week | 1–3 sets of 6 RM | 85–90% 1 RM | DNS | Failure |
Buskard, et al., 2019 [33] | RiR; n = 21 (13 female), 72.3 ± 5.7 years %1 RM; n = 20 (13 female), 69.6 ± 7.4 years RM; n = 21 (13 female), 72.3 ± 6.6 years RPE; n = 20 (13 female), 71.8 ± 6.2 years) | 11 weeks | 2x/week (weeks 1–5) 3x/week (weeks 6–9) | RiR; 3 sets of 7 repetitions %1 RM; 3 sets @80% 1 RM RM; 3 sets of 8 RM RPE; 3 sets of 7 repetitions | 80% 1 RM | Conc = as fast as possible, Ecc = 2 s | RiR group: 1 repetition RM group: failure RPE group: ≤8/10 |
Filho, et al., 2022 [34] | SET; n = 20 female, 65 ± 4 years PWT; n = 18 female, 66 ± 4 years AST; n = 21 female, 66 ± 5 years TRT; n = 17 female, 67 ± 4 years | 20 weeks | 2x/week | SET: 1 set of 20–25 repetitions PWT: 2–3 sets of 8–12 repetitions AST: 4–5 sets of 4–5 repetitions TRT: 2–3 sets of 8–12 repetitions | SET, AST, TRT: 60% 10 RM PWT; 50% 10 RM | SET, AST, TRT: Conc = 2 s, Ecc = 2 s PWT: max velocity | RPE of 6–8/10 |
Hanson, et al., 2009 [35] | n = 50 (27 females); 71.0 ± 5.0 years | 22 weeks Phase 1: 10 weeks Phase 2: 12 weeks | 3x/week 3x/week | Phase 1: 5 repetitions at 50% of 1 RM Set 2: 5 repetitions at 5 RM Set 3: 10 repetitions at 5 RM * Set 4: 15 repetitions at 5 RM * Set 5: 20 repetitions at 5 RM * Phase 2: 5 repetitions at 50% of 1 RM Set 2: 15 repetitions at 5 RM * | 85% 1 RM | Conc = 2 s, Ecc = 3 s | Repetition maximum |
Johnen, et al., 2018 [36] | n = 14 (8 female), 78.9 ± 9.11 years | 12 weeks | 2x/week | 1 set of 18–20 repetitions 1 set of 10–12 repetitions | 50% of 8 RM 75–80% of 8 RM | DNS | RPE 12/20 |
Lee, et al., 2021 [37] | n = 234 (174 females) for 12-week analysis, n = 106 (82 females) for 24-week analysis 73 ± 6.5 years | 12 and 24 weeks | 2x/week | Weeks 1–2: 2 sets of 15 RM Weeks 3–8: 2 sets of 10 RM Weeks 8–12: 2 sets of 8 repetitions Weeks 13–24: 3 sets of 10 repetitions | Weeks 1–2: ~60% 1 RM Weeks 3–7: ~70% 1 RM Weeks 8–12: ~80% 1 RM Weeks 13–24: ~70% 1 RM | DNS | Repetition Maximum |
Leenders, et al., 2013 [38] | n = 24 females, 71 ± 1 years n = 29 males, 70 ± 1 years | 24 weeks | 3x/week | Weeks 1–4: 4 sets (lower body) of 10–15, 3 sets (upper body) of 10–15 Week 5–24: 4 sets of 8 repetitions | Weeks 1–4: 60%–75% 1 RM Week 5–24: 75–80% 1 RM | DNS | DNS |
Moura, et al., 2017 [39] | n = 15 (10 females), 63.9 ± 3.0 years | 12 weeks | 2x/week | 3 sets of 10 repetitions | 60–90% 1 RM | Conc = 2 s, Ecc = 2 s | DNS |
Pinto, et al., 2014 [40] | n = 19 females, 66.0 ± 8 years | 6 weeks | 2x/week | Weeks 1–3: 2 sets of 15–20 RM Weeks 4–6: 3 sets of 12–15 RM | DNS | DNS | Concentric failure |
Raj, et al., 2014 [41] | Trad: n = 12 (5 females), 68 ± 5 years Ecc = 13 (5 females), 68 ± 5 years | 16 weeks | 2x/week | Trad = 2 sets of 10 repetitions Ecc = 3 sets of 10 bilateral concentric repetitions, and unilateral eccentric repetitions | Traditional = 75% 1 RM Eccentrically biased = 50% 1 RM | DNS | RPE 12–15/20 |
Roma, et al., 2013 [42] | Resistance training group: n = 20 (17 females), 68.8 ± 5.6 years | 12 months | 2x/week | 3 sets of 12, 10, and 8, repetitions, respectively | DNS | DNS | DNS |
Safons, et al., 2021 [16] | n = 23 female, 67.5 ± 5.18 | 12 weeks | 2x/week | Weeks 1–4: 3 sets of 12 repetitions Weeks 5–8: 3 sets of 10 repetitions Weeks 9–12: 3 sets of 8 repetitions | DNS | Conc = 2 s, Ecc = 2 s | Repetitions maximum |
Sayers, et al., 2016 [43] | n = 28 (17 female), 71.5 ± 6.8 years | 12 weeks | 3x/week | 3 sets of 14 repetitions | 40% 1 RM | Conc = as fast as possible, 1 s pause, Ecc = 2–3 s | DNS |
Schaun, et al., 2022 [44] | Older aged adults: n = 18 (9 female), 68.9 ± 6.5 years | 12 weeks | 2x/week | Week 1: 1 set Weeks 2–6: 2 sets Weeks 7–12: 3 sets All of 8–10 repetitions | 1x/week = 40% 1 RM 1x/week = 60% 1 RM | Conc = as fast as possible, Ecc = 2 s | DNS |
Schlicht, et al., 2001 [45] | n = 11 (7 female), 72 years | 8 weeks | 3x/week | 2 sets of 10 repetitions | 75% of 1 RM | DNS | DNS |
Walker, et al., 2017 [46] | n = 46 female, 68.6 ± 2.0 years, n = 35 males, 69.8 ± 2.4 years | 12 weeks | 2x/week | Weeks 1–4 (initiation): 2 sets of 16–20 repetitions Weeks 5–12 (superset): 2 or 3 sets of 14–16 repetitions | 50–60% 1 RM | Conc = 2 s Ecc = 2 s | Volitional concentric failure |
Authors | Upper Body Exercises | Lower Body Exercises | Resistance Machine and Manufacturer |
---|---|---|---|
Balachandran, et al., 2017 [27] | Chest press, seated row, shoulder press, latissimus dorsi pulldowns, biceps curl, triceps pushdowns | Leg press, leg curl, calf raises, hip abduction, hip adduction | Plate loaded; Cybex VR2, Cybex, Franklin Park, IL, USA or Pneumatic Resistance; Keiser A420, Keiser, Freson, CA, USA |
Borges-Silva, et al., 2022 [32] | Pec deck fly, seated row, preacher curl | Prone leg curls, seated calf raises, leg extension | Technogym selectorized, Technogym, Gambettola, Italy |
Buskard, et al., 2019 [33] | Chest press, seated row, latissimus dorsi pulldown, biceps curl, triceps press down | Seated leg press, leg curl, hip adduction | Pneumatic Resistance; Keiser A420, Keiser, Freson, USA |
Filho, et al., 2022 [34] | Seated row, flexor chair, articulated bench press, curl-ups | Leg press, plantar flexion | Not specified |
Hanson, et al., 2009 [35] | Chest press, seated row, abdominal crunch | Knee extension, seated leg curl, alternating leg press | Pneumatic resistance; Keiser A300, Keiser, Freson, USA |
Johnen, et al., 2018 [36] | Latissimus dorsi pulldown, elbow and shoulder extension, back extension | Leg press, | Proxomed; Compass, Proxomed, Luhden, Germany |
Lee, et al., 2021 [37] | Chest press, latissimus dorsi pulldown, abdomen, back extension | Leg press, leg extension, leg curl, hip abduction, hip adduction | Pneumatic resistance; Gym Tonic, Kokkola, Finland |
Leenders, et al., 2013 [38] | Chest press, horizontal row, alternating vertical latissimus dorsi pulldown, abdominal crunches, biceps curl, triceps extension | Leg press, leg extension | Technogym selectorized, Technogym, Gambettola, Italy |
Moura, et al., 2017 [39] | Latissimus dorsi pulldown, seated cable row, lumbar extension | 45° leg press, hip abductor | Righetto, Freestyle, São Paulo, Brazil |
Pinto, et al., 2014 [40] | Leg press, knee extension, knee flexion | Not specified | |
Raj, et al., 2014 [41] | Smith machine bench press, latissimus dorsi pulldown, | 45° leg press, calf press | Not specified |
Roma, et al., 2013 [42] | Chest press, sit ups, lower back | Leg press, calf press | Biodelta, maxiflex, Joinville, Brazil |
Safons, et al., 2021 [16] | Bench press, high pull, triceps, and row | knee flexion, knee extension, hip abduction, hip adduction, hip extension | Pneumatic Resistance, ENDynamic, Enraf Nonius, Rotterdam, The Netherlands |
Sayers, et al., 2016 [43] | Leg press, knee extension | Pneumatic Resistance; Keiser A420, Keiser, Freson, USA | |
Schaun, et al., 2022 [44] | Chest press, seated row | Leg press, knee extension, seated plantar flexion, | Not specified |
Schlicht, et al., 2001 [45] | Leg extension, leg press, calf press, Hip adduction, hip abduction Glute Press | Universal 8-station, Universal, Cedar Rapids, IA, USA Paramount Fitness, Los Angeles, CA, USA Cybex International, Cybex, Owatonna, MN, USA | |
Walker, et al., 2017 [46] | Chest press, latissimus dorsi pulldown, triceps pushdown, abdominal curl, back extension | Leg press, knee extension, knee flexion, | Precor Vitality Series, Precor Inc., Greater Seattle, WA, USA |
Criteria | Balachandran, et al. 2017 [27] | Borges-Silva, et al. 2022 [32] | Buskard, et al. 2019 [33] | Filho, et al., 2022 [34] | Hanson, et al. 2009 [35] | Johnen, et al., 2018 [36] | Lee, et al., 2021 [37] | Leenders, et al. 2013 [38] | Moura, et al., 2017 [39] | Pinto, et al., 2014 [40] | Raj, et al., 2014 [41] | Roma, et al., 2013 [42] | Safons, et al., 2021 [16] | Sayers, et al., 2016 [43] | Schaun, et al., 2022 [44] | Schlicht, et al., 2001 [45] | Walker, et al., 2017 [46] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item 1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes |
Item 2 | No | No | No | No | No | No | No | No | No | No | No | No | Yes | No | No | No | No |
Item 3 | Yes | No | Yes | Yes | No | No | Yes | No | No | Yes | Yes | No | Yes | No | Yes | No | Yes |
Item 4 | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Item 5 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | No | Yes |
Item 6 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Item 7 | No | Yes | Yes | No | Yes | No | Yes | Yes | Yes | Yes | No | No | No | Yes | Yes | Yes | Yes |
Item 8 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Item 9 | Yes | No | Yes | Yes | No | No | Yes | No | N/A * | Yes | Yes | Yes | No | Yes | N/A * | No | Yes |
Item 10 | Yes | Yes | Yes | No | No | Yes | Yes | No | N/A * | Yes | No | No | No | Yes | N/A * | No | No |
Item 11 | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | No | No | No | Yes | No | Yes | No | Yes |
Item 12 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | yes | Yes | Yes | Yes | Yes | Yes |
Item 13 | Yes | Yes | Yes | Yes | No | Yes | No | No | N/A * | Yes | No | No | No | Yes | N/A * | No | No |
Item 14 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Item 15 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Item 16 | Yes | Yes | No | Yes | Yes | No | No | No | Yes | No | Yes | No | No | Yes | No | No | No |
Item 17 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Item 18 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Item 19 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes |
Item 20 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Score | 18 | 17 | 17 | 17 | 14 | 15 | 17 | 14 | 14 * | 17 | 14 | 12 | 15 | 17 | 14 * | 12 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirk, A.; Steele, J.; Fisher, J.P. Machine-Based Resistance Training Improves Functional Capacity in Older Adults: A Systematic Review and Meta-Analysis. J. Funct. Morphol. Kinesiol. 2024, 9, 239. https://doi.org/10.3390/jfmk9040239
Kirk A, Steele J, Fisher JP. Machine-Based Resistance Training Improves Functional Capacity in Older Adults: A Systematic Review and Meta-Analysis. Journal of Functional Morphology and Kinesiology. 2024; 9(4):239. https://doi.org/10.3390/jfmk9040239
Chicago/Turabian StyleKirk, Archie, James Steele, and James P. Fisher. 2024. "Machine-Based Resistance Training Improves Functional Capacity in Older Adults: A Systematic Review and Meta-Analysis" Journal of Functional Morphology and Kinesiology 9, no. 4: 239. https://doi.org/10.3390/jfmk9040239
APA StyleKirk, A., Steele, J., & Fisher, J. P. (2024). Machine-Based Resistance Training Improves Functional Capacity in Older Adults: A Systematic Review and Meta-Analysis. Journal of Functional Morphology and Kinesiology, 9(4), 239. https://doi.org/10.3390/jfmk9040239