The “What” and “How” of Pantomime Actions
Abstract
:1. Introduction
2. Features of Pantomime Actions
2.1. Kinematics
2.2. Cognitive Requirements
2.3. Individual Differences
3. Pantomime Actions in the Literature of the Two Visual Systems Model
3.1. Overview
3.1.1. What–Where
3.1.2. What–How
3.2. Patient DF
3.3. Pictorial Illusions
3.4. Weber’s Law
3.5. Current Understanding
4. Pantomime Actions in Limb Apraxia
Historical Roots
5. Models of Pantomime Action in Apraxia
5.1. Motor Memory Models
5.2. The Working Memory Model
5.3. The Technical Reasoning Model
5.4. Summary of Models
6. Points of Agreement and Disagreement
7. The Way Forward
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hughlings-Jackson, J. Words and Other Symbols in Mentation. Brain 1915, 38, 175–186. [Google Scholar] [CrossRef]
- Wilson, S.A.K. A Contribution to the Study of Apraxia with a Review of the Literature. Brain 1908, 31, 164–216. [Google Scholar] [CrossRef]
- Liepmann, H. Apraxie. In Ergebnisse der Gesamten Medizin; Brugsch, H., Ed.; Urban & Schwarzenberg: Wien, Austria; Berlin, Germany, 1920; pp. 516–543. [Google Scholar]
- Goodglass, H.; Kaplan, E. Disturbance of Gesture and Pantomime in Aphasia. Brain 1963, 86, 703–720. [Google Scholar] [CrossRef] [PubMed]
- Arbib, M.A. In Support of the Role of Pantomime in Language Evolution. J. Lang. Evol. 2018, 3, 41–44. [Google Scholar] [CrossRef]
- Zlatev, J.; Wacewicz, S.; Zywiczynski, P.; Van De Weijer, J. Multimodal-First or Pantomime-First?: Communicating Events through Pantomime with and without Vocalization. Interact. Stud. 2017, 18, 465–488. [Google Scholar] [CrossRef]
- Fitch, W.T. The Evolution of Language; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2010; ISBN 978-0-521-85993-6. [Google Scholar]
- Harris, D.J.; Buckingham, G.; Wilson, M.R.; Vine, S.J. Virtually the Same? How Impaired Sensory Information in Virtual Reality May Disrupt Vision for Action. Exp. Brain Res. 2019, 237, 2761–2766. [Google Scholar] [CrossRef] [PubMed]
- Rallis, A.; Fercho, K.A.; Bosch, T.J.; Baugh, L.A. Getting a Handle on Virtual Tools: An Examination of the Neuronal Activity Associated with Virtual Tool Use. Neuropsychologia 2018, 109, 208–221. [Google Scholar] [CrossRef]
- Mangalam, M.; Yarossi, M.; Furmanek, M.P.; Tunik, E. Control of Aperture Closure during Reach-to-Grasp Movements in Immersive Haptic-Free Virtual Reality. Exp. Brain Res. 2021, 239, 1651–1665. [Google Scholar] [CrossRef]
- Ni, T.; Bowman, D.A.; North, C.; McMahan, R.P. Design and Evaluation of Freehand Menu Selection Interfaces Using Tilt and Pinch Gestures. Int. J. Hum. Comput. Stud. 2011, 69, 551–562. [Google Scholar] [CrossRef]
- Afgin, O.; Sagi, N.; Nisky, I.; Ganel, T.; Berman, S. Visuomotor Resolution in Telerobotic Grasping with Transmission Delays. Front. Robot. AI 2017, 4, 54. [Google Scholar] [CrossRef]
- Goodale, M.A.; Milner, A.D. Separate Visual Pathways for Perception and Action. Trends Neurosci. 1992, 15, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Milner, A.D.; Goodale, M.A. The Visual Brain in Action, 2nd ed.; Oxford Psychology Series; Oxford University Press: Toronto, ON, Canada, 2006; ISBN 978-0-19-852472-4. [Google Scholar]
- Milner, A.D.; Goodale, M.A. Two Visual Systems Re-Viewed. Neuropsychologia 2008, 46, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, G. Facets of Pantomime. J. Int. Neuropsychol. Soc. 2017, 23, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.; Mittermaier, E.; Kher, T.; Arnold, P. How Pantomime Works: Implications for Theories of Language Origin. Front. Commun. 2019, 4, 9. [Google Scholar] [CrossRef]
- Jakobson, L.S.; Goodale, M.A. Factors Affecting Higher-Order Movement Planning: A Kinematic Analysis of Human Prehension. Exp. Brain Res. 1991, 86, 199–208. [Google Scholar] [CrossRef]
- Jeannerod, M.; Arbib, M.A.; Rizzolatti, G.; Sakata, H. Grasping Objects: The Cortical Mechanisms of Visuomotor Transformation. Trends Neurosci. 1995, 18, 314–320. [Google Scholar] [CrossRef]
- Goodale, M.A.; Jakobson, L.S.; Keillor, J.M. Differences in the Visual Control of Pantomimed and Natural Grasping Movements. Neuropsychologia 1994, 32, 1159–1178. [Google Scholar] [CrossRef]
- Jeannerod, M.; Decety, J.; Michel, F. Impairment of Grasping Movements Following a Bilateral Posterior Parietal Lesion. Neuropsychologia 1994, 32, 369–380. [Google Scholar] [CrossRef]
- Laimgruber, K.; Goldenberg, G.; Hermsdörfer, J. Manual and Hemispheric Asymmetries in the Execution of Actual and Pantomimed Prehension. Neuropsychologia 2005, 43, 682–692. [Google Scholar] [CrossRef]
- Whitwell, R.L.; Ganel, T.; Byrne, C.M.; Goodale, M.A. Real-Time Vision, Tactile Cues, and Visual Form Agnosia: Removing Haptic Feedback from a “Natural” Grasping Task Induces Pantomime-like Grasps. Front. Hum. Neurosci. 2015, 9, 216. [Google Scholar] [CrossRef]
- Fukui, T.; Inui, T. How Vision Affects Kinematic Properties of Pantomimed Prehension Movements. Front. Psychology 2013, 4, 44. [Google Scholar] [CrossRef] [PubMed]
- Cavina-Pratesi, C.; Kuhn, G.; Ietswaart, M.; Milner, A.D. The Magic Grasp: Motor Expertise in Deception. PLoS ONE 2011, 6, e16568. [Google Scholar] [CrossRef] [PubMed]
- MacNeil, R.R.; Whitwell, R.L.; Enns, J.T. Pantomime Grasps Are Influenced by the Ventral Visual Stream Late in the Reach Trajectory. In Proceedings of the Psychonomics 2021 62nd Annual Meeting (Virtual), Boston, MA, USA, 4–7 November 2021. [Google Scholar]
- Whitwell, R.L.; Katz, N.J.; Goodale, M.A.; Enns, J.T. The Role of Haptic Expectations in Reaching to Grasp: From Pantomime to Natural Grasps and Back Again. Front. Psychol. 2020, 11, 3492. [Google Scholar] [CrossRef]
- Johnson-Frey, S.H.; Grafton, S.T. From ‘Acting on’ to ‘Acting with’: The Functional Anatomy of Object-Oriented Action Schemata. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2003; Volume 142, pp. 127–139. ISBN 978-0-444-50977-2. [Google Scholar]
- Bub, D.N.; Masson, M.E.J.; Van Noordenne, M. Motor Representations Evoked by Objects under Varying Action Intentions. J. Exp. Psychol. Hum. Percept. Perform. 2021, 47, 53–80. [Google Scholar] [CrossRef]
- Bub, D.N.; Masson, M.E.J. On the Dynamics of Action Representations Evoked by Names of Manipulable Objects. J. Exp. Psychol. Gen. 2012, 141, 502–517. [Google Scholar] [CrossRef]
- Chua, K.-W.; Bub, D.N.; Masson, M.E.J.; Gauthier, I. Grasp Representations Depend on Knowledge and Attention. J. Exp. Psychol. Learn. Mem. Cogn. 2018, 44, 268–279. [Google Scholar] [CrossRef]
- Valyear, K.F.; Chapman, C.S.; Gallivan, J.P.; Mark, R.S.; Culham, J.C. To Use or to Move: Goal-Set Modulates Priming when Grasping Real Tools. Exp. Brain Res. 2011, 212, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Jax, S.A.; Buxbaum, L.J. Response Interference between Functional and Structural Actions Linked to the Same Familiar Object. Cognition 2010, 115, 350–355. [Google Scholar] [CrossRef]
- Malfatti, G.; Turella, L. Neural Encoding and Functional Interactions Underlying Pantomimed Movements. Brain Struct. Funct. 2021, 226, 2321–2337. [Google Scholar] [CrossRef]
- Garcea, F.E.; Buxbaum, L.J. Gesturing Tool Use and Tool Transport Actions Modulates Inferior Parietal Functional Connectivity with the Dorsal and Ventral Object Processing Pathways. Hum. Brain Mapp. 2019, 40, 2867–2883. [Google Scholar] [CrossRef]
- Sirigu, A.; Duhamel, J.-R.; Poncet, M. The Role of Sensorimotor Experience in Object Recognition: A Case of Multimodal Agnosia. Brain 1991, 114, 2555–2573. [Google Scholar] [CrossRef] [PubMed]
- Buxbaum, L.J.; Saffran, E.M. Knowledge of Object Manipulation and Object Function: Dissociations in Apraxic and Nonapraxic Subjects. Brain Lang. 2002, 82, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Riddoch, M.J.; Humphreys, G.W. Visual Object Processing in Optic Aphasia: A Case of Semantic Access Agnosia. Cogn. Neuropsychol. 1987, 4, 131–185. [Google Scholar] [CrossRef]
- Magnié, M.-N.; Ferreira, C.T.; Giusiano, B.; Poncet, M. Category Specificity in Object Agnosia: Preservation of Sensorimotor Experiences Related to Objects. Neuropsychologia 1998, 37, 67–74. [Google Scholar] [CrossRef]
- Hodges, J.R.; Spatt, J.; Patterson, K. “What” and “How”: Evidence for the Dissociation of Object Knowledge and Mechanical Problem-Solving Skills in the Human Brain. Proc. Natl. Acad. Sci. USA 1999, 96, 9444–9448. [Google Scholar] [CrossRef]
- Roy, E.A.; Hall, C. Chapter 11. Limb Apraxia: A Process Approach. In Vision and Motor Comntrol; Advances in Psychology; Proteau, L., Elliot, D., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; Volume 85, pp. 261–282. ISBN 978-0-444-88816-7. [Google Scholar]
- Ruotolo, F.; Iachini, T.; Ruggiero, G.; Scotto Di Tella, G.; Ott, L.; Bartolo, A. The Role of Mental Imagery in Pantomimes of Actions towards and away from the Body. Psychol. Res. 2021, 85, 1408–1417. [Google Scholar] [CrossRef]
- Jeannerod, M.; Frak, V. Mental Imaging of Motor Activity in Humans. Curr. Opin. Neurobiol. 1999, 9, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Sirigu, A.; Duhamel, J.-R.; Cohen, L.; Pillon, B.; Dubois, B.; Agid, Y. The Mental Representation of Hand Movements after Parietal Cortex Damage. Science 1996, 273, 1564–1568. [Google Scholar] [CrossRef] [PubMed]
- Sirigu, A.; Duhamel, J.R. Motor and Visual Imagery as Two Complementary but Neurally Dissociable Mental Processes. J. Cogn. Neurosci. 2001, 13, 910–919. [Google Scholar] [CrossRef]
- Rinsma, T.; van der Kamp, J.; Dicks, M.; Cañal-Bruland, R. Nothing Magical: Pantomimed Grasping Is Controlled by the Ventral System. Exp. Brain Res. 2017, 235, 1823–1833. [Google Scholar] [CrossRef]
- Quarona, D.; Koul, A.; Ansuini, C.; Pascolini, L.; Cavallo, A.; Becchio, C. A Kind of Magic: Enhanced Detection of Pantomimed Grasps in Professional Magicians. Q. J. Exp. Psychol. 2020, 73, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.S. In the Eye’s Mind: Vision and the Helmholtz-Hering Controversy; Course Book; Princeton University Press: Princeton, NJ, USA, 2014; ISBN 978-1-4008-6381-5. [Google Scholar]
- Nassi, J.J.; Callaway, E.M. Parallel Processing Strategies of the Primate Visual System. Nat. Rev. Neurosci. 2009, 10, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Ingle, D. Two Visual Systems in the Frog. Science 1973, 181, 1053–1055. [Google Scholar] [CrossRef]
- Ingle, D. Two Visual Mechanisms Underlying the Behavior of Fish. Psychol. Forsch. 1967, 31, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Ingle, D. Visuomotor Functions of the Frog Optic Tectum. Brain Behav. Evol. 1970, 3, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Ingle, D. Some Effects of Pretectum Lesions on the Frogs’ Detection of Stationary Objects. Behav. Brain Res. 1980, 1, 139–163. [Google Scholar] [CrossRef]
- Schneider, G.E. Two Visual Systems: Brain Mechanisms for Localization and Discrimination Are Dissociated by Tectal and Cortical Lesions. Science 1969, 163, 895–902. [Google Scholar] [CrossRef]
- Ungerleider, L.G.; Mishkin, M. Two Cortical Visual Systems. In Analysis of Visual Behavior; Ingle, D.J., Goodale, M.A., Mansfield, R.J.W., Eds.; MIT Press: Cambride, MA, USA, 1982; pp. 549–586. [Google Scholar]
- Mishkin, M.; Ungerleider, L.G.; Macko, K.A. Object Vision and Spatial Vision: Two Cortical Pathways. Trends Neurosci. 1983, 6, 414–417. [Google Scholar] [CrossRef]
- Cowey, A.; Gross, C.G. Effects of Foveal Prestriate and Inferotemporal Lesions on Visual Discrimination by Rhesus Monkeys. Exp. Brain Res. 1970, 11, 128–144. [Google Scholar] [CrossRef]
- Cowey, A.; Weiskrantz, L. A Comparison of the Effects of Inferotemporal and Striate Cortex Lesions on the Visual Behaviour of Rhesus Monkeys. Q. J. Exp. Psychol. 1967, 19, 246–253. [Google Scholar] [CrossRef]
- Iwai, E.; Mishkin, M. Further Evidence on the Locus of the Visual Area in the Temporal Lobe of the Monkey. Exp. Neurol. 1969, 25, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Mishkin, M. Cortical Visual Areas and Their Interactions. In Brain and Human Behavior; Karczmar, A.G., Eccles, J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 1972; pp. 187–208. ISBN 978-3-642-95201-2. [Google Scholar]
- Goodale, M.A.; Pelisson, D.; Prablanc, C. Large Adjustments in Visually Guided Reaching Do Not Depend on Vision of the Hand or Perception of Target Displacement. Nature 1986, 320, 748–750. [Google Scholar] [CrossRef]
- Milner, A.D.; Foreman, N.P.; Goodale, M.A. Go-Left Go-Right Discrimination Performance and Distractibility Following Lesions of Prefrontal Cortex or Superior Colliculus in Stumptail Macaques. Neuropsychologia 1978, 16, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Goodale, M.A.; Foreman, N.P.; Milner, A.D. Visual Orientation in the Rat: A Dissociation of Deficits Following Cortical and Collicular Lesions. Exp. Brain Res. 1978, 31, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Budisavljevic, S.; Dell’Acqua, F.; Castiello, U. Cross-Talk Connections Underlying Dorsal and Ventral Stream Integration during Hand Actions. Cortex 2018, 103, 224–239. [Google Scholar] [CrossRef]
- Goodale, M.A. How (and Why) the Visual Control of Action Differs from Visual Perception. Proc. R. Soc. B 2014, 281, 20140337. [Google Scholar] [CrossRef]
- Foley, R.T.; Whitwell, R.L.; Goodale, M.A. The Two-Visual-Systems Hypothesis and the Perspectival Features of Visual Experience. Conscious. Cogn. 2015, 35, 225–233. [Google Scholar] [CrossRef]
- Kourtzi, Z.; Kanwisher, N. Representation of Perceived Object Shape by the Human Lateral Occipital Complex. Science 2001, 293, 1506–1509. [Google Scholar] [CrossRef]
- Milner, A.D. Is Visual Processing in the Dorsal Stream Accessible to Consciousness? Proc. R. Soc. B Biol. Sci. 2012, 279, 2289–2298. [Google Scholar] [CrossRef]
- Goodale, M.A.; Milner, A.D.; Jakobson, L.S.; Carey, D.P. A Neurological Dissociation between Perceiving Objects and Grasping Them. Nature 1991, 349, 154–156. [Google Scholar] [CrossRef]
- Milner, A.D.; Perrett, D.I.; Johnston, R.S.; Benson, P.J.; Jordan, T.R.; Heeley, D.W.; Bettucci, D.; Mortara, F.; Mutani, R.; Terazzi, E.; et al. Perception and Action in Visual Form Agnosia. Brain 1991, 114, 405–428. [Google Scholar] [CrossRef] [PubMed]
- James, T.W.; Culham, J.; Humphrey, G.K.; Milner, A.D.; Goodale, M.A. Ventral Occipital Lesions Impair Object Recognition but Not Object-directed Grasping: An fMRI Study. Brain 2003, 126, 2463–2475. [Google Scholar] [CrossRef] [PubMed]
- Jakobson, L.S.; Archibald, Y.M.; Carey, D.P.; Goodale, M.A. A Kinematic Analysis of Reaching and Grasping Movements in a Patient Recovering from Optic Ataxia. Neuropsychologia 1991, 29, 803–809. [Google Scholar] [CrossRef]
- Perenin, M.T.; Vighetto, A. Optic Ataxia: A Specific Disruption in Visomotor Mechanisms: I. Different Aspects of the Deficit in Reaching for Objects. Brain 1988, 111, 643–674. [Google Scholar] [CrossRef]
- Schenk, T. No Dissociation between Perception and Action in Patient DF When Haptic Feedback Is Withdrawn. J. Neurosci. 2012, 32, 2013–2017. [Google Scholar] [CrossRef] [PubMed]
- Whitwell, R.L.; David Milner, A.; Cavina-Pratesi, C.; Byrne, C.M.; Goodale, M.A. DF’s Visual Brain in Action: The Role of Tactile Cues. Neuropsychologia 2014, 55, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Whitwell, R.L.; Buckingham, G. Reframing the Action and Perception Dissociation in DF: Haptics Matters, but How? J. Neurophysiol. 2013, 109, 621–624. [Google Scholar] [CrossRef]
- Whitwell, R.L.; Lambert, L.M.; Goodale, M.A. Grasping Future Events: Explicit Knowledge of the Availability of Visual Feedback Fails to Reliably Influence Prehension. Exp. Brain Res. 2008, 188, 603–611. [Google Scholar] [CrossRef]
- Aglioti, S.; DeSouza, J.F.X.; Goodale, M.A. Size-Contrast Illusions Deceive the Eye but Not the Hand. Curr. Biol. 1995, 5, 679–685. [Google Scholar] [CrossRef]
- Whitwell, R.L.; Goodale, M.A.; Merritt, K.E.; Enns, J.T. The Sander Parallelogram Illusion Dissociates Action and Perception despite Control for the Litany of Past Confounds. Cortex 2018, 98, 163–176. [Google Scholar] [CrossRef]
- Whitwell, R.L.; Goodale, M.A. Real and Illusory Issues in the Illusion Debate (Why Two Things Are Sometimes Better than One): Commentary on Kopiske et al. (2016). Cortex 2017, 88, 205–209. [Google Scholar] [CrossRef]
- Dassonville, P.; Reed, S.A. The Two-Wrongs Model Explains Perception-Action Dissociations for Illusions Driven by Distortions of the Egocentric Reference Frame. Front. Hum. Neurosci. 2015, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- de la Malla, C.; Brenner, E.; de Haan, E.H.F.; Smeets, J.B.J. A Visual Illusion That Influences Perception and Action through the Dorsal Pathway. Commun. Biol. 2019, 2, 38. [Google Scholar] [CrossRef] [PubMed]
- Kopiske, K.K.; Bruno, N.; Hesse, C.; Schenk, T.; Franz, V.H. The Functional Subdivision of the Visual Brain: Is There a Real Illusion Effect on Action? A Multi-Lab Replication Study. Cortex 2016, 79, 130–152. [Google Scholar] [CrossRef]
- Franz, V.H.; Gegenfurtner, K.R.; Bülthoff, H.H.; Fahle, M. Grasping Visual Illusions: No Evidence for a Dissociation between Perception and Action. Psychol. Sci. 2000, 11, 20–25. [Google Scholar] [CrossRef]
- Smeets, J.B.J.; Brenner, E. 10 Years of Illusions. J. Exp. Psychol. Hum. Percept. Perform. 2006, 32, 1501–1504. [Google Scholar] [CrossRef] [PubMed]
- Westwood, D.A.; Chapman, C.D.; Roy, E.A. Pantomimed Actions May Be Controlled by the Ventral Visual Stream. Exp. Brain Res. 2000, 130, 545–548. [Google Scholar] [CrossRef]
- Chan, J.; Heath, M. Haptic Feedback Attenuates Illusory Bias in Pantomime-Grasping: Evidence for a Visuo-Haptic Calibration. Exp. Brain Res. 2017, 235, 1041–1051. [Google Scholar] [CrossRef]
- Pisella, L.; Rosetti, Y. Interaction between Conscious Identification and Non-Conscious Sensory-Motor Processing: Temporal Constraints. In Beyond Dissociation: Interaction between Dissociated Implicit and Explicit Processing; Rossetti, Y., Ed.; John Benjamins: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Holmes, S.A.; Lohmus, J.; McKinnon, S.; Mulla, A.; Heath, M. Distinct Visual Cues Mediate Aperture Shaping for Grasping and Pantomime-Grasping Tasks. J. Mot. Behav. 2013, 45, 431–439. [Google Scholar] [CrossRef]
- Heath, M.; Manzone, J.; Khan, M.; Davarpanah Jazi, S. Vision for Action and Perception Elicit Dissociable Adherence to Weber’s Law across a Range of ‘Graspable’ Target Objects. Exp. Brain Res. 2017, 235, 3003–3012. [Google Scholar] [CrossRef]
- Heath, M.; Ayala, N.; Hamidi, M.; Tari, B. Distinct Visual Resolution Supports Aperture Shaping in Natural and Pantomime-Grasping. Can. J. Exp. Psychol. Rev. Can. De Psychol. Expérimentale 2022, 76, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Davarpanah Jazi, S.; Yau, M.; Westwood, D.A.; Heath, M. Pantomime-Grasping: The ‘Return’ of Haptic Feedback Supports the Absolute Specification of Object Size. Exp. Brain Res. 2015, 233, 2029–2040. [Google Scholar] [CrossRef] [PubMed]
- Davarpanah Jazi, S.; Heath, M. The Spatial Relations between Stimulus and Response Determine an Absolute Visuo-Haptic Calibration in Pantomime-Grasping. Brain Cogn. 2017, 114, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Davarpanah Jazi, S.; Heath, M. Pantomime-Grasping: Advance Knowledge of Haptic Feedback Availability Supports an Absolute Visuo-Haptic Calibration. Front. Hum. Neurosci. 2016, 10, 197. [Google Scholar] [CrossRef]
- Utz, K.S.; Hesse, C.; Aschenneller, N.; Schenk, T. Biomechanical Factors May Explain Why Grasping Violates Weber’s Law. Vis. Res. 2015, 111, 22–30. [Google Scholar] [CrossRef]
- Schenk, T.; Utz, K.S.; Hesse, C. Violations of Weber’s Law Tell Us More about Methodological Challenges in Sensorimotor Research than about the Neural Correlates of Visual Behaviour. Vis. Res. 2017, 140, 140–143. [Google Scholar] [CrossRef]
- Ganel, T.; Freud, E.; Chajut, E.; Algom, D. Accurate Visuomotor Control below the Perceptual Threshold of Size Discrimination. PLoS ONE 2012, 7, e36253. [Google Scholar] [CrossRef]
- Giesel, M.; De Filippi, F.; Hesse, C. Grasping Tiny Objects. Psychol. Res. 2024, 88, 1678–1690. [Google Scholar] [CrossRef]
- Hutchison, R.M.; Gallivan, J.P. Functional Coupling between Frontoparietal and Occipitotemporal Pathways during Action and Perception. Cortex 2018, 98, 8–27. [Google Scholar] [CrossRef]
- Merigan, W.H.; Maunsell, J.H.R. How Parallel Are the Primate Visual Pathways? Annu. Rev. Neurosci. 1993, 16, 369–402. [Google Scholar] [CrossRef]
- Goodale, M.A.; Westwood, D.A. An Evolving View of Duplex Vision: Separate but Interacting Cortical Pathways for Perception and Action. Curr. Opin. Neurobiol. 2004, 14, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Freud, E.; Plaut, D.C.; Behrmann, M. ‘What’ Is Happening in the Dorsal Visual Pathway. Trends Cogn. Sci. 2016, 20, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Kravitz, D.J.; Saleem, K.S.; Baker, C.I.; Ungerleider, L.G.; Mishkin, M. The Ventral Visual Pathway: An Expanded Neural Framework for the Processing of Object Quality. Trends Cogn. Sci. 2013, 17, 26–49. [Google Scholar] [CrossRef]
- Gallivan, J.P.; Cant, J.S.; Goodale, M.A.; Flanagan, J.R. Representation of Object Weight in Human Ventral Visual Cortex. Curr. Biol. 2014, 24, 1866–1873. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, R.D. Seeing Size and Weight. Trends Cogn. Sci. 2000, 4, 442–444. [Google Scholar] [CrossRef]
- Goodale, M.A.; Milner, A.D. Two Visual Pathways—Where Have They Taken Us and Where Will They Lead in Future? Cortex 2018, 98, 283–292. [Google Scholar] [CrossRef]
- Shipp, S.; Blanton, M.; Zeki, S. A Visuo-Somatomotor Pathway through Superior Parietal Cortex in the Macaque Monkey: Cortical Connections of Areas V6 and V6A: A Visuo-Somatomotor Pathway in the Macaque. Eur. J. Neurosci. 1998, 10, 3171–3193. [Google Scholar] [CrossRef]
- Tanné-Gariépy, J.; Rouiller, E.M.; Boussaoud, D. Parietal Inputs to Dorsal versus Ventral Premotor Areas in the Macaque Monkey: Evidence for Largely Segregated Visuomotor Pathways. Exp. Brain Res. 2002, 145, 91–103. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Matelli, M. Two Different Streams Form the Dorsal Visual System: Anatomy and Functions. Exp. Brain Res. 2003, 153, 146–157. [Google Scholar] [CrossRef]
- Michalowski, B.; Buchwald, M.; Klichowski, M.; Ras, M.; Kroliczak, G. Action Goals and the Praxis Network: An fMRI Study. Brain Struct. Funct. 2022, 227, 2261–2284. [Google Scholar] [CrossRef]
- Brandi, M.-L.; Wohlschläger, A.; Sorg, C.; Hermsdörfer, J. The Neural Correlates of Planning and Executing Actual Tool Use. J. Neurosci. 2014, 34, 13183–13194. [Google Scholar] [CrossRef] [PubMed]
- Hoeren, M.; Kümmerer, D.; Bormann, T.; Beume, L.; Ludwig, V.M.; Vry, M.-S.; Mader, I.; Rijntjes, M.; Kaller, C.P.; Weiller, C. Neural Bases of Imitation and Pantomime in Acute Stroke Patients: Distinct Streams for Praxis. Brain 2014, 137, 2796–2810. [Google Scholar] [CrossRef] [PubMed]
- Buxbaum, L.J.; Kalénine, S. Action Knowledge, Visuomotor Activation, and Embodiment in the Two Action Systems. Ann. N. Y. Acad. Sci. 2010, 1191, 201–218. [Google Scholar] [CrossRef]
- Binkofski, F.; Buxbaum, L.J. Two Action Systems in the Human Brain. Brain Lang. 2013, 127, 222–229. [Google Scholar] [CrossRef]
- Kravitz, D.J.; Saleem, K.S.; Baker, C.I.; Mishkin, M. A New Neural Framework for Visuospatial Processing. Nat. Rev. Neurosci. 2011, 12, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Króliczak, G.; Frey, S.H. A Common Network in the Left Cerebral Hemisphere Represents Planning of Tool Use Pantomimes and Familiar Intransitive Gestures at the Hand-Independent Level. Cereb. Cortex 2009, 19, 2396–2410. [Google Scholar] [CrossRef]
- Przybylski, Ł.; Króliczak, G. Planning Functional Grasps of Simple Tools Invokes the Hand-Independent Praxis Representation Network: An fMRI Study. J. Int. Neuropsychol. Soc. 2017, 23, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Denny-Brown, D. The Nature of Apraxia. J. Nerv. Ment. Dis. 1958, 126, 9–32. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, G. Apraxia: The Cognitive Side of Motor Control; Oxford University Press: Oxford, UK, 2013; ISBN 978-0-19-959151-0. [Google Scholar]
- Roy, E.A.; Square, P.A. Common Considerations in the Study of Limb, Verbal and Oral Apraxia. In Advances in Psychology; Elsevier: Amsterdam, Netherland, 1985; Volume 23, pp. 111–161. ISBN 978-0-444-87669-0. [Google Scholar]
- Haaland, K.Y.; Harrington, D.L.; Knight, R.T. Spatial Deficits in Ideomotor Limb Apraxia. Brain 1999, 122, 1169–1182. [Google Scholar] [CrossRef]
- Poizner, H.; Clark, M.; Merians, A.S.; Macauley, B.; Rothi, L.J.G.; Heilman, K.M. Joint Coordination Deficits in Limb Apraxia. Brain 1995, 118, 227–242. [Google Scholar] [CrossRef]
- Almeida, Q.; Black, S.E.; Roy, E.A. Screening for Apraxia: A Short Assessment for Stroke Patients. Brain Cogn. 2002, 48, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Hermsdörfer, J.; Hentze, S.; Goldenberg, G. Spatial and Kinematic Features of Apraxic Movement Depend on the Mode of Execution. Neuropsychologia 2006, 44, 1642–1652. [Google Scholar] [CrossRef] [PubMed]
- Hermsdörfer, J.; Li, Y.; Randerath, J.; Roby-Brami, A.; Goldenberg, G. Tool Use Kinematics across Different Modes of Execution. Implications for Action Representation and Apraxia. Cortex 2013, 49, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Pramstaller, P.P.; Marsden, C.D. The Basal Ganglia and Apraxia. Brain 1996, 119, 319–340. [Google Scholar] [CrossRef]
- Stamenova, V.; Roy, E.A.; Black, S.E. Limb Apraxia in Corticobasal Syndrome. Cortex 2011, 47, 460–472. [Google Scholar] [CrossRef] [PubMed]
- Geschwind, N. Disconnexion Syndromes in Animals and Man. In Selected Papers on Language and the Brain; Boston Studies in the Philosophy of Science; Springer: Dordrecht, The Netherlands, 1974; Volume 16, pp. 105–236. ISBN 978-90-277-0263-0. [Google Scholar]
- Zaidel, D.; Sperry, R.W. Some Long-Term Motor Effects of Cerebral Commissurotomy in Man. Neuropsychologia 1977, 15, 193–204. [Google Scholar] [CrossRef]
- Goldenberg, G.; Wimmer, A.; Holzner, F.; Wessely, P. Apraxia of the Left Limbs in a Case of Callosal Disconnection: The Contribution of Medial Frontal Lobe Damage. Cortex 1985, 21, 135–148. [Google Scholar] [CrossRef]
- Watson, R.T.; Heilman, K.M. Callosal Apraxia. Brain 1983, 106, 391–403. [Google Scholar] [CrossRef]
- Goldenberg, G.; Hermsdorfer, J.; Glindemann, R.; Rorden, C.; Karnath, H.-O. Pantomime of Tool Use Depends on Integrity of Left Inferior Frontal Cortex. Cereb. Cortex 2007, 17, 2769–2776. [Google Scholar] [CrossRef]
- Buxbaum, L.J.; Shapiro, A.D.; Coslett, H.B. Critical Brain Regions for Tool-Related and Imitative Actions: A Componential Analysis. Brain 2014, 137, 1971–1985. [Google Scholar] [CrossRef]
- Niessen, E.; Fink, G.R.; Weiss, P.H. Apraxia, Pantomime and the Parietal Cortex. NeuroImage Clin. 2014, 5, 42–52. [Google Scholar] [CrossRef]
- Goldenberg, G.; Randerath, J. Shared Neural Substrates of Apraxia and Aphasia. Neuropsychologia 2015, 75, 40–49. [Google Scholar] [CrossRef]
- Garcea, F.E.; Greene, C.; Grafton, S.T.; Buxbaum, L.J. Structural Disconnection of the Tool Use Network after Left Hemisphere Stroke Predicts Limb Apraxia Severity. Cereb. Cortex Commun. 2020, 1, tgaa035. [Google Scholar] [CrossRef] [PubMed]
- Rosenzopf, H.; Wiesen, D.; Basilakos, A.; Yourganov, G.; Bonilha, L.; Rorden, C.; Fridriksson, J.; Karnath, H.-O.; Sperber, C. Mapping the Human Praxis Network: An Investigation of White Matter Disconnection in Limb Apraxia of Gesture Production. Brain Commun. 2022, 4, fcac004. [Google Scholar] [CrossRef]
- Steinthal, H. Abriss Der Sprachwissenschaft; Dümmlers Verlagsbuchhandlung Harrwitz und Gossmann: Berlin, Germany, 1981. [Google Scholar]
- Duffy, R.J.; Liles, B.Z. A Translation of Finkelnburg’s (1870) Lecture on Aphasia as “Asymbolia” with Commentary. J. Speech Hear. Disord. 1979, 44, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Liepmann, H. Drei Aufsätze Aus Dem Apraxiegebiet; Karger: Berlin, Germany, 1908. [Google Scholar]
- Geschwind, N.; Kaplan, E. A Human Cerebral Deconnection Syndrome: A Preliminary Report. Neurology 1962, 12, 675. [Google Scholar] [CrossRef]
- Geschwind, N. The Apraxias: Neural Mechanisms of Disorders of Learned Movement: The Anatomical Organization of the Language Areas and Motor Systems of the Human Brain Clarifies Apraxic Disorders and Throws New Light on Cerebral Dominance. Am. Sci. 1975, 63, 188–195. [Google Scholar]
- Bartolo, A.; Cubelli, R.; Della Sala, S.; Drei, S. Pantomimes Are Special Gestures Which Rely on Working Memory. Brain Cogn. 2003, 53, 483–494. [Google Scholar] [CrossRef]
- Heilman, K.M.; Rothi, L.J.; Valenstein, E. Two Forms of Ideomotor Apraxia. Neurology 1982, 32, 342. [Google Scholar] [CrossRef]
- Rothi, L.J.; Heilman, K.M. Ideomotor Apraxia: Gestural Discrimination, Comprehension And Memory. In Advances in Psychology; Elsevier Science & Technology: Amsterdam, The Netherlands, 1985; Volume 23, pp. 65–74. ISBN 0166-4115. [Google Scholar]
- Rothi, L.J.; Ochipa, C.; Heilman, K.M. A Cognitive Neuropsychological Model of Limb Praxis. Cogn. Neuropsychol. 1991, 8, 443–458. [Google Scholar] [CrossRef]
- Rothi, L.J.; Ochipa, C.; Heilman, K.M. A Cognitive Neuropsychological Model of Limb Praxis and Apraxia. In Apraxia: The Neuropsychology of Action; Rothi, L.J., Heilman, K.M., Eds.; Psychology Press: Hove, UK, 1997; pp. 29–49. ISBN 0863777430. [Google Scholar]
- Buxbaum, L.J. Ideomotor Apraxia: A Call to Action. Neurocase 2001, 7, 445–458. [Google Scholar] [CrossRef]
- Buxbaum, L.J. Moving the Gesture Engram into the 21st Century. Cortex 2014, 57, 286–289. [Google Scholar] [CrossRef]
- Buxbaum, L.J. Learning, Remembering, and Predicting How to Use Tools: Distributed Neurocognitive Mechanisms: Comment on Osiurak and Badets (2016). Psychol. Rev. 2017, 124, 346–360. [Google Scholar] [CrossRef]
- Jax, S.A.; Rosa-Leyra, D.L.; Buxbaum, L.J. Conceptual- and Production-Related Predictors of Pantomimed Tool Use Deficits in Apraxia. Neuropsychologia 2014, 62, 194–201. [Google Scholar] [CrossRef]
- Jax, S.A.; Buxbaum, L.J. Response Interference between Functional and Structural Object-Related Actions Is Increased in Patients with Ideomotor Apraxia: Response Interference in Ideomotor Apraxia. J. Neuropsychol. 2013, 7, 12–18. [Google Scholar] [CrossRef]
- Watson, C.E.; Buxbaum, L.J. A Distributed Network Critical for Selecting among Tool-Directed Actions. Cortex 2015, 65, 65–82. [Google Scholar] [CrossRef]
- Wolpert, D.M.; Flanagan, J.R. Motor Prediction. Curr. Biol. 2001, 11, R729–R732. [Google Scholar] [CrossRef]
- Franklin, D.W.; Wolpert, D.M. Computational Mechanisms of Sensorimotor Control. Neuron 2011, 72, 425–442. [Google Scholar] [CrossRef]
- Jax, S.A.; Buxbaum, L.J.; Moll, A.D. Deficits in Movement Planning and Intrinsic Coordinate Control in Ideomotor Apraxia. J. Cogn. Neurosci. 2006, 18, 2063–2076. [Google Scholar] [CrossRef]
- Buxbaum, L.J.; Johnson-Frey, S.H.; Bartlett-Williams, M. Deficient Internal Models for Planning Hand–Object Interactions in Apraxia. Neuropsychologia 2005, 43, 917–929. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Logie, R.H. Working Memory: The Multiple-Component Model. In Models of Working Memory; Miyake, A., Shah, P., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 28–61. ISBN 978-0-521-58721-1. [Google Scholar]
- Logie, R.H. Spatial and Visual Working Memory: A Mental Workspace. In Psychology of Learning and Motivation; Elsevier: Amsterdam, The Netherlands, 2003; Volume 42, pp. 37–78. ISBN 978-0-12-543342-6. [Google Scholar]
- Raymer, A.M.; Maher, L.M.; Foundas, A.L.; Heilman, K.M.; Gonzalez Rothi, L.J. The Significance of Body Part as Tool Errors in Limb Apraxia. Brain Cogn. 1997, 34, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Cubelli, R.; Marchetti, C.; Boscolo, G.; Della Sala, S. Cognition in Action: Testing a Model of Limb Apraxia. Brain Cogn. 2000, 44, 144–165. [Google Scholar] [CrossRef] [PubMed]
- Osiurak, F.; Jarry, C.; Le Gall, D. Grasping the Affordances, Understanding the Reasoning: Toward a Dialectical Theory of Human Tool Use. Psychol. Rev. 2010, 117, 517–540. [Google Scholar] [CrossRef] [PubMed]
- Osiurak, F.; Badets, A. Tool Use and Affordance: Manipulation-Based versus Reasoning-Based Approaches. Psychol. Rev. 2016, 123, 534–568. [Google Scholar] [CrossRef]
- Gibson, J.J. The Ecological Approach to Visual Perception; Houghton Mifflin: Boston, MA, USA, 1979; ISBN 0395270499. [Google Scholar]
- Osiurak, F.; Claidière, N.; Federico, G. Bringing Cumulative Technological Culture beyond Copying versus Reasoning. Trends Cogn. Sci. 2023, 27, 30–42. [Google Scholar] [CrossRef]
- Osiurak, F.; Jarry, C.; Le Gall, D. Re-Examining the Gesture Engram Hypothesis. New Perspectives on Apraxia of Tool Use. Neuropsychologia 2011, 49, 299–312. [Google Scholar] [CrossRef]
- Hartmann, K.; Goldenberg, G.; Daumüller, M.; Hermsdörfer, J. It Takes the Whole Brain to Make a Cup of Coffee: The Neuropsychology of Naturalistic Actions Involving Technical Devices. Neuropsychologia 2005, 43, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Jarry, C.; Osiurak, F.; Delafuys, D.; Chauviré, V.; Etcharry-Bouyx, F.; Le Gall, D. Apraxia of Tool Use: More Evidence for the Technical Reasoning Hypothesis. Cortex 2013, 49, 2322–2333. [Google Scholar] [CrossRef]
- Osiurak, F.; Reynaud, E.; Baumard, J.; Rossetti, Y.; Bartolo, A.; Lesourd, M. Pantomime of Tool Use: Looking beyond Apraxia. Brain Commun. 2021, 3, fcab263. [Google Scholar] [CrossRef]
- Randerath, J.; Goldenberg, G.; Spijkers, W.; Li, Y.; Hermsdörfer, J. Different Left Brain Regions Are Essential for Grasping a Tool Compared with Its Subsequent Use. NeuroImage 2010, 53, 171–180. [Google Scholar] [CrossRef]
- Garcea, F.E.; Buxbaum, L.J. Mechanisms and Neuroanatomy of Response Selection in Tool and Non-Tool Action Tasks: Evidence from Left-Hemisphere Stroke. Cortex 2023, 167, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Bingham, G.; Coats, R.; Mon-Williams, M. Natural Prehension in Trials without Haptic Feedback but Only When Calibration Is Allowed. Neuropsychologia 2007, 45, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Whitwell, R.L.; Hasan, H.A.; MacNeil, R.R.; Enns, J.T. Coming to Grips with Reality: Real Grasps, but Not Pantomimed Grasps, Resist a Simultaneous Tilt Illusion. Neuropsychologia 2023, 191, 108726. [Google Scholar] [CrossRef] [PubMed]
- Cocchini, G.; Galligan, T.; Mora, L.; Kuhn, G. The Magic Hand: Plasticity of Mental Hand Representation. Q. J. Exp. Psychol. 2018, 71, 2314–2324. [Google Scholar] [CrossRef] [PubMed]
- Wolpert, D.M.; Diedrichsen, J.; Flanagan, J.R. Principles of Sensorimotor Learning. Nat. Rev. Neurosci. 2011, 12, 739–751. [Google Scholar] [CrossRef]
- Króliczak, G.; Cavina-Pratesi, C.; Goodman, D.A.; Culham, J.C. What Does the Brain Do When You Fake It? An fMRI Study of Pantomimed and Real Grasping. J. Neurophysiol. 2007, 97, 2410–2422. [Google Scholar] [CrossRef]
- Norman, D.A.; Shallice, T. Attention to Action: Willed and Automatic Control of Behavior. In Consciousness and Self-Regulation; Davidson, R.J., Schwartz, G.E., Shapiro, D., Eds.; Springer: Boston, MA, USA, 1986; pp. 1–18. ISBN 978-1-4757-0631-4. [Google Scholar]
- Baddeley, A.D.; Hitch, G. Working Memory. In The Psychology of Learning and Motivation: Advances in Research and Theory; Bower, G.H., Ed.; Academic Press: New York, NY, USA, 1974; Volume 8, ISBN 978-0-08-086359-7. [Google Scholar]
- Van Schouwenburg, M.R.; Den Ouden, H.E.M.; Cools, R. Selective Attentional Enhancement and Inhibition of Fronto-Posterior Connectivity by the Basal Ganglia During Attention Switching. Cereb. Cortex 2015, 25, 1527–1534. [Google Scholar] [CrossRef]
- McNab, F.; Klingberg, T. Prefrontal Cortex and Basal Ganglia Control Access to Working Memory. Nat. Neurosci. 2008, 11, 103–107. [Google Scholar] [CrossRef]
- Żywiczyński, P.; Wacewicz, S.; Lister, C. Pantomimic Fossils in Modern Human Communication. Phil. Trans. R. Soc. B 2021, 376, 20200204. [Google Scholar] [CrossRef]
Model | Key Concepts | Neural Basis |
---|---|---|
Action Lexicon Rothi et al. [146,147] |
|
|
Working Memory Bartolo et al. [143] |
|
|
Two Action Systems Plus Buxbaum [114] Binkofski and Buxbaum [150] |
|
|
Technical Reasoning Osiurak et al. [165] |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
MacNeil, R.R.; Enns, J.T. The “What” and “How” of Pantomime Actions. Vision 2024, 8, 58. https://doi.org/10.3390/vision8040058
MacNeil RR, Enns JT. The “What” and “How” of Pantomime Actions. Vision. 2024; 8(4):58. https://doi.org/10.3390/vision8040058
Chicago/Turabian StyleMacNeil, Raymond R., and James T. Enns. 2024. "The “What” and “How” of Pantomime Actions" Vision 8, no. 4: 58. https://doi.org/10.3390/vision8040058
APA StyleMacNeil, R. R., & Enns, J. T. (2024). The “What” and “How” of Pantomime Actions. Vision, 8(4), 58. https://doi.org/10.3390/vision8040058