A Multi Comparison of 8 Different Intraocular Lens Biometry Formulae, Including a Machine Learning Thin Lens Formula (MM) and an Inbuilt Anterior Segment Optical Coherence Tomography Ray Tracing Formula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formulae
2.2. Methods of Formula Comparison
2.3. Statistical Analysis
2.4. Intraocular Lens
2.5. Surgical Technique
3. Results
3.1. Enhanced Monofocal IOL
3.2. Multifocal IOL
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kane, J.X.; Van Heerden, A.; Atik, A.; Petsoglou, C. Intraocular Lens Power Formula Accuracy: Comparison of 7 Formulas. J. Cataract Refract. Surg. 2016, 42, 1490–1500. [Google Scholar] [CrossRef]
- Cooke, D.L.; Cooke, T.L. Comparison of 9 Intraocular Lens Power Calculation Formulas. J. Cataract Refract. Surg. 2016, 42, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Martinez, C.E.; Tsai, L.M. Update on Intraocular Lens Formulas and Calculations. Asia-Pac. J. Ophthalmol. 2020, 9, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Barrett, G.D. An Improved Universal Theoretical Formula for Intraocular Lens Power Prediction. J. Cataract Refract. Surg. 1993, 19, 713–720. [Google Scholar] [CrossRef]
- Kane, J.X.; Van Heerden, A.; Atik, A.; Petsoglou, C. Accuracy of 3 New Methods for Intraocular Lens Power Selection. J. Cataract Refract. Surg. 2017, 43, 333–339. [Google Scholar] [CrossRef]
- Olsen, T.; Hoffmann, P. C Constant: New Concept for Ray Tracing-Assisted Intraocular Lens Power Calculation. J. Cataract Refract. Surg. 2014, 40, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Merino, P.; Aramberri, J.; Quintero, A.V.; Rozema, J.J. Ray Tracing Optimization: A New Method for Intraocular Lens Power Calculation in Regular and Irregular Corneas. Sci. Rep. 2023, 13, 4555. [Google Scholar] [CrossRef]
- Savini, G.; Hoffer, K.J.; Ribeiro, F.J.; Dias, J.M.; Coutinho, C.P.; Barboni, P.; Schiano-Lomoriello, D. Intraocular Lens Power Calculation with Ray Tracing Based on AS-OCT and Adjusted Axial Length after Myopic Excimer Laser Surgery. J. Cataract Refract. Surg. 2022, 48, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Saiki, M.; Negishi, K.; Kato, N.; Torii, H.; Dogru, M.; Tsubota, K. Ray Tracing Software for Intraocular Lens Power Calculation after Corneal Excimer Laser Surgery. Jpn. J. Ophthalmol. 2014, 58, 276–281. [Google Scholar] [CrossRef]
- Savini, G.; Bedei, A.; Barboni, P.; Ducoli, P.; Hoffer, K.J. Intraocular Lens Power Calculation by Ray-Tracing after Myopic Excimer Laser Surgery. Am. J. Ophthalmol. 2014, 157, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Minami, K.; Kataoka, Y.; Matsunaga, J.; Ohtani, S.; Honbou, M.; Miyata, K. Ray-Tracing Intraocular Lens Power Calculation Using Anterior Segment Optical Coherence Tomography Measurements. J. Cataract Refract. Surg. 2012, 38, 1758–1763. [Google Scholar] [CrossRef]
- Moutari, S.; Moore, J.E. An Ensemble-Based Approach for Estimating Personalized Intraocular Lens Power. Sci. Rep. 2021, 11, 22961. [Google Scholar] [CrossRef] [PubMed]
- Khatib, Z.I.; Haldipurkar, S.S.; Shetty, V.; Dahake, H.; Nagvekar, P.; Kashelkar, P. Comparison of Three Newer Generation Freely Available Intraocular Lens Power Calculation Formulae across All Axial Lengths. Indian. J. Ophthalmol. 2021, 69, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Retzlaff, J.A.; Sanders, D.R.; Kraff, M.C. Development of the SRKT Intraocular Lens Implant Power Calculation Formula. J. Cataract Refract. Surg. 1990, 16, 333–340. [Google Scholar] [CrossRef]
- Hoffer, K.J. The Hoffer Q Formula: A Comparison of Theoretic and Regression Formulas. J. Cataract Refract. Surg. 1993, 19, 700–712. [Google Scholar] [CrossRef]
- Holladay, J.T.; Musgrove, K.H.; Prager, T.C.; Lewis, J.W.; Chandler, T.Y.; Ruiz, R.S. A Three-Part System for Refining Intraocular Lens Power Calculations. J. Cataract Refract. Surg. 1988, 14, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Haigis, W.; Lege, B.; Miller, N.; Schneider, B. Comparison of Immersion Ultrasound Biometry and Partial Coherence Interferometry for Intraocular Lens Calculation According to Haigis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2000, 238, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Scholtz, S.K.; Schwemm, M.; Eppig, T.; Cayless, A.; Langenbucher, A. Benefits and New Features of a Modern International Internet Database “IOLCon” for Updated and Optimized IOL Constants and IOL Specifications. Klin. Monatsblätter Augenheilkd. 2021, 238, 996–1003. [Google Scholar] [CrossRef]
- Holladay, J.T.; Wilcox, R.R.; Koch, D.D.; Wang, L. Review and Recommendations for Univariate Statistical Analysis of Spherical Equivalent Prediction Error for IOL Power Calculations. J. Cataract Refract. Surg. 2021, 47, 65–77. [Google Scholar] [CrossRef]
- Wang, L.; Koch, D.D.; Hill, W.; Abulafia, A. Pursuing Perfection in Intraocular Lens Calculations: III. Criteria for Analyzing Outcomes. J. Cataract Refract. Surg. 2017, 43, 999–1002. [Google Scholar] [CrossRef]
- Kenny, P.I.; Kozhaya, K.; Truong, P.; Weikert, M.P.; Wang, L.; Hill, W.E.; Koch, D.D. Efficacy of segmented axial length and artificial intelligence approaches to intraocular lens power calculation in short eyes. J. Cataract Refract. Surg. 2023, 49, 697–703. [Google Scholar] [PubMed]
- Melles, R.B.; Holladay, J.T.; Chang, W.J. Accuracy of Intraocular Lens Calculation Formulas. Ophthalmology 2018, 125, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; He, W.; Zhu, Q.; Qian, D.; Lu, Y.; Zhu, X. Intraocular Lens Power Calculation in Eyes with Extreme Myopia: Comparison of Barrett Universal II, Haigis, and Olsen Formulas. J. Cataract Refract. Surg. 2019, 45, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Lupardi, E.; Hoffer, K.J.; Fontana, L.; Savini, G. Method to Analyze the Refractive Outcomes of Online Intraocular Lens Power Formulas. J. Cataract Refract. Surg. 2023, 49, 321–322. [Google Scholar] [CrossRef] [PubMed]
- Goodall, E.; Moore, J.; Moore, T. The estimation of approximate sample size requirements necessary for clinical and epidemiological studies in vision sciences. Eye 2009, 23, 1589–1597. [Google Scholar] [CrossRef] [PubMed]
- McNeely, R.N.; Stewart, S.A.; Moore, J.E. Visual performance and subjective experience 3 months and 12 months after combined implantation of 2 new complementary continuous phase multifocal intraocular lenses. J. Cataract Refract. Surg. 2023, 49, 921–928. [Google Scholar]
- Megiddo-Barnir, E.; Alió, J.L. Latest Development in Extended Depth-of-Focus Intraocular Lenses: An Update. Asia-Pac. J. Ophthalmol. 2023, 12, 58–79. [Google Scholar] [CrossRef]
- Moshirfar, M.; Sulit, C.A.; Brown, A.H.; Irwin, C.; Ronquillo, Y.C.; Hoopes, P.C. Comparing the Accuracy of the Kane, Barrett Universal II, Hill-Radial Basis Function, Emmetropia Verifying Optical, and Ladas Super Formula Intraocular Lens Power Calculation Formulas. Clin. Ophthalmol. 2023, 17, 2643–2652. [Google Scholar] [CrossRef]
- Yoon, J.H.; Whang, W.J. Comparison of Accuracy of Six Modern Intraocular Lens Power Calculation Formulas. Korean J. Ophthalmol. 2023, 37, 380–386. [Google Scholar] [CrossRef]
- Gale, R.P.; Saldana, M.; Johnston, R.L.; Zuberbuhler, B.; McKibbin, M. Benchmark Standards for Refractive Outcomes after NHS Cataract Surgery. Eye 2009, 23, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Hipólito-Fernandes, D.; Luís, M.E.; Gil, P.; Maduro, V.; Feijão, J.; Yeo, T.K.; Voytsekhivskyy, O.; Alves, N. Vrf-g, a New Intraocular Lens Power Calculation Formula: A 13-Formulas Comparison Study. Clin. Ophthalmol. 2020, 14, 4395–4402. [Google Scholar] [CrossRef] [PubMed]
- Carmona-González, D.; Castillo-Gómez, A.; Palomino-Bautista, C.; Romero-Domínguez, M.; Gutiérrez-Moreno, M.Á. Comparison of the Accuracy of 11 Intraocular Lens Power Calculation Formulas. Eur. J. Ophthalmol. 2021, 31, 2370–2376. [Google Scholar] [CrossRef] [PubMed]
Parameter | Values |
---|---|
Mean Age (years) ± SD, range | 59 ± 6.96 (42 to 79) |
Female gender, n (%) | 34 (55.7) |
Mean axial length (mm) ± SD, range | 23.45 ± 1.15 (21.3 to 26.33) |
Mean anterior chamber depth (mm) ± SD, range | 3.16 ± 0.37 (2.05 to 4.02) |
Mean Keratometry (D) ± SD, range | 43.17 ± 1.26 (39.88 to 45.90) |
Mean IOL power (D) ± SD, range | 22.5 ± 3.61 (12 to 30) |
Mean postoperative spherical equivalent ± SD, range | −0.28 ± 0.67 (−2.13 to 1.25) |
Mean postoperative cylinder power ± SD, range | −0.44 ± 0.30 (−1.25 to 0) |
EMV | Artis Symbiose | |
---|---|---|
Barrett | 118.6 | 119.74 |
EVO | 118.6 | 119.74 |
Haigis | a0 1.044 | a0 0.088 |
a1 0.4 | a1 0.233 | |
a2 0.1 | a2 0.2 | |
HofferQ | 5.32 | 6.095 |
Holladay 1 | 1.56 | 2.295 |
MM | ||
Ray tracing | 118.6 | 119.7 |
SRK/T | 118.6 | 119.74 |
Formula | MAE | MedAE | Max Error | % within ±0.25 D | % within ±0.5 D | % within ±0.75 D | % within ±1.00 D |
---|---|---|---|---|---|---|---|
a | |||||||
Barrett Universal II | 0.40 | 0.33 | 1.29 | 34 | 74 | 86 | 96 |
EVO | 0.31 | 0.22 | 1.28 | 56 | 82 | 90 | 96 |
Haigis | 0.32 | 0.25 | 1.12 | 50 | 82 | 94 | 96 |
HofferQ | 0.39 | 0.32 | 1.29 | 40 | 72 | 84 | 94 |
Holladay 1 | 0.35 | 0.31 | 1.16 | 46 | 80 | 90 | 96 |
MM | 0.34 | 0.27 | 1.21 | 44 | 78 | 96 | 98 |
Ray tracing | 0.38 | 0.36 | 1.25 | 34 | 70 | 90 | 96 |
SRK/T | 0.34 | 0.26 | 1.24 | 48 | 78 | 92 | 96 |
b | |||||||
Barrett Universal II | 0.40 | 0.37 | 1.13 | 30 | 72 | 90 | 98 |
EVO | 0.37 | 0.30 | 1.01 | 42 | 78 | 86 | 98 |
Haigis | 0.40 | 0.34 | 1.30 | 34 | 72 | 82 | 98 |
HofferQ | 0.41 | 0.32 | 1.30 | 36 | 68 | 84 | 92 |
Holladay 1 | 0.36 | 0.30 | 1.06 | 38 | 74 | 90 | 98 |
MM | 0.37 | 0.32 | 1.20 | 42 | 68 | 90 | 98 |
Ray tracing | 0.34 | 0.24 | 1.17 | 56 | 74 | 90 | 94 |
SRK/T | 0.38 | 0.33 | 0.97 | 32 | 76 | 94 | 100 |
Formula | EMV | Artis Symbiose | ||
---|---|---|---|---|
PE ± SD | p Value | PE ± SD | p Value | |
Barrett Universal II | −0.28 ± 0.39 | <0.001 | 0.15 ± 0.44 | 0.023 |
EVO | 0.23 ± 0.36 | <0.001 | −0.06 ± 0.45 | 0.348 |
Haigis | −0.16 ± 0.38 | 0.002 | −0.15 ± 0.49 | 0.033 |
HofferQ | −0.26± 0.42 | <0.001 | −0.12 ± 0.51 | 0.099 |
Holladay 1 | −0.21 ± 0.40 | <0.001 | 0.01 ± 0.45 | 0.926 |
MM | −0.22 ± 0.36 | <0.001 | −0.04. ± 0.45 | 0.538 |
Ray tracing | −0.14 ± 0.46 | 0.036 | 0.03 ± 0.46 | 0.601 |
SRK/T | −0.13 ± 0.42 | 0.30 | 0.13 ± 0.42 | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McNeely, R.N.; McGinnity, K.; Stewart, S.; Pazo, E.E.; Moutari, S.; Moore, J.E. A Multi Comparison of 8 Different Intraocular Lens Biometry Formulae, Including a Machine Learning Thin Lens Formula (MM) and an Inbuilt Anterior Segment Optical Coherence Tomography Ray Tracing Formula. Vision 2024, 8, 49. https://doi.org/10.3390/vision8030049
McNeely RN, McGinnity K, Stewart S, Pazo EE, Moutari S, Moore JE. A Multi Comparison of 8 Different Intraocular Lens Biometry Formulae, Including a Machine Learning Thin Lens Formula (MM) and an Inbuilt Anterior Segment Optical Coherence Tomography Ray Tracing Formula. Vision. 2024; 8(3):49. https://doi.org/10.3390/vision8030049
Chicago/Turabian StyleMcNeely, Richard N., Katherine McGinnity, Stephen Stewart, Emmanuel Eric Pazo, Salissou Moutari, and Jonathan E. Moore. 2024. "A Multi Comparison of 8 Different Intraocular Lens Biometry Formulae, Including a Machine Learning Thin Lens Formula (MM) and an Inbuilt Anterior Segment Optical Coherence Tomography Ray Tracing Formula" Vision 8, no. 3: 49. https://doi.org/10.3390/vision8030049
APA StyleMcNeely, R. N., McGinnity, K., Stewart, S., Pazo, E. E., Moutari, S., & Moore, J. E. (2024). A Multi Comparison of 8 Different Intraocular Lens Biometry Formulae, Including a Machine Learning Thin Lens Formula (MM) and an Inbuilt Anterior Segment Optical Coherence Tomography Ray Tracing Formula. Vision, 8(3), 49. https://doi.org/10.3390/vision8030049