Pulvinar Modulates Synchrony across Visual Cortical Areas
Abstract
:1. Introduction
2. Material and Methods
2.1. Animals and Surgery
2.2. Visual Stimuli
2.3. Electrophysiological Recordings and Signal Preprocessing
2.4. Signal Processing
2.5. Thalamic Inactivation
2.6. Histology
2.7. Selection of Oscillatory Signals Based on the Influence of MUA and the Stability across Conditions
2.8. Statistical Analysis
3. Results
3.1. LPl Inactivation Changes Oscillatory Responses in Areas 17 and 21a
3.2. LPl Inactivation Affected Heterogeneously Alpha- and Gamma-Frequency Band Responses across Cortical Layers in Areas 17 and 21a
3.3. LPl Inactivation Facilitates the Feedforward and Feedback Coupling between Areas 17 and 21a
4. Discussion
4.1. Generation of Alpha-Wave Responses
4.2. Generation of Gamma Waves
4.3. Mechanism of Action of Pulvinar-Cortical Projections
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Halassa, M.M.; Kastner, S. Thalamic functions in distributed cognitive control. Nat. Neurosci. 2017, 20, 1669–1679. [Google Scholar] [CrossRef] [PubMed]
- Casanova, C. The visual functions of the pulvinar. In The Visual Neurosciences; MIT Press: Cambridge, MA, USA, 2004; pp. 592–608. [Google Scholar]
- Chalupa, L.M.; Anchel, H.; Lindsley, D.B. Visual input to the pulvinar via lateral geniculate, superior colliculus and visual cortex in the cat. Exp. Neurol. 1972, 36, 449–462. [Google Scholar] [CrossRef]
- Sherman, S.M.; Guillery, R.W. Exploring the Thalamus and Its Role in Cortical Function, 2nd ed.; MIT Press: Cambridge, MA, USA, 2006; pp. 253–320. [Google Scholar]
- Kaas, J.H.; Lyon, D.C. Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Res. Rev. 2007, 55, 285–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Schafer, R.J.; Desimone, R. Pulvinar-Cortex Interactions in Vision and Attention. Neuron 2016, 89, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.L.; Petersen, S.E. The pulvinar and visual salience. Trends Neurosci. 1992, 15, 127–132. [Google Scholar] [CrossRef]
- Ward, R.; Danziger, S.; Owen, V.; Rafal, R. Deficits in spatial coding and feature binding following damage to spatiotopic maps in the human pulvinar. Nat. Neurosci. 2002, 5, 99–100. [Google Scholar] [CrossRef]
- de Souza, B.O.F.; Cortes, N.; Casanova, C. Pulvinar Modulates Contrast Responses in the Visual Cortex as a Function of Cortical Hierarchy. Cereb Cortex. 2020, 30, 1068–1086. [Google Scholar] [CrossRef] [Green Version]
- Felleman, D.J.; Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1991, 1, 1–47. [Google Scholar] [CrossRef]
- Bastos, A.M.; Vezoli, J.; Bosman, C.A.; Schoffelen, J.M.; Oostenveld, R.; Dowdall, J.R.; De Weerd, P.; Kennedy, H.; Fries, P. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 2015, 85, 390–401. [Google Scholar] [CrossRef] [Green Version]
- van Kerkoerle, T.; Self, M.W.; Dagnino, B.; Gariel-Mathis, M.A.; Poort, J.; van der Togt, C.; Roelfsema, P.R. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc. Natl. Acad. Sci. USA 2014, 111, 14332–14441. [Google Scholar] [CrossRef] [Green Version]
- Fries, P. Rhythms for Cognition: Communication through Coherence. Neuron 2015, 88, 220–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molotchnikoff, S.; Shumikhina, S. The lateral posterior-pulvinar complex modulation of stimulus-dependent oscillations in the cat visual cortex. Vision Res. 1996, 36, 2037–2046. [Google Scholar] [CrossRef] [Green Version]
- Shumikhina, S.; Molotchnikoff, S. Pulvinar participates in synchronizing neural assemblies in the visual cortex, in cats. Neurosci Lett. 1999, 272, 135–139. [Google Scholar] [CrossRef]
- Fiebelkorn, I.C.; Pinsk, M.A.; Kastner, S. The mediodorsal pulvinar coordinates the macaque fronto-parietal network during rhythmic spatial attention. Nat. Commun. 2019, 10, 215. [Google Scholar] [CrossRef] [Green Version]
- Saalmann, Y.B.; Pinsk, M.A.; Wang, L.; Li, X.; Kastner, S. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 2012, 337, 753–756. [Google Scholar] [CrossRef] [Green Version]
- Payne, B.R. Evidence for visual cortical area homologs in cat and macaque monkey. Cereb. Cortex 1993, 3, 1–25. [Google Scholar] [CrossRef]
- Miller, J.W.; Buschmann, M.B.T.; Benevento, L.A. Extrageniculate thalamic projections to the primary visual cortex. Brain Res. 1980, 189, 221–227. [Google Scholar] [CrossRef]
- Symonds, L.L.; Rosenquist, A.C.; Edwards, S.B.; Palmer, L.A. Projections of the pulvinar-lateral posterior complex to visual cortical areas in the cat. Neuroscience 1981, 6, 1995–2020. [Google Scholar] [CrossRef]
- Berson, D.M.; Graybiel, A.M. Organization of the striate-recipient zone of the cat’s lateralis posterior-pulvinar complex and its relations with the geniculostriate system. Neuroscience 1983, 9, 337–372. [Google Scholar] [CrossRef]
- Movshon, J.A.; Thompson, I.D.; Tolhurst, D.J. Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex. J. Physiol. 1978, 283, 101–120. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Hu, X.; Wu, W.; Yang, Y. Organization of spatial frequency in cat striate cortex. Neuroscience 2017, 362, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Tardif, E.; Bergeron, A.; Lepore, F.; Guillemot, J.P. Spatial and temporal frequency tuning and contrast sensitivity of single neurons in area 21a of the cat. Brain Res. 1996, 716, 1–2. [Google Scholar] [CrossRef]
- Morley, J.W.; Vickery, R.M. Spatial and temporal frequency selectivity of cells in area 21a of the cat. J. Physiol. 1997, 501, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, M.Y.; Vanni, M.P.; Casanova, C. Modular organization in area 21a of the cat revealed by optical imaging: Comparison with the primary visual cortex. Neuroscience 2009, 164, 1320–1333. [Google Scholar] [CrossRef]
- Villeneuve, M.Y.; Casanova, C. On the use of isoflurane versus halothane in the study of visual response properties of single cells in the primary visual cortex. J. Neurosci Methods. 2003, 129, 19–31. [Google Scholar] [CrossRef]
- Siegle, J.H.; López, A.C.; Patel, Y.A.; Abramov, K.; Ohayon, S.; Voigts, J. Open Ephys: An open-source, plugin-based platform for multichannel electrophysiology. J. Neural Eng. 2017, 14, 045003. [Google Scholar] [CrossRef]
- Self, M.W.; Kooijmans, R.N.; Supèr, H.; Lamme, V.A.; Roelfsema, P.R. Different glutamate receptors convey feedforward and recurrent processing in macaque V1. Proc. Natl. Acad. Sci. USA 2012, 109, 11031–11036. [Google Scholar] [CrossRef] [Green Version]
- Van Drongelen, W. Fourier Transform Applications. In Signal Processing for Neuroscientists, 1st ed.; Academic Press: Cambridge, MA, USA, 2007; pp. 107–126. [Google Scholar]
- Cohen, M.X. Morlet Wavelets and Wavelet Convolution. In Analyzing Neural Time Series Data, 1st ed.; MIT Press: Cambridge, MA, USA, 2014; pp. 141–174. [Google Scholar]
- Barnett, L.; Seth, A.K. The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference. J. Neurosci. Methods 2014, 223, 50–68. [Google Scholar] [CrossRef] [Green Version]
- Bollimunta, A.; Mo, J.; Schroeder, C.E.; Ding, M. Neuronal mechanisms and attentional modulation of corticothalamic alpha oscillations. J. Neurosci. 2011, 31, 4935–4943. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.; Legault, M.A.; Thomas, S.; Casanova, C. Simultaneous electrophysiological recording and micro-injections of inhibitory agents in the rodent brain. J. Vis. Exp. 2015, 101, 52271. [Google Scholar] [CrossRef] [Green Version]
- Graybiel, A.M.; Berson, D.M. Histochemical identification and afferent connections of subdivisions in the lateralis posterior-pulvinar complex and related thalamic nuclei in the cat. Neuroscience 1980, 5, 1175–1238. [Google Scholar] [CrossRef]
- Van Der Gucht, E.; Vandesande, F.; Arckens, L. Neurofilament protein: A selective marker for the architectonic parcellation of the visual cortex in adult cat brain. J. Comp. Neurol. 2001, 441, 345–368. [Google Scholar] [CrossRef] [PubMed]
- Imas, O.A.; Ropella, K.M.; Wood, J.D.; Hudetz, A.G. Halothane augments event-related gamma oscillations in rat visual cortex. Neuroscience 2004, 123, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Symonds, L.L.; Rosenquist, A.C. Laminar origins of visual corticocortical connections in the cat. J. Comp. Neurol. 1984, 229, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Spaak, E.; Bonnefond, M.; Maier, A.; Leopold, D.A.; Jensen, O. Layer-specific entrainment of γ-band neural activity by the α rhythm in monkey visual cortex. Curr. Biol. 2012, 22, 2313–2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanni, M.P.; Casanova, C. Surround suppression maps in the cat primary visual cortex. Front. Neural Circuits. 2013, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hudetz, A.G.; Vizuete, J.A.; Pillay, S. Differential effects of isoflurane on high-frequency and low-frequency γ oscillations in the cerebral cortex and hippocampus in freely moving rats. Anesthesiology 2011, 114, 588–595. [Google Scholar] [CrossRef] [Green Version]
- Jensen, O.; Bonnefond, M.; Marshall, T.R.; Tiesinga, P. Oscillatory mechanisms of feedforward and feedback visual processing. Trends Neurosci. 2015, 38, 192–194. [Google Scholar] [CrossRef]
- Rosier, A.M.; Arckens, L.; Orban, G.A.; Vandesande, F. Laminar distribution of NMDA receptors in cat and monkey visual cortex visualized by [3H]-MK-801 binding. J. Comp. Neurol. 1993, 335, 369–380. [Google Scholar] [CrossRef]
- Ohana, O.; Portner, H.; Martin, K.A. Fast recruitment of recurrent inhibition in the cat visual cortex. PLoS ONE. 2012, 7, e40601. [Google Scholar] [CrossRef] [Green Version]
- Buzsáki, G.; Wang, X.J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 2012, 35, 203–225. [Google Scholar] [CrossRef] [Green Version]
- Zhou, N.; Maire, P.S.; Masterson, S.P.; Bickford, M.E. The mouse pulvinar nucleus: Organization of the tectorecipient zones. Vis. Neurosci. 2017, 34, E011. [Google Scholar] [CrossRef] [PubMed]
- Angulo, M.C.; Rossier, J.; Audinat, E. Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. J. Neurophysiol. 1999, 82, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Igarza, K.; Fogarty, D.J.; Pérez-Cerdá, F.; Doñate-Oliver, F.; Albus, K.; Matute, C. Localization of AMPA-selective glutamate receptor subunits in the adult cat visual cortex. Vis. Neurosci. 1996, 13, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Rinvik, E.; Ottersen, O.P.; Storm-Mathisen, J. Gammaaminobutyrate-like immunoreactivity in the thalamus of the cat. Neuroscience 1987, 21, 781–805. [Google Scholar] [CrossRef]
- Batini, C.; Guegan, M.; Palestini, M.; Thomasset, M. The immunocytochemical distribution of calbindin-D28k and parvalbumin in identified neurons of the pulvinar-lateralis posterior complex of the cat. Neurosci. Lett. 1991, 130, 203–207. [Google Scholar] [CrossRef]
- Soares, J.; Diogo, A.; Fiorani, M.; Souza, A.; Gattass, R. Effects of inactivation of the lateral pulvinar on response properties of second visual area cells in Cebus monkeys. Clin. Exp. Pharmacol. Physiol. 2004, 31, 580–590. [Google Scholar] [CrossRef]
- Jaramillo, J.; Mejias, J.F.; Wang, X.J. Engagement of pulvinar-cortical feedforward and feedback pathways in cognitive computations. Neuron 2019, 101, 321–336. [Google Scholar] [CrossRef]
- Quax, S.; Jensen, O.; Tiesinga, P. Top-down control of cortical gamma-band communication via pulvinar induced phase shifts in the alpha rhythm. PLoS Comput. Biol. 2017, 13, e1005519. [Google Scholar] [CrossRef] [Green Version]
- Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 2009, 32, 209–224. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Kamigaki, T.; Zhang, Z.; Zhang, S.; Dan, U.; Dan, Y. Prefrontal Corticotectal Neurons Enhance Visual Processing through the Superior Colliculus and Pulvinar Thalamus. Neuron 2019, 104, 1142–1152. [Google Scholar] [CrossRef] [PubMed]
- Uhlhaas, P.J.; Singer, W. Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 2010, 11, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Dorph-Petersen, K.A.; Lewis, D.A. Postmortem structural studies of the thalamus in schizophrenia. Schizophr Res. 2017, 180, 28–35. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortes, N.; de Souza, B.O.F.; Casanova, C. Pulvinar Modulates Synchrony across Visual Cortical Areas. Vision 2020, 4, 22. https://doi.org/10.3390/vision4020022
Cortes N, de Souza BOF, Casanova C. Pulvinar Modulates Synchrony across Visual Cortical Areas. Vision. 2020; 4(2):22. https://doi.org/10.3390/vision4020022
Chicago/Turabian StyleCortes, Nelson, Bruno O. F. de Souza, and Christian Casanova. 2020. "Pulvinar Modulates Synchrony across Visual Cortical Areas" Vision 4, no. 2: 22. https://doi.org/10.3390/vision4020022
APA StyleCortes, N., de Souza, B. O. F., & Casanova, C. (2020). Pulvinar Modulates Synchrony across Visual Cortical Areas. Vision, 4(2), 22. https://doi.org/10.3390/vision4020022