Colour Vision Changes across Lifespan: Insights from FM100 and CAD Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. HRR Test
2.3. FM100 Hue Test
2.4. Anomaloscope Test
2.5. CAD Test
3. Results
3.1. Anomaloscope Test
3.2. CAD Test—Normal Trichromats
3.3. FM100 Hue Test—Normal Trichromats
3.4. FM100 Hue and CAD Tests—Anomalous Trichromats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Birch, J. Worldwide prevalence of red-green color deficiency. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2012, 29, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Paramei, G.V. Color discrimination across four life decades assessed by the Cambridge Colour Test. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2012, 29, A290–A297. [Google Scholar] [CrossRef] [PubMed]
- Paramei, G.V.; Oakley, B. Variation of color discrimination across the life span. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2014, 31, A375–A384. [Google Scholar] [CrossRef]
- Knoblauch, K.; Vital-Durand, F.; Barbur, J.L. Variation of chromatic sensitivity across the life span. Vis. Res. 2001, 41, 23–36. [Google Scholar] [CrossRef]
- Barbur, J.L.; Rodriguez-Carmona, M. Color vision changes in normal aging. In Handbook of Color Psychology; Elliott, A.J., Fairchild, M.D., Franklin, A., Eds.; Cambridge University Press: Cambridge, UK, 2015; pp. 180–196. [Google Scholar]
- Weale, R.A. Age and the transmittance of the human crystalline lens. J. Physiol. 1988, 395, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Pokorny, J.; Smith, V.C.; Lutze, M. Aging of the human lens. Appl. Opt. 1987, 26, 1437–1440. [Google Scholar] [CrossRef]
- Xu, J.; Pokorny, J.; Smith, V.C. Optical density of the human lens. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1997, 14, 953–960. [Google Scholar] [CrossRef]
- Kilbride, P.E.; Hutman, L.P.; Fishman, M.; Read, J.S. Foveal cone pigment density difference in the aging human eye. Vis. Res. 1986, 26, 321–325. [Google Scholar] [CrossRef]
- Werner, J.S.; Steele, V.G. Sensitivity of human foveal color mechanisms throughout the life span. J. Opt. Soc. Am. A Opt. Image Sci. 1988, 5, 2122–2130. [Google Scholar] [CrossRef]
- Song, H.; Chui, T.Y.; Zhong, Z.; Elsner, A.E.; Burns, S.A. Variation of cone photoreceptor packing density with retinal eccentricity and age. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7376–7384. [Google Scholar] [CrossRef]
- Curcio, C.A.; Drucker, D.N. Retinal ganglion cells in Alzheimer’s disease and aging. Ann. Neurol. 1993, 33, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.C.; Yip, W.F.; Kallakuri, S.; Sankari, U.; Koh, Y.L.E. Factors associated with impaired color vision without retinopathy amongst people with type 2 diabetes mellitus: A cross-sectional study. BMC Endocr. Disord. 2017, 17, 29. [Google Scholar] [CrossRef] [PubMed]
- Feitosa-Santana, C.; Paramei, G.V.; Nishi, M.; Gualtieri, M.; Costa, M.F.; Ventura, D.F. Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test. Ophthalmic Physiol. Opt. 2010, 30, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Bayer, L.; Funk, J.; Töteberg-Harms, M. Incidence of dyschromatopsy in glaucoma. Int. Ophthalmol. 2020, 40, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Ao, M.; Li, X.; Qiu, W.; Hou, Z.; Su, J.; Wang, W. The impact of age-related cataracts on colour perception, postoperative recovery and related spectra derived from test of hue perception. BMC Ophthalmol. 2019, 19, 56. [Google Scholar] [CrossRef]
- Birch, J. Identification of red-green colour deficiency: Sensitivity of the Ishihara and American Optical Company (Hard, Rand and Rittler) pseudo-isochromatic plates to identify slight anomalous trichromatism. Ophthalmic Physiol. Opt. 2010, 30, 667–671. [Google Scholar] [CrossRef]
- Bailey, J.E.; Neitz, M.; Tait, D.M.; Neitz, J. Evaluation of an updated HRR color vision test. Vis. Neurosci. 2004, 21, 431–436. [Google Scholar] [CrossRef]
- Davidoff, C.; Neitz, M.; Neitz, J. Genetic Testing as a New Standard for Clinical Diagnosis of Color Vision Deficiencies. Transl. Vis. Sci. Technol. 2016, 5, 2. [Google Scholar] [CrossRef]
- Barbur, J.L. ‘Double-blindsight’ revealed through the processing of color and luminance contrast defined motion signals. Prog. Brain Res. 2004, 144, 243–259. [Google Scholar]
- Rauscher, F.G.; Chisholm, C.M.; Edgar, D.F.; Barbur, J.L. Assessment of novel binocular colour, motion and contrast tests in glaucoma. Cell Tissue Res. 2013, 353, 297–310. [Google Scholar] [CrossRef]
- O’Neill-Biba, M.; Sivaprasad, S.; Rodriguez-Carmona, M.; Wolf, J.E.; Barbur, J.L. Loss of chromatic sensitivity in AMD and diabetes: A comparative study. Ophthalmic Physiol. Opt. 2010, 30, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, J.; Christensen, J.; Lakshminarayanan, V.; Bassi, C.J. Evaluation of the new web-based “Colour Assessment and Diagnosis” test. Optom. Vis. Sci. 2005, 82, 882–885. [Google Scholar] [CrossRef]
- Bassi, C.J.; Galanis, J.C.; Hoffman, J. Comparison of the Farnsworth-Munsell 100-Hue, the Farnsworth D-15, and the L’Anthony D-15 desaturated color tests. Arch. Ophthalmol. 1993, 111, 639–641. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.C.; Pokorny, J.; Pass, A.S. Color-axis determination on the Farnsworth-Munsell 100-hue test. Am. J. Ophthalmol. 1985, 100, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Sauder, D.C.; DeMars, C.E. An Updated Recommendation for Multiple Comparisons. Adv. Methods Pract. Psychol. Sci. 2019, 2, 26–44. [Google Scholar] [CrossRef]
- Kinnear, P.R. Proposals for scoring and assessing the 100-Hue test. Vis. Res. 1970, 10, 423–433. [Google Scholar] [CrossRef]
- Birch, J. Failure of concordance of the Farnsworth D15 test and the Nagel anomaloscope matching range in anomalous trichromatism. Vis. Neurosci. 2008, 25, 451–453. [Google Scholar] [CrossRef]
- Bosten, J. The known unknowns of anomalous trichromacy. Curr. Opin. Behav. Sci. 2019, 30, 228–237. [Google Scholar] [CrossRef]
- Tregillus, K.E.M.; Isherwood, Z.J.; Vanston, J.E.; Engel, S.A.; MacLeod, D.I.A.; Kuriki, I.; Webster, M.A. Color Compensation in Anomalous Trichromats Assessed with fMRI. Curr. Biol. 2021, 31, 936–942. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trukša, R.; Fomins, S.; Jansone-Langina, Z.; Tenisa, L. Colour Vision Changes across Lifespan: Insights from FM100 and CAD Tests. Vision 2024, 8, 53. https://doi.org/10.3390/vision8030053
Trukša R, Fomins S, Jansone-Langina Z, Tenisa L. Colour Vision Changes across Lifespan: Insights from FM100 and CAD Tests. Vision. 2024; 8(3):53. https://doi.org/10.3390/vision8030053
Chicago/Turabian StyleTrukša, Renārs, Sergejs Fomins, Zane Jansone-Langina, and Laura Tenisa. 2024. "Colour Vision Changes across Lifespan: Insights from FM100 and CAD Tests" Vision 8, no. 3: 53. https://doi.org/10.3390/vision8030053
APA StyleTrukša, R., Fomins, S., Jansone-Langina, Z., & Tenisa, L. (2024). Colour Vision Changes across Lifespan: Insights from FM100 and CAD Tests. Vision, 8(3), 53. https://doi.org/10.3390/vision8030053