Corneal Endothelial Microscopy: Does a Manual Recognition of the Endothelial Cells Help the Morphometric Analysis Compared to a Fully Automatic Approach?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Procedure
- ▪
- An index of reliability provided by the instrument between 30% and 50% (see previous paragraph);
- ▪
- A number of cells automatically identified by the software lower than 75 units [52];
- ▪
- Images in which the algorithm was not able to calculate the morphological parameters taken into consideration in this study (see previous paragraph).
- ▪
- Images of endothelium without guttae (426 RE and 414 LE);
- ▪
- Images of endothelium with guttae (17 RE and 23 LE).
- ▪
- Fully automatic procedure: After an automatic procedure to identify cell boundaries, four morphometric parameters of the endothelial mosaic–number of cells identified, ECD, HEX, and CV– were calculated.
- ▪
- Manual procedure: Images processed by the automatic procedure to identify cell boundaries were provided to an operator who was previously trained in the use of the instrument software tool to edit cell boundaries. This operator was a pre-registration optometrist who received extensive training on the instrument before starting the study, with over 80 endothelial images manually edited under the supervision of a lecturer with over 25 years of experience in endothelial microscopy. This training was considered suitable to reach a good level of reliability, considering that the operator’s sole task was to add and correct the identification of endothelial cells and to report the reprocessed data. The decision to use a single, well-trained operator for the manual editing phase was made to avoid introducing bias that could arise from the involvement of multiple operators. This operator, masked to the final output of the fully automatic procedure, was assigned the task of performing a manual-integrated procedure with the specific instruction to adjust the incorrectly shaped boundaries, eliminate incorrectly recognised cells, or add cells that were not recognised at all (Figure 2). After the manual editing, the four morphometric parameters of the endothelial mosaic were recalculated.
2.3. Statistical Analysis
3. Results
3.1. Study on Images Without the Presence of Guttae
3.2. Experiment on Images with the Presence of Guttae
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waring, G.O.; Bourne, W.M.; Edelhauser, H.F.; Kenyon, K.R. The Corneal Endothelium: Normal and Pathologic Structure and Function. Ophthalmology 1982, 89, 531–590. [Google Scholar] [CrossRef] [PubMed]
- Petrela, R.B.; Patel, S.P. The Soil and the Seed: The Relationship between Descemet’s Membrane and the Corneal Endothelium. Exp. Eye Res. 2023, 227, 109376. [Google Scholar] [CrossRef] [PubMed]
- Tuft, S.; Coster, D. The Corneal Endothelium. Eye 1990, 4, 389–424. [Google Scholar] [CrossRef] [PubMed]
- Bourne, W.M.; Nelson, L.R.; Hodge, D.O. Continued Endothelial Cell Loss Ten Years After Lens Implantation. Ophthalmology 1994, 101, 1014–1022. [Google Scholar] [CrossRef]
- Yi, D.H.; Dana, M.R. Corneal Edema after Cataract Surgery: Incidence and Etiology. Semin. Ophthalmol. 2002, 17, 110–114. [Google Scholar] [CrossRef]
- Perone, J.M.; Luc, M.S.; Zevering, Y.; Vermion, J.C.; Gan, G.; Goetz, C. Narrative Review after Post-Hoc Trial Analysis of Factors That Predict Corneal Endothelial Cell Loss after Phacoemulsification: Tips for Improving Cataract Surgery Research. PLoS ONE 2024, 19, e0298795. [Google Scholar] [CrossRef]
- Vaiciuliene, R.; Rylskyte, N.; Baguzyte, G.; Jasinskas, V. Risk Factors for Fluctuations in Corneal Endothelial Cell Density (Review). Exp. Ther. Med. 2021, 23, 129. [Google Scholar] [CrossRef]
- Matthaei, M.; Hribek, A.; Clahsen, T.; Bachmann, B.; Cursiefen, C.; Jun, A.S. Fuchs Endothelial Corneal Dystrophy: Clinical, Genetic, Pathophysiologic, and Therapeutic Aspects. Annu. Rev. Vis. Sci. 2019, 5, 151–175. [Google Scholar] [CrossRef]
- Oie, Y.; Yamaguchi, T.; Nishida, N.; Okumura, N.; Maeno, S.; Kawasaki, R.; Jhanji, V.; Shimazaki, J.; Nishida, K. Systematic Review of the Diagnostic Criteria and Severity Classification for Fuchs Endothelial Corneal Dystrophy. Cornea 2023, 42, 1590–1600. [Google Scholar] [CrossRef]
- Goebels, S.; Eppig, T.; Seitz, B.; Szentmàry, N.; Cayless, A.; Langenbucher, A. Endothelial Alterations in 712 Keratoconus Patients. Acta Ophthalmol. 2018, 96, e134–e139. [Google Scholar] [CrossRef]
- Mejía-Salgado, G.; Muñoz-Vargas, P.T.; Cifuentes-González, C.; Flórez-Esparza, G.; Paquentín-Jiménez, R.; Castro-Monreal, M.Á.; Medina-Galindo, N.; Hernández-Herrera, G.N.; Concha-Del-Río, L.E.; De-La-Torre, A. Quantitative Changes in the Corneal Endothelium and Central Corneal Thickness During Anterior Chamber Inflammation: A Systematic Review and Meta-Analysis. PLoS ONE 2024, 19, e0296784. [Google Scholar] [CrossRef] [PubMed]
- Juda, M.; Bedliński, M.; Roszkowska, A.M.; Wierzbowska, J. Clinical Evaluation of Corneal Endothelial Parameters Following Laser Refractive Surgery in Myopic Eyes: A Review. J. Clin. Med. 2024, 13, 1665. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.M.; Ren, M.; Lindsley, K.B.; Hawkins, B.S.; Kuo, I.C. Transepithelial versus Epithelium-off Corneal Crosslinking for Progressive Keratoconus. Cochrane Database Syst. Rev. 2021, 3, CD013512. [Google Scholar] [PubMed]
- Sarma, P.; Kaur, H.; Hafezi, F.; Bhattacharyya, J.; Kirubakaran, R.; Prajapat, M.; Medhi, B.; Das, K.; Prakash, A.; Singh, A.; et al. Short- and Long-Term Safety and Efficacy of Corneal Collagen Cross-Linking in Progressive Keratoconus: A Systematic Review and m Eta-Analysis of Randomized Controlled Trials. Taiwan J. Ophthalmol. 2023, 13, 191–202. [Google Scholar] [CrossRef]
- Thompson, J.M.; Truong, A.H.; Stern, H.D.; Djalilian, A.; Cortina, M.S.; Tu, E.Y.; Johnson, P.; Verdier, D.D.; Rafol, L.; Lubeck, D.; et al. A Multicenter Study Evaluating the Risk Factors and Outcomes of Repeat Descemet Stripping Endothelial. Cornea 2019, 38, 177–182. [Google Scholar] [CrossRef]
- Yang, K.; Zhao, Y.; Lu, H.; Zang, Y.; Mao, Y.; Hong, J.; Jie, Y. Graft Survival and Endothelial Outcomes After Penetrating Keratoplasty and Descemet Stripping Automated Endothelial Keratoplasty: A Systematic Review and Meta-analysis. Exp. Ther. Med. 2020, 20, 2794–2804. [Google Scholar] [CrossRef]
- Maier, A.K.B.; Milek, J.; Joussen, A.M.; Dietrich-Ntoukas, T.; Lichtner, G. Systematic Review and Meta-Analysis: Outcomes After Descemet Membrane Endothelial Keratoplasty Versus Ultrathin Descemet Stripping Automated Endothelial Keratoplasty: Systematic Review and Meta-Analysis: DMEK Versus UT-DS(A)EK. Am. J. Ophthalmol. 2023, 245, 222–232. [Google Scholar] [CrossRef]
- Moura-Coelho, N.; Papa-Vettorazzi, R.; Reyes, A.; Cunha, J.P.; Güell, J.L. Ultrathin DSAEK Versus DMEK—Review of Systematic Reviews. Eur. J. Ophthalmol. 2024, 34, 913–923. [Google Scholar] [CrossRef]
- Romano, V.; Passaro, M.L.; Bachmann, B.; Baydoun, L.; Ni Dhubhghaill, S.; Dickman, M.; Levis, H.J.; Parekh, M.; Rodriguez-Calvo-De-Mora, M.; Costagliola, C.; et al. Combined or Sequential DMEK in Cases of Cataract and Fuchs Endothelial Corneal Dystrophy—A Systematic Review and Meta-Analysis. Acta Ophthalmol. 2024, 102, e22–e30. [Google Scholar] [CrossRef]
- Szkodny, D.; Wróblewska-Czajka, E.; Wylęgała, A.; Nandzik, M.; Wylęgała, E. Incidence of Complications Related to Corneal Graft in a Group of 758 Patients. J. Clin. Med. 2023, 12, 220. [Google Scholar] [CrossRef]
- Fang, C.E.H.; Khaw, P.T.; Mathew, R.G.; Henein, C. Corneal Endothelial Cell Density Loss Following Glaucoma Surgery Alone or in Combination with Cataract Surgery: A Systematic Review Protocol. BMJ Open 2021, 11, e050992. [Google Scholar] [CrossRef] [PubMed]
- Majmudar, P.A.; Schallhorn, S.C.; Cason, J.B.; Donaldson, K.E.; Kymionis, G.D.; Shtein, R.M.; Verity, S.M.; Farjo, A.A. Mitomycin-C in Corneal Surface Excimer Laser Ablation Techniques: A Report by the American Academy of Ophthalmology. Ophthalmology 2015, 122, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Takhar, J.S.; Joye, A.S.; Somkijrungroj, T.; Laovirojjanakul, W.; Lin, C.P.; Lietman, T.M.; Porco, T.C.; Keenan, J.D.; Gebreegziabher, E.A.; Seitzman, G.D.; et al. A Double Masked Randomised 4-Week, Placebo-Controlled Study in the USA, Thailand and Taiwan to Compare the Efficacy of Oral Valganciclovir and Topical 2% Ganciclovir in the Treatment of Cytomegalovirus Anterior Uveitis: Study Protocol. BMJ Open 2019, 9, e033175. [Google Scholar] [CrossRef] [PubMed]
- Holden, B.A.; Sweeney, D.F.; Vannas, A.; Nilsson, K.T.; Efron, N. Effects of Long-Term Extended Contact Lens Wear on the Human Cornea. Investig. Ophthalmol. Vis. Sci. 1985, 26, 1489–1501. [Google Scholar]
- Stocker, E.; Schoessler, J. Corneal Endothelial Polymegatism Induced by Pmma Contact Lens Wear. Investig. Ophthalmol. Vis. Sci. 1985, 26, 857–863. [Google Scholar]
- Mac Rae, S.M.; Matsuda, M.; Shellans, S.; Rich, L.F. The Effects of Hard and Soft Contact Lenses on the Corneal Endothelium. Am. J. Ophthalmol. 1986, 102, 50–57. [Google Scholar] [CrossRef]
- Sánchez-García, A.; Ariza, M.A.; Büchler, P.; Molina-Martin, A.; Piñero, D.P. Structural Changes Associated to Orthokeratology: A Systematic Review. Contact Lens Anterior Eye 2021, 44, 101371. [Google Scholar] [CrossRef]
- Laule, A.; Cable, M.K.; Hoffman, C.E.; Hanna, C. Endothelial Cell Population Changes of Human Cornea During Life. Arch. Ophthalmol. 1978, 96, 2031–2035. [Google Scholar] [CrossRef]
- Ferraro, L.; Cozza, F.; Scialdone, A.; Borghesi, A.; Tavazzi, S. Morphometric Analyses by a New Slit-Lamp Endothelial Biomicroscope. Cornea 2016, 35, 1347–1354. [Google Scholar] [CrossRef]
- Tavazzi, S.; Cozza, F.; Colciago, S.; Zeri, F. Slit-Lamp Based Assessment of Peripheral Versus Central Regions of the Human Corneal Endothelium. Contact Lens Anterior Eye 2020, 43, 149–153. [Google Scholar] [CrossRef]
- Olsen, T. Non-Contact Specular Microscopy of Human Corneal Endothelium. Acta Ophthalmol. 1979, 57, 986–998. [Google Scholar] [CrossRef] [PubMed]
- Sugar, A. Clinical Specular Microscopy. Surv. Ophthalmol. 1979, 24, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, S.; Vanathi, M. Specular Microscopy in Clinical Practice. Indian J. Ophthalmol. 2021, 69, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Laing, R.A.; Sandstrom, M.M.; Leibowitz, H.M. Clinical Specular Microscopy. I. Optical Principles. Arch. Ophthalmol. 1979, 97, 1714–1719. [Google Scholar] [CrossRef] [PubMed]
- Tavazzi, S.; Parodi, A.; Colciago, S.; Nigrotti, G.; Borghesi, S.; Zeri, F. Corneal Pachymetry and Endothelial Microscopy by Slit-Lamp. In Novel Diagnostic Methods in Ophthalmology; IntechOpen: London, UK, 2019; pp. 1–14. [Google Scholar]
- Vogt, A. Die Sichtbarkeit Des Lebenden Hornhautendothels—Ein Beitrag Zur Methodik Der Spaltlampenmikroskopie. Albr. Græfes Arch. Ophthalmol. 1920, 101, 123–144. [Google Scholar] [CrossRef]
- Maurice, D.M. Cellular Membrane Activity in the Corneal Endothelium of the Intact Eye. Experientia 1968, 24, 1094–1095. [Google Scholar] [CrossRef]
- Landesz, M.; Siertsema, J.V.; Van Rij, G. Comparative Study of Three Semiautomated Specular Microscopes. J. Cataract. Refract. Surg. 1995, 21, 409–416. [Google Scholar] [CrossRef]
- Isager, P.; Hjortdal, J.; Guo, S.; Ehlers, N. Comparison of Endothelial Cell Density Estimated by Contact and Non-Contact Specular Microscopy. Acta Ophthalmol. Scand. 2000, 78, 42–44. [Google Scholar] [CrossRef]
- Szalai, E.; Németh, G.; Berta, A.; Módis, L. Evaluation of the Corneal Endothelium Using Noncontact and Contact Specular Microscopy. Cornea 2011, 30, 567–570. [Google Scholar] [CrossRef]
- Gasser, L.; Reinhard, T.; Böhringer, D. Comparison of Corneal Endothelial Cell Measurements by Two Non-Contact Specular Microscopes. BMC Ophthalmol. 2015, 15, 87. [Google Scholar] [CrossRef]
- Luft, N.; Hirnschall, N.; Schuschitz, S.; Draschl, P.; Findl, O. Comparison of 4 Specular Microscopes in Healthy Eyes and Eyes with Cornea Guttata or Corneal Grafts. Cornea 2015, 34, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Garza-Leon, M. Corneal Endothelial Cell Analysis Using Two Non-Contact Specular Microscopes in Healthy Subjects. Int. Ophthalmol. 2016, 36, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, R.; Nooshabadi, S.; Eghrari, A. An Automatic Approach for Cell Detection and Segmentation of Corneal Endothelium in Specular Microscope. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, U.; Machetta, F.; Razzano, L.; Dalmasso, P.; Grignolo, F.M. Corneal Endothelium Evaluation with 2 Noncontact Specular Microscopes and Their Semiautomated Methods of Analysis. Cornea 2006, 25, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Vecchi, M.; Braccio, L.; Orsoni, J.G. The Topcon SP 1000 and Image-NET Systems: A Comparison of Four Methods for Evaluating Corneal Endothelial Gell Density. Cornea 1996, 15, 271–277. [Google Scholar] [CrossRef]
- Cheung, S.W.; Cho, P. Endothelial Cells Analysis with the TOPCON Specular Microscope SP-2000P and IMAGEnet System. Curr. Eye Res. 2000, 21, 788–798. [Google Scholar] [CrossRef]
- McLaren, J.W.; Bachman, L.A.; Kane, K.M.; Patel, S.V. Objective Assessment of the Corneal Endothelium in Fuchs’ Endothelial Dystrophy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1184–1190. [Google Scholar] [CrossRef]
- Fujimoto, H.; Maeda, N.; Soma, T.; Oie, Y.; Koh, S.; Tsujikawa, M.; Nishida, K. Quantitative Regional Differences in Corneal Endothelial Abnormalities in the Central and Peripheral Zones in Fuchs’ Endothelial Corneal Dystrophy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5090–5098. [Google Scholar] [CrossRef]
- Prada, A.M.; Quintero, F.; Mendoza, K.; Galvis, V.; Tello, A.; Romero, L.A.; Marrugo, A.G. Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence-Derived Morphometric Parameters From Specular Microscopy Images. Cornea 2024, 43, 1080–1087. [Google Scholar] [CrossRef]
- Rickmann, A.; Boden, K.E.; Wahl, S.; Jung, S.; Boden, K.T.; Szurman, P.; Januschowski, K. Significant Differences between Specular Microscopy and Corneal Bank Endothelial Cell Counts—A Pilot Study. Acta Ophthalmol. 2019, 97, e1077–e1081. [Google Scholar] [CrossRef]
- Doughty, M.J.; Fonn, D.; Nguyen, K.T. Assessment of the Reliability of Calculations of the Coefficient of Variation for Normal and Polymegethous Human Corneal Endothelium. Optom. Vis. Sci. 1993, 70, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R.A. Statistical Guidelines for the Analysis of Data Obtained from One or Both Eyes. Ophthalmic Physiol. Opt. 2013, 33, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.; Altman, D. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Int. J. Nurs. Stud. 2010, 47, 931–936. [Google Scholar] [CrossRef]
- Selig, B.; Vermeer, K.A.; Rieger, B.; Hillenaar, T.; Luengo Hendriks, C.L. Fully Automatic Evaluation of the Corneal Endothelium from In Vivo Confocal Microscopy. BMC Med. Imaging 2015, 15, 13. [Google Scholar] [CrossRef] [PubMed]
- Price, M.O.; Fairchild, K.M.; Price, F.W. Comparison of Manual and Automated Endothelial Cell Density Analysis in Normal Eyes and DSEK Eyes. Cornea 2013, 32, 567–573. [Google Scholar] [CrossRef]
- Scarpa, F.; Ruggeri, A. Development of a Reliable Automated Algorithm for the Morphometric Analysis of Human Corneal Endothelium. Cornea 2016, 35, 1222–1228. [Google Scholar] [CrossRef]
- Doughty, M.J.; Aakre, B.M. Further Analysis of Assessments of the Coefficient of Variation of Corneal Endothelial Cell Areas from Specular Microscopic Images. Clin. Exp. Optom. 2008, 91, 438–446. [Google Scholar] [CrossRef]
Right Eye | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fully Automatic Procedure | Manual Procedure | Comparison and Correlation Between the Two Procedures | ||||||||||
Corneal Position (N. Images Available) | N. of Cells Mean ± SD (Range) | ECD (Cells/mm2) Mean ± SD (Range) | CV (%) Mean ± SD (Range) | HEX (%) Mean ± SD (Range) | N. of Cells Mean ± SD (Range) | ECD (Cells/mm2) Mean ± SD (Range) | CV (%) Mean ± SD (Range) | HEX (%) Mean ± SD (Range) | N. of Cells | ECD | CV | HEX |
C (63) | 213 ± 37 (130–287) | 2487 ± 266 (1874–3004) | 34 ± 5 (24–45) | 55 ± 8 (33–74) | 293 ± 37 (207–353) | 2507 ± 272 (1869–3065) | 34 ± 6 (24–48) | 58 ± 6 (44–74) | t = −20.0, p < 0.001; r = 0.64, p < 0.001 | t = −1.5, p = 0.14; r = 0.92, p < 0.001 | t = −0.1, p = 0.95; r = 0.94, p < 0.001 | t = −5.2, p < 0.001; r = 0.78, p < 0.001 |
IN (61) | 209 ± 35 (168–303) | 2579 ± 274 (1907–3096) | 34 ± 5 (26–45) | 56 ± 6 (44–73) | 294 ± 36 (198–352) | 2584 ± 266 (1911–3082) | 34 ± 5 (26–45) | 58 ± 6 (45–74) | t = −20.2, p < 0.001; r = 0.57, p < 0.001 | t = −0.5, p = 0.60; r = 0.96, p < 0.001 | Wilcoxon = 0.7, p = 0.52; Spearman Rho = 0.93, p < 0.001 | t = −4.9, p < 0.001; r = 0.84, p < 0.001 |
I (61) | 189 ± 39 (98–292) | 2492 ± 311 (1153–2972) | 34 ± 5 (24–45) | 55 ± 5 (44–68) | 271 ± 44 (125–361) | 2498 ± 328 (1169–3041) | 34 ± 4 (25–44) | 58 ± 5 (47–70) | Wilcoxon = 6.8, p < 0.001; Spearman Rho = 0.50, p < 0.001 | Wilcoxon = 0.7, p = 0.47; Spearman Rho = 0.97, p < 0.001 | Wilcoxon = −0.5, p = 0.61; Spearman Rho = 0.87, p < 0.001 | t = −4.9, p < 0.001; r = 0.87, p < 0.001 |
IT (56) | 205 ± 41 (111–299) | 2517 ± 313 (1277–3223) | 34 ± 5 (26–47) | 56 ± 6 (41–69) | 282 ± 45 (151–366) | 2532 ± 327 (1279–3176) | 34 ± 5 (25–48) | 59 ± 6 (48–71) | t = −19.9, p < 0.001; r = 0.77, p < 0.001 | Wilcoxon = 0.7, p = 0.50; Spearman Rho = 0.95, p < 0.001 | Wilcoxon = −0.9, p = 0.35; Spearman Rho = 0.87, p < 0.001 | t = −5.8, p < 0.001; r = 0.88, p < 0.001 |
ST (62) | 199 ± 41 (115–294) | 2632 ± 314 (1626–3154) | 35 ± 5 (27–47) | 55 ± 7 (36–68) | 280 ± 55 (119–359) | 2636 ± 326 (1585–3171) | 35 ± 5 (27–49) | 58 ± 6 (44–73) | Wilcoxon = 6.9; p < 0.001 Spearman Rho = 0.77, p < 0.001 | t = −0.6, p = 0.52; r = 0.99, p < 0.001 | Wilcoxon = 1.0; p = 0.31; Spearman Rho = 0.96, p < 0.001 | t = −8.8, p < 0.001; r = 0.90, p < 0.001 |
S (59) | 186 ± 45 (109–290) | 2664 ± 316 (2013–3270) | 36 ± 5 (27–49) | 55 ± 6 (43–71) | 268 ± 50 (157–370) | 2676 ± 320 (1931–3286) | 36 ± 5 (28–46) | 58 ± 6 (44–73) | t = −19.1, p < 0.001; r = 0.76, p < 0.001 | t = −1.4, p = 0.17; r = 0.98, p < 0.001 | Wilcoxon = −0.6, p = 0.54; Spearman Rho = 0.90, p < 0.001 | t = −7.8, p < 0.001; r = 0.83, p < 0.001 |
SN (64) | 206 ± 39 (125–332) | 2676 ± 302 (1925–3301) | 35 ± 5 (27–49) | 56 ± 7 (43–73) | 291 ± 46 (130–387) | 2693± 303 (1898–3307) | 35 ± 5 (26–49) | 59 ± 6 (43–77) | Wilcoxon = 7.0; p < 0.001; Spearman Rho = 0.58, p < 0.001 | t = −2.2, p = 0.04; r = 0.98, p < 0.001 | Wilcoxon = 0.2; p = 0.88; Spearman Rho = 0.96, p < 0.001 | t = −7.2, p < 0.001; r = 0.90, p < 0.001 |
Left Eye | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fully Automatic Procedure | Manual Procedure | Comparison and Correlation Between the Two Procedures | ||||||||||
Corneal Position (N. Images Available) | N. of Cells Mean ± SD (Range) | ECD (Cells/mm2) Mean ± SD (Range) | CV (%) Mean ± SD (Range) | HEX (%) Mean ± SD (Range) | N. of Cells Mean ± SD (Range) | ECD (Cells/mm2) Mean ± SD (Range) | CV (%) Mean ± SD (Range) | HEX (%) Mean ± SD (Range) | N. of Cells | ECD | CV | HEX |
C (59) | 216 ± 39 (122–310) | 2497 ± 264 (1803–2962) | 34 ± 5 (25–46) | 56 ± 6 (40–68) | 286 ± 40 (177–360) | 2497 ± 269 (1816–3006) | 34 ± 5 (26–46) | 58 ± 6 (45–67) | t = −21.0; p < 0.001 r = 0.79, p < 0.001 | t = 0.1; p = 0.96 r = 0.98, p < 0.001 | t = −0.2; p = 0.81 r = 0.94, p < 0.001 | t = −6.7; p < 0.001 r = 0.91, p < 0.001 |
IN (63) | 207 ± 48 (100–309) | 2597 ± 278 (1818–3108) | 34 ± 5 (24–48) | 56 ± 6 (37–72) | 284 ± 51 (124–386) | 2606 ± 289 (1822–3215) | 34 ± 5 (26–47) | 58 ± 6 (40–73) | Wilcoxon = 6.9; p < 0.001 Spearman Rho = 0.70, p < 0.001 | t = −1.2; p = 0.23 r = 0.98, p < 0.001 | Wilcoxon = 0.1; p = 0.92 Spearman Rho = 0.94, p < 0.001 | t = −4.9; p < 0.001 r = 0.88, p < 0.001 |
I (54) | 185 ± 38 (106–277) | 2535 ± 262 (1865–3065) | 34 ± 5 (26–50) | 55 ± 5 (46–67) | 266 ± 47 (132–363) | 2519 ± 259 (1860–3024) | 34 ± 5 (26–49) | 57 ± 6 (46–69) | t = −18.7; p < 0.001 r = 0.74, p < 0.001 | t = 2.4; p = 0.02 r = 0.98, p < 0.001 | Wilcoxon = −1.1; p = 0.28 Spearman Rho = 0.93, p < 0.001 | t = −6.2; p < 0.001 r = 0.82, p < 0.001 |
IT (54) | 189 ± 42 (100–281) | 2508 ± 328 (1098–3066) | 34 ± 5 (27–45) | 55 ± 6 (42–68) | 274 ± 51 (130–372) | 2520 ± 332 (1093–3062) | 35 ± 5 (27–46) | 57 ± 5 (46–69) | Wilcoxon = 6.4; p < 0.001 Spearman Rho = 0.67, p < 0.001 | Wilcoxon = 0.8; p = 0.44 Spearman Rho = 0.95, p < 0.001 | Wilcoxon = 1.5; p = 0.13 Spearman Rho = 0.90, p < 0.001 | t = −5.5; p < 0.001 r = 0.83, p < 0.001 |
ST (60) | 200 ± 40 (101–303) | 2594 ± 296 (1878–3157) | 35 ± 5 (27–48) | 55 ± 6 (39–73) | 279 ± 49 (105–363) | 2520 ± 332 (1093–3062) | 35 ± 5 (33–50) | 59 ± 6 (44–74) | Wilcoxon = 6.7; p < 0.001 Spearman Rho = 0.62, p < 0.001 | t = −2.7; p = 0.01 r = 0.98, p < 0.001 | Wilcoxon = −0.3; p = 0.78 Spearman Rho = 0.95, p < 0.001 | t = −8.7; p < 0.001 r = 0.86, p < 0.001 |
S (61) | 197 ± 45 (114–323) | 2689 ± 302 (1924–3226) | 35 ± 5 (25–47) | 56 ± 6 (42–71) | 277 ± 54 (130–381) | 2691 ± 293 (1919–3222) | 35 ± 5 (26–50) | 58 ± 6 (31–75) | Wilcoxon = 6.7; p < 0.001 Spearman Rho = 0.77, p < 0.001 | t = −0.4; p = 0.35 r = 0.98, p < 0.001 | Wilcoxon = 0.8; p = 0.40 Spearman Rho = 0.90, p < 0.001 | t = −6.1; p < 0.001 r = 0.87, p < 0.001 |
SN (63) | 222 ± 39 (122–294) | 2692 ± 275 (1930–3201) | 35 ± 6 (25–50) | 55 ± 6 (40–69) | 297 ± 47 (176–373) | 2702 ± 289 (1926–3300) | 35 ± 6 (26–52) | 57 ± 6 (46–70) | Wilcoxon = 6.9; p < 0.001 Spearman Rho = 0.70, p < 0.001 | t = −1.5; p = 0.14 r = 0.98, p < 0.001 | Wilcoxon = 0.3; p = 0.81 Spearman Rho = 0.95, p < 0.001 | t = −6.7; p < 0.001 r = 0.91, p < 0.001 |
Fully Automatic Procedure | Manual Procedure | Comparison Between the Two Procedures | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N. Images Available | N. of Cells Mean ± SD (Range) | ECD (cells/mm2) Mean ± SD (Range) | CV (%) Mean ± SD (Range) | HEX (%) Mean ± SD (Range) | N. of Cells Mean ± SD (Range) | ECD (cells/mm2) Mean ± SD (Range) | CV (%) Mean ± SD (Range) | HEX (%) Mean ± SD (Range) | N. of Cells | ECD | CV | HEX |
40 | 198 ± 38 (123–265) | 2501 ± 327 (1400–3068) | 33 ± 4 (27–42) | 56 ± 6 (43–65) | 271 ± 57 (126–346) | 2516 ± 334 (1400–3179) | 33 ± 4 (28–42) | 57 ± 6 (45–67) | Wilcoxon = 5.5; p < 0.001 Spearman Rho = 0.78, p < 0.001 | Wilcoxon = 1.4; p = 0.16 Spearman Rho = 0.97, p < 0.001 | Wilcoxon = −0.02; p = 0.99 Spearman Rho = 0.89, p < 0.001 | t = −6.4; p < 0.001 r = 0.96, p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, G.C.; Di Grassi, R.; Ponzini, E.; Tavazzi, S.; Zeri, F. Corneal Endothelial Microscopy: Does a Manual Recognition of the Endothelial Cells Help the Morphometric Analysis Compared to a Fully Automatic Approach? Vision 2024, 8, 64. https://doi.org/10.3390/vision8040064
Rizzo GC, Di Grassi R, Ponzini E, Tavazzi S, Zeri F. Corneal Endothelial Microscopy: Does a Manual Recognition of the Endothelial Cells Help the Morphometric Analysis Compared to a Fully Automatic Approach? Vision. 2024; 8(4):64. https://doi.org/10.3390/vision8040064
Chicago/Turabian StyleRizzo, Giulia Carlotta, Rosa Di Grassi, Erika Ponzini, Silvia Tavazzi, and Fabrizio Zeri. 2024. "Corneal Endothelial Microscopy: Does a Manual Recognition of the Endothelial Cells Help the Morphometric Analysis Compared to a Fully Automatic Approach?" Vision 8, no. 4: 64. https://doi.org/10.3390/vision8040064
APA StyleRizzo, G. C., Di Grassi, R., Ponzini, E., Tavazzi, S., & Zeri, F. (2024). Corneal Endothelial Microscopy: Does a Manual Recognition of the Endothelial Cells Help the Morphometric Analysis Compared to a Fully Automatic Approach? Vision, 8(4), 64. https://doi.org/10.3390/vision8040064