Is Countermovement Jump an Indirect Marker of Neuromuscular Mechanism? Relationship with Isometric Knee Extension Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Procedures
2.3. Sample
2.4. Data Recording
2.4.1. Countermovement Jump Recording
2.4.2. Isometric Knee Extension Recording
2.5. Data Processing
2.5.1. Countermovement Jump Processing
2.5.2. Isometric Knee Extension Processing
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersen, L.L.; Aagaard, P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur. J. Appl. Physiol. 2006, 96, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Comfort, P.; Chiang, C.-Y.; Jones, P.A. Relationship between isometric mid-thigh pull variables and sprint and change of direction performance in collegiate athletes. J. Trainology 2015, 4, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Maffiuletti, N.A.N.; Aagaard, P.; Blazevich, A.; Folland, J.J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [PubMed]
- Cossich, V.; Maffiuletti, N. Early vs. late rate of torque development: Relation with maximal strength and influencing factors. J. Electromyogr. Kinesiol. 2020, 55, 102486. [Google Scholar] [CrossRef]
- D’Emanuele, S.; Tarperi, C.; Rainoldi, A.; Schena, F.; Boccia, G. Neural and contractile determinants of burst-like explosive isometric contractions of the knee extensors. Scand. J. Med. Sci. Sports 2022, 33, 127–135. [Google Scholar] [CrossRef]
- Tillin, N.A.; Folland, J.P. Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus. Eur. J. Appl. Physiol. 2014, 114, 365–374. [Google Scholar] [CrossRef]
- de Oliveira, F.B.D.; Rizatto, G.F.; Denadai, B.S. Are early and late rate of force development differently influenced by fast-velocity resistance training? Clin. Physiol. Funct. Imaging 2013, 33, 282–287. [Google Scholar] [CrossRef]
- Place, N. Quantification of central fatigue: A central debate. Eur. J. Appl. Physiol. 2021, 121, 2375–2376. [Google Scholar] [CrossRef]
- Krüger, R.L.; Aboodarda, S.J.; Jaimes, L.M.; MacIntosh, B.R.; Samozino, P.; Millet, G.Y. Fatigue and recovery measured with dynamic properties vs isometric force: Effects of exercise intensity. J. Exp. Biol. 2019, 222, jeb.197483. [Google Scholar] [CrossRef]
- Lombard, W.; Starling, L.; Wewege, L.; Lambert, M. Changes in countermovement jump performance and subjective readiness-to-train scores following a simulated soccer match. Eur. J. Sport Sci. 2020, 21, 647–655. [Google Scholar] [CrossRef]
- Merino-Muñoz, P.; Vidal-Maturana, F.; Aedo-Muñoz, E.; Villaseca-Vicuña, R. Relationship between vertical jump, linear sprint and change of direction in chilean female soccer players. J. Phys. Educ. Sport 2021, 21, 2737–2744. [Google Scholar]
- Smajla, D.; Kozinc, Ž.; Šarabon, N. Associations between lower limb eccentric muscle capability and change of direction speed in basketball and tennis players. PeerJ 2022, 10, e13439. [Google Scholar] [CrossRef] [PubMed]
- Villaseca-Vicuña, R.; Molina-Sotomayor, E.; Zabaloy, S.; Gonzalez-Jurado, J.A. Anthropometric profile and physical fitness performance comparison by game position in the Chile women’s senior national football team. Appl. Sci. 2021, 11, 2004. [Google Scholar] [CrossRef]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef]
- Gathercole, R.; Sporer, B.; Stellingwerff, T.; Sleivert, G. Alternative Countermovement-Jump Analysis to Quantify Acute Neuromuscular Fatigue. Int. J. Sports Physiol. Perform. 2015, 10, 84–92. [Google Scholar] [CrossRef]
- Silva, J.R.; Ascensão, A.; Marques, F.; Seabra, A. Neuromuscular function, hormonal and redox status and muscle damage of professional soccer players after a high-level competitive match. Eur. J. Appl. Physiol. 2013, 113, 2193–2201. [Google Scholar] [CrossRef]
- Schmitz, R.J.; Cone, J.C.; Copple, T.J.; Henson, R.A.; Shultz, S.J. Lower-extremity biomechanics and maintenance of vertical-jump height during prolonged intermittent exercise. J. Sport Rehabil. 2014, 23, 319–329. [Google Scholar] [CrossRef]
- Harry, J.R.; Barker, L.A.; Tinsley, G.M.; Krzyszkowski, J.; Chowning, L.D.; McMahon, J.J.; Lake, J. Relationships among countermovement vertical jump performance metrics, strategy variables, and inter-limb asymmetry in females. Sport Biomech. 2021, 1–19. [Google Scholar] [CrossRef]
- Merino-Muñoz, P.; Pérez-Contreras, J.; Aedo-Muñoz, E.; Bustamante-Garrido, A. Relationship between jump height and rate of braking force development in professional soccer players. J. Phys. Educ. Sport 2020, 20, 3614–3621. [Google Scholar] [CrossRef]
- Cohen, D.D.; Restrepo, A.; Richter, C.; Harry, J.R.; Franchi, M.V.; Restrepo, C.; Poletto, R.; Taberner, M. Detraining of specific neuromuscular qualities in elite footballers during COVID-19 quarantine. Sci. Med. Footb. 2020, 5, 26–31. [Google Scholar] [CrossRef]
- Merino-Muñoz, P.; Miarka, B.; Peréz-contreras, J.; Jofré, C.M. Relationship between external load and differences in countermovement jump in an official match of professional female soccer players. In Proceedings of the 40th International Society of Biomechanics in Sports Conference, Liverpool, UK, 19–23 July 2022; pp. 451–454. [Google Scholar]
- Kozinc, Ž.; Šarabon, N. Measurements of Lower-limb Isometric Single- joint Maximal Voluntary Torque and Rate of Torque Development Capacity Offer Limited Insight into Vertical Jumping Performance Measurements of Lower-limb Isometric Single-joint Maximal Voluntary Torque. Meas. Phys. Educ. Exerc. Sci. 2021, 1–12. [Google Scholar] [CrossRef]
- Laett, C.T.; Cossich, V.; Goes, R.A.; Gavilão, U.; Rites, A.; de Oliveira, C.G. Relationship between vastus lateralis muscle ultrasound echography, knee extensors rate of torque development, and jump height in professional soccer athletes. Sport Sci. Health 2020, 17, 299–306. [Google Scholar] [CrossRef]
- De Ruiter, C.J.; Van Leeuwen, D.; Heijblom, A.; Bobbert, M.F.; de Haan, A. Fast unilateral isometric knee extension torque development and bilateral jump height. Med. Sci. Sports Exerc. 2006, 38, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Van Hooren, B.; Kozinc, Ž.; Smajla, D.; Šarabon, N. Isometric single-joint rate of force development shows trivial to small associations with jumping rate of force development, jump height, and propulsive duration. JSAMS Plus 2022, 1, 100006. [Google Scholar] [CrossRef]
- Lake, J.; Mundy, P.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force–Time Characteristics. J. Appl. Biomech. 2018, 34, 410–413. [Google Scholar] [CrossRef]
- Sands, W.A.; Bogdanis, G.C.; Penitente, G.; Donti, O.; McNeal, J.R.; Butterfield, C.C.; Poehling, R.A.; Barker, L.A. Reliability and validity of a low-cost portable force platform. Isokinet. Exerc. Sci. 2020, 28, 247–253. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Pareja-Blanco, F.; Aagaard, P.; González-Badillo, J.J. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin. Physiol. Funct. Imaging 2018, 38, 743–762. [Google Scholar] [CrossRef]
- Bishop, D. Warm up II: Performance changes following active warm up and how to structure the warm up. Sport Med. 2003, 33, 483–498. [Google Scholar] [CrossRef]
- Lees, A.; Vanrenterghem, J.; De Clercq, D. Understanding how an arm swing enhances performance in the vertical jump. J. Biomech. 2004, 37, 1929–1940. [Google Scholar] [CrossRef]
- Krzyszkowski, J.; Chowning, L.D.; Harry, J.R. Phase-Specific Verbal Cue Effects on Countermovement Jump Performance. J. Strength Cond. Res. 2021, 36, 3352–3358. [Google Scholar] [CrossRef]
- Ugrinowitsch, C.; Tricoli, V.; Rodacki, A.L.; Batista, M.; Ricard, M.D. INFLUENCE OF TRAINING BACKGROUND ON JUMPING HEIGHT. J. Strength Cond. Res. 2007, 21, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Harry, J.R.; Barker, L.A.; Paquette, M.R. A Joint Power Approach to Define Countermovement Jump Phases Using Force Platforms. Med. Sci. Sports Exerc. 2020, 52, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Linthorne, N.P. Analysis of standing vertical jumps using a force platform. Am. J. Phys. 2001, 69, 1198–1204. [Google Scholar] [CrossRef]
- Thompson, B.J. Influence of signal filtering and sample rate on isometric torque—Time parameters using a traditional isokinetic dynamometer. J. Biomech. 2019, 83, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Lum, D.; Haff, G.G.; Barbosa, T.M. The Relationship between Isometric Force-Time Characteristics and Dynamic Performance: A Systematic Review. Sports 2020, 8, 63. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Mackay, M.; Schinkelshoek, D.; Huijing, P.A.; Schenau, G.J.V.I. Biomechanical analysis of drop and countermovement jumps. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 54, 566–573. [Google Scholar] [CrossRef]
- Vanezis, A.; Lees, A. A biomechanical analysis of good and poor performers of the vertical jump. Ergonomics 2005, 48, 1594–1603. [Google Scholar] [CrossRef]
- Shinchi, K.; Yamashita, D.; Yamagishi, T.; Aoki, K.; Miyamoto, N. Relationship between jump height and lower limb joint kinetics and kinematics during countermovement jump in elite male athletes. Sports Biomech. 2024, 1–12. [Google Scholar] [CrossRef]
- Iossifidou, A.; Baltzopoulos, V.; Giakas, G. Isokinetic knee extension and vertical jumping: Are they related? J. Sports Sci. 2005, 23, 1121–1127. [Google Scholar] [CrossRef]
- Śliwowski, R.; Grygorowicz, M.; Wieczorek, A.; Jadczak, Ł. The relationship between jumping performance, isokinetic strength and dynamic postural control in elite youth soccer players. J. Sports Med. Phys. Fitness 2018, 58, 1226–1233. [Google Scholar] [CrossRef]
- Hori, M.; Suga, T.; Terada, M.; Tanaka, T.; Kusagawa, Y.; Otsuka, M.; Nagano, A.; Isaka, T. Relationship of the knee extensor strength but not the quadriceps femoris muscularity with sprint performance in sprinters: A reexamination and extension. BMC Sports Sci. Med. Rehabilitation 2021, 13, 1–10. [Google Scholar] [CrossRef]
- Ishøi, L.; Aagaard, P.; Nielsen, M.F.; Thornton, K.B.; Krommes, K.K.; Hölmich, P.; Thorborg, K. The Influence of Hamstring Muscle Peak Torque and Rate of Torque Development for Sprinting Performance in Football Players: A Cross-Sectional Study. Int. J. Sports Physiol. Perform. 2019, 14, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Diker, G.; Struzik, A.; Ön, S.; Zileli, R. The Relationship between the Hamstring-to-Quadriceps Ratio and Jumping and Sprinting Abilities of Young Male Soccer Players. Int. J. Environ. Res. Public Heal. 2022, 19, 7471. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.-B.; Samozino, P. Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training. Int. J. Sports Physiol. Perform. 2016, 11, 267–272. [Google Scholar] [CrossRef]
- Royer, N.; Nosaka, K.; Doguet, V.; Jubeau, M. Neuromuscular responses to isometric, concentric and eccentric contractions of the knee extensors at the same torque-time integral. Eur. J. Appl. Physiol. 2021, 122, 127–139. [Google Scholar] [CrossRef]
- Kipp, K.; Kim, H. Relative contributions and capacities of lower extremity muscles to accelerate the body’s center of mass during countermovement jumps. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 914–921. [Google Scholar] [CrossRef]
Countermovement Jump (CMJ) | Isometric Knee Extension (IKE) | ||||||
---|---|---|---|---|---|---|---|
Variables | Mean | ±SD | Variables | Mean | ±SD | ||
Kinematic | Jump height (m) | 0.284 | 0.060 | 60 degrees | PT (N·m) | 236 | 29 |
Jump time (s) | 0.688 | 0.076 | PRTD (N·m/s) | 5998 | 1546 | ||
Time unloading (s) | 0.167 | 0.039 | RTD50 (N·m/s) | 1119 | 383 | ||
Time yielding (s) | 0.152 | 0.028 | RTD100 (N·m/s) | 1077 | 260 | ||
Time braking (s) | 0.118 | 0.028 | RTD150 (N·m/s) | 827 | 128 | ||
Time concentric (s) | 0.250 | 0.034 | RTD200 (N·m/s) | 580 | 173 | ||
Kinetic | Peak force (N) | 1649 | 228 | 75 degrees | PT (N·m) | 216 | 33 |
RFD unloading (N/s) | −53 | 13 | PRTD (N·m/s) | 5449 | 1682 | ||
RFD yielding (N/s) | 61 | 13 | RTD50 (N·m/s) | 810 | 478 | ||
RFD braking (N/s) | 139 | 49 | RTD100 (N·m/s) | 947 | 270 | ||
PRFD (N/s) | 8946 | 3741 | RTD150 (N·m/s) | 811 | 224 | ||
MF unloading (N) | 342 | 56 | RTD200 (N·m/s) | 571 | 167 | ||
MF yielding (N) | 412 | 66 | |||||
MF braking (N) | 705 | 132 | |||||
MF concentric (N) | 676 | 127 | |||||
Impulse unloading (N·s) | 56 | 12 | |||||
Impulse yielding (N·s) | 62 | 14 | |||||
Impulse braking (N·s) | 82 | 20 | |||||
Impulse concentric (N·s) | 166 | 21 |
60° Knee Angle | 75° Knee Angle | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | PT | PRTD | RTD50 | RTD100 | RTD150 | RTD200 | PT | PRTD | RTD50 | RTD100 | RTD150 | RTD200 | |
Jump height | r | −0.15 | −0.11 | 0.08 | −0.28 | −0.33 | −0.07 | −0.23 | −0.13 | 0.25 | −0.22 | −0.40 | −0.29 |
p | 0.47 | 0.59 | 0.71 | 0.17 | 0.11 | 0.76 | 0.28 | 0.53 | 0.23 | 0.30 | 0.05 | 0.17 | |
Jump time | r | 0.14 | 0.08 | −0.12 | 0.00 | 0.44 | 0.46 | 0.05 | 0.03 | −0.17 | 0.04 | 0.07 | 0.46 |
p | 0.50 | 0.70 | 0.57 | 0.99 | 0.03 | 0.02 | 0.81 | 0.91 | 0.42 | 0.86 | 0.74 | 0.02 | |
Time unloading | r | −0.16 | −0.07 | −0.13 | −0.11 | 0.26 | 0.00 | 0.06 | −0.01 | −0.17 | 0.05 | 0.23 | 0.25 |
p | 0.46 | 0.75 | 0.52 | 0.59 | 0.21 | 0.99 | 0.78 | 0.98 | 0.41 | 0.80 | 0.27 | 0.22 | |
Time yielding | r | 0.22 | 0.13 | −0.03 | 0.06 | 0.33 | 0.45 | 0.14 | 0.13 | 0.07 | 0.09 | −0.04 | 0.34 |
p | 0.29 | 0.54 | 0.87 | 0.78 | 0.10 | 0.02 | 0.50 | 0.53 | 0.75 | 0.69 | 0.86 | 0.10 | |
Time braking | r | 0.20 | −0.01 | −0.09 | 0.00 | 0.03 | 0.29 | −0.09 | −0.04 | −0.07 | −0.13 | −0.14 | 0.04 |
p | 0.35 | 0.97 | 0.68 | 0.99 | 0.88 | 0.16 | 0.66 | 0.84 | 0.76 | 0.55 | 0.49 | 0.84 | |
Time concentric | r | 0.15 | 0.18 | 0.00 | 0.05 | 0.36 | 0.41 | 0.00 | 0.01 | −0.16 | 0.02 | 0.02 | 0.41 |
p | 0.47 | 0.40 | 0.99 | 0.80 | 0.08 | 0.04 | 1.00 | 0.98 | 0.44 | 0.94 | 0.92 | 0.04 |
60° Knee Angle | 75° Knee Angle | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | PT | PRTD | RTD50 | RTD100 | RTD150 | RTD200 | PT | PRTD | RTD50 | RTD100 | RTD150 | RTD200 | |
Peak force | r | 0.23 | 0.14 | 0.04 | 0.41 | 0.18 | 0.09 | 0.36 | 0.15 | −0.17 | 0.27 | 0.50 | 0.15 |
p | 0.27 | 0.51 | 0.85 | 0.04 | 0.40 | 0.67 | 0.07 | 0.49 | 0.41 | 0.19 | 0.01 | 0.49 | |
RFD unloading | r | −0.16 | −0.20 | −0.20 | −0.19 | 0.22 | 0.08 | 0.10 | −0.15 | −0.33 | 0.14 | 0.23 | 0.40 |
p | 0.45 | 0.34 | 0.34 | 0.37 | 0.29 | 0.71 | 0.64 | 0.48 | 0.11 | 0.50 | 0.27 | 0.05 | |
RFD yielding | r | −0.22 | −0.07 | 0.03 | 0.14 | −0.39 | −0.45 | 0.03 | 0.08 | 0.20 | 0.04 | 0.06 | −0.17 |
p | 0.29 | 0.73 | 0.89 | 0.50 | 0.06 | 0.02 | 0.88 | 0.71 | 0.35 | 0.87 | 0.77 | 0.43 | |
RFD braking | r | −0.30 | −0.09 | 0.00 | 0.15 | −0.20 | −0.44 | 0.01 | −0.08 | 0.03 | 0.16 | 0.05 | −0.02 |
p | 0.15 | 0.67 | 0.99 | 0.47 | 0.34 | 0.03 | 0.96 | 0.72 | 0.87 | 0.44 | 0.80 | 0.91 | |
PRFD | r | 0.01 | 0.13 | 0.18 | 0.40 | −0.11 | −0.33 | 0.26 | 0.09 | −0.11 | 0.37 | 0.39 | 0.04 |
p | 0.97 | 0.55 | 0.40 | 0.05 | 0.60 | 0.11 | 0.20 | 0.68 | 0.61 | 0.07 | 0.05 | 0.84 | |
MF unloading | r | 0.37 | 0.37 | 0.32 | 0.62 | 0.07 | 0.02 | 0.41 | 0.19 | 0.00 | 0.40 | 0.35 | 0.17 |
p | 0.07 | 0.07 | 0.13 | <0.01 | 0.74 | 0.91 | 0.04 | 0.35 | 0.99 | 0.04 | 0.08 | 0.41 | |
MF yielding | r | 0.32 | 0.39 | 0.35 | 0.54 | 0.15 | −0.07 | 0.41 | 0.24 | 0.07 | 0.33 | 0.44 | 0.04 |
p | 0.12 | 0.06 | 0.09 | 0.01 | 0.47 | 0.73 | 0.04 | 0.24 | 0.73 | 0.11 | 0.03 | 0.85 | |
MF braking | r | 0.06 | 0.12 | 0.12 | 0.33 | −0.01 | −0.19 | 0.24 | 0.09 | −0.18 | 0.24 | 0.46 | 0.04 |
p | 0.77 | 0.56 | 0.56 | 0.11 | 0.98 | 0.38 | 0.25 | 0.67 | 0.38 | 0.25 | 0.02 | 0.84 | |
MF concentric | r | 0.06 | −0.03 | 0.07 | 0.06 | −0.19 | −0.09 | 0.13 | 0.10 | 0.22 | 0.02 | 0.02 | −0.28 |
p | 0.78 | 0.88 | 0.75 | 0.76 | 0.37 | 0.68 | 0.54 | 0.65 | 0.29 | 0.91 | 0.94 | 0.17 | |
Impulse unloading | r | 0.07 | 0.16 | 0.06 | 0.30 | 0.32 | 0.04 | 0.36 | 0.14 | −0.18 | 0.36 | 0.51 | 0.40 |
p | 0.75 | 0.44 | 0.79 | 0.15 | 0.12 | 0.86 | 0.08 | 0.50 | 0.39 | 0.07 | 0.01 | 0.04 | |
Impulse yielding | r | 0.44 | 0.41 | 0.27 | 0.46 | 0.38 | 0.29 | 0.42 | 0.27 | 0.12 | 0.28 | 0.29 | 0.29 |
p | 0.02 | 0.04 | 0.20 | 0.02 | 0.07 | 0.16 | 0.03 | 0.20 | 0.57 | 0.17 | 0.15 | 0.16 | |
Impulse braking | r | 0.24 | 0.08 | 0.01 | 0.23 | 0.04 | 0.16 | 0.04 | −0.01 | −0.19 | 0.00 | 0.17 | 0.03 |
p | 0.25 | 0.69 | 0.98 | 0.26 | 0.85 | 0.45 | 0.85 | 0.98 | 0.36 | 1.00 | 0.42 | 0.89 | |
Impulse concentric | r | 0.29 | 0.17 | 0.14 | 0.19 | 0.09 | 0.26 | 0.22 | 0.17 | 0.21 | 0.06 | 0.06 | −0.05 |
p | 0.16 | 0.41 | 0.50 | 0.37 | 0.66 | 0.21 | 0.30 | 0.42 | 0.31 | 0.79 | 0.79 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aedo-Muñoz, E.; Pérez-Contreras, J.; Bustamante-Garrido, A.; Arriagada-Tarifeño, D.; Cancino-Jiménez, J.; Retamal-Espinoza, M.; Argothy-Buchelli, R.; Brito, C.; Merino-Muñoz, P. Is Countermovement Jump an Indirect Marker of Neuromuscular Mechanism? Relationship with Isometric Knee Extension Test. J. Funct. Morphol. Kinesiol. 2024, 9, 242. https://doi.org/10.3390/jfmk9040242
Aedo-Muñoz E, Pérez-Contreras J, Bustamante-Garrido A, Arriagada-Tarifeño D, Cancino-Jiménez J, Retamal-Espinoza M, Argothy-Buchelli R, Brito C, Merino-Muñoz P. Is Countermovement Jump an Indirect Marker of Neuromuscular Mechanism? Relationship with Isometric Knee Extension Test. Journal of Functional Morphology and Kinesiology. 2024; 9(4):242. https://doi.org/10.3390/jfmk9040242
Chicago/Turabian StyleAedo-Muñoz, Esteban, Jorge Pérez-Contreras, Alejandro Bustamante-Garrido, David Arriagada-Tarifeño, Jorge Cancino-Jiménez, Manuel Retamal-Espinoza, Rodrigo Argothy-Buchelli, Ciro Brito, and Pablo Merino-Muñoz. 2024. "Is Countermovement Jump an Indirect Marker of Neuromuscular Mechanism? Relationship with Isometric Knee Extension Test" Journal of Functional Morphology and Kinesiology 9, no. 4: 242. https://doi.org/10.3390/jfmk9040242
APA StyleAedo-Muñoz, E., Pérez-Contreras, J., Bustamante-Garrido, A., Arriagada-Tarifeño, D., Cancino-Jiménez, J., Retamal-Espinoza, M., Argothy-Buchelli, R., Brito, C., & Merino-Muñoz, P. (2024). Is Countermovement Jump an Indirect Marker of Neuromuscular Mechanism? Relationship with Isometric Knee Extension Test. Journal of Functional Morphology and Kinesiology, 9(4), 242. https://doi.org/10.3390/jfmk9040242