Enhancing Disassembly Practices for Electric Vehicle Battery Packs: A Narrative Comprehensive Review
Abstract
:1. Introduction
2. Approach for a Systematic Literature Review
3. Disassembly and Recycling of Lithium–Ion Batteries
3.1. Current Market Situation
3.2. Currently Utilized LIB Batteries for EV
3.3. Traditional Methods for Recycling, Remanufacturing, and Reuse
3.4. Disassembly Procedure Design
3.5. Future Development for Intelligent Disassembly
4. Automatic Disassembly Systems
4.1. Considerations on Automation for Disassembly Operations
4.2. Fully Automated Disassembly
- Zhang et al. proposed a teleoperated mobile six-degree-of-freedom robot equipped with a vision system to remove the exhausted battery to be charged with a wireless station [74].
- Harper et al. highlighted the promising tools of computer vision, artificial intelligence, and robotics for addressing the challenges of automated disassembly processes for electric-vehicle batteries [4].
- Zhou et al. emphasized the use of advanced devices and AI techniques for achieving automatic disassembly of retired battery packs through various robot operations, including image acquisition, target object detection, identification, positioning, and task planning [10].
- Kay et al. explored battery disassembly using industrial robots, envisioning and testing a robotic method for automating the disassembly process of battery packs [59].
- Choux et al. developed an autonomous task planner using a computer vision system for dismantling EV lithium–ion battery packs to a module level, showcasing the system’s autonomous decision-making capability [32].
- Li et al. presented a semi-destructive robotic disassembly process using a flexible robot cell with specially designed tools to disassemble and extract strategically important materials (SIMs) from EV components [12].
- Researchers at the Oak Ridge National Laboratory developed an automated disassembly system for spent electric vehicle battery packs, which can be easily reconfigured for different battery stacks to reduce human exposure to toxic chemicals [69].
- Ramirez et al. proposed an optimization model for efficient decision-making in partial disassembly processes, applied to robotic disassembly, and demonstrated its suitability in resolving the disassembly process and achieving optimal economic profit and recovery options [9].
- Li et al. designed an automatic mechanical separation methodology for EOL pouch LIBs, specifically for dismantling and separating cathode sheets, anode sheets, separators, and polymer-laminated aluminum film housing from lithium–ion pouch cells [41].
- Figueiredo et al. developed a robotic system prototype for the disassembly of cell phones, successfully disconnecting flat flexible cable connectors using compliant tools with a moving pivot motion [75].
- Vongbuyong et al. developed a cognitive HR collaborative robotics-based system for semi-destructive disassembly, incorporating a cognitive robotic agent, mechanical units, and a vision system to perform the disassembly process effectively [64].
- Chen et al. designed a multi-head tool for robotic disassembly of LCD screens, utilizing a screwdriver, hole saw, and angle grinder to take advantage of both destructive and non-destructive techniques [58].
- Borras et al. introduced a robotic gripper for electromechanical device disassembly with innovative features, including interchangeable built-in tools, repositioning grasped objects, and dual-arm manipulation capability [76].
- Kasperzyk et al. presented a robotic prefabrication system (RPS) that employs “re-fabrication” for automatic disassembly and reconstruction of prefabricated structures according to new designs [77].
- Rastegarpanah et al. proposed automated unfastening of hexagonal nuts for dismantling electric vehicle battery packs using surface exploration with a compliant robot, achieving a high success rate in exploration and unfastening [78].
- Li et al. addressed cutting depth determination in robotic disassembly of LCD screens using an automated method with an electric nut-runner spindle and a spiral search technique based on force/torque feedback [79].
- Jungbluth et al. presented an informed software agent for robot-assisted disassembly, using product models to build a coarse disassembly plan and a detailed plan for robot program execution [80].
- Vongbuyong et al. proposed a skill-transferring platform, where human-assisted disassembly processes are represented and transferred to robots for automated disassembly [81].
- Lan et al. addressed the interlocking problem in disassembly, proposing solutions based on identifying subassemblies and generating hierarchical disassembly sequence plans [82]. Schneider et al. explored an algorithm to compute complex nonlinear disassembly paths for colliding objects, considering flexible and rigid parts and intersection volumes in a motion planner [83].
- Filipescu et al. presented a method to reverse an assembly line for complete disassembly, using a generalized synchronized hybrid Petri net (SHPN) model-based control of an assembly/disassembly mechatronics line served by a wheeled mobile robot equipped with a robotic manipulator [84].
- Chen et al. proposed an ontology and case-based reasoning (CBR) method for automated disassembly decision-making of various mechanical products [85].
- Chen et al. tackled challenges in autonomous disassembly action generation and execution using a robotic system equipped with three tools and a method based on geometrical estimation for disassembly action selection [86].
- Buhl et al. integrated dual UR5 robotic manipulators in a smart disassembly cell for mockup mobile phones, showcasing the potential of dual-arm disassembly [87].
- Knoth et al. presented a flexible, modular system for intelligent disassembly with a practical application on printed circuit boards (PCBs), removing reusable and hazardous components [63].
- Gerbers et al. discussed the potential of automated disassembly systems and human–robot collaborations, highlighting the attractiveness of partially automated disassembly for electronics goods and the future potential for fully automated disassembly [54].
4.3. Human–Robot Collaborative Disassembly
5. Control Techniques for Robotic Disassembly
5.1. Vision Systems
5.2. Control Techniques for Fully Automated Disassembly
- Sensory-driven visual and range acquisition and recovery system: This module was responsible for acquiring sensory data, incorporating both visual and range information. It played a crucial role in capturing essential data about the disassembly process;
- Online genetic algorithm (GA) model: The heart of their approach lies in the online genetic algorithm model. This component was tasked with intelligently analyzing the acquired data, optimizing disassembly sequences, and making real-time decisions to improve the overall disassembly process.
5.3. Control Techniques for Human–Robot Collaborative Disassembly
5.3.1. Pre-Collision Strategies
5.3.2. Post-Collision Strategies
6. Future Directions
- Artificial intelligence (AI): As shown in the recent developments related to machine vision and automation (including robotics), AI techniques (including machine learning algorithms) might be useful to enhance disassembly operations. In fact, by combining advanced machine vision, reasoning, and adaptive controllers, the automatic or collaborative disassembly system might gather the required skills to perform this complex task;
- Massive agent-simulation environments: With the development of advanced simulation and AI-based training environments (e.g., the GPU-based Isaac Gym environment [195]), the disassembly task learning and transfer to the real system would be easier. In such simulation and learning environments, it is possible to simulate thousands of different scenarios, gathering a huge amount of data to be used for the execution of the real task;
- New hardware capabilities: With the continuous improvement of hardware, robotic and automatic systems are improving their capabilities in terms of applied disassembly forces/torques, safety, control performance, etc. Indeed, this technological advancement is of fundamental importance to realize safe and powerful disassembly systems to perform such delicate disassembly operations.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- D’Adamo, I.; Rosa, P. A Structured Literature Review on Obsolete Electric Vehicles Management Practices. Sustainability 2019, 11, 6876. [Google Scholar] [CrossRef]
- Pehlken, A.; Albach, S.; Vogt, T. Is there a resource constraint related to lithium ion batteries in cars? Int. J. Life Cycle Assess. 2017, 22, 40–53. [Google Scholar] [CrossRef]
- Elwert, T.; Goldmann, D.; Römer, F.; Buchert, M.; Merz, C.; Schueler, D.; Sutter, J. Current Developments and Challenges in the Recycling of Key Components of (Hybrid) Electric Vehicles. Recycling 2016, 1, 25–60. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Wegener, K.; Chen, W.H.; Dietrich, F.; Dröder, K.; Kara, S. Robot Assisted Disassembly for the Recycling of Electric Vehicle Batteries. Procedia Cirp 2015, 29, 716–721. [Google Scholar] [CrossRef]
- Tan, W.J.; Chin, C.M.M.; Garg, A.; Gao, L. A hybrid disassembly framework for disassembly of electric vehicle batteries. Int. J. Energy Res. 2021, 45, 8073–8082. [Google Scholar] [CrossRef]
- Georgi-Maschler, T.; Friedrich, B.; Weyhe, R.; Heegn, H.; Rutz, M. Development of a recycling process for Li-ion batteries. J. Power Sources 2012, 207, 173–182. [Google Scholar] [CrossRef]
- Vongbunyong, S.; Kara, S.; Pagnucco, M. Learning and revision in cognitive robotics disassembly automation. Robot. Comput.-Integr. Manuf. 2015, 34, 79–94. [Google Scholar] [CrossRef]
- Ramírez, F.J.; Aledo, J.A.; Gamez, J.A.; Pham, D.T. Economic modelling of robotic disassembly in end-of-life product recovery for remanufacturing. Comput. Ind. Eng. 2020, 142, 106339. [Google Scholar] [CrossRef]
- Zhou, L.; Garg, A.; Zheng, J.; Gao, L.; Oh, K.Y. Battery pack recycling challenges for the year 2030: Recommended solutions based on intelligent robotics for safe and efficient disassembly, residual energy detection, and secondary utilization. Energy Storage 2021, 3, e190. [Google Scholar] [CrossRef]
- Chen, W.H.; Wegener, K.; Dietrich, F. A robot assistant for unscrewing in hybrid human-robot disassembly. In Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, Indonesia, 5–10 December 2014; pp. 536–541. [Google Scholar] [CrossRef]
- Li, J.; Barwood, M.; Rahimifard, S. Robotic disassembly for increased recovery of strategically important materials from electrical vehicles. Robot. Comput.-Integr. Manuf. 2018, 50, 203–212. [Google Scholar] [CrossRef]
- Xu, J.; Thomas, H.R.; Francis, R.W.; Lum, K.R.; Wang, J.; Liang, B. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 2008, 177, 512–527. [Google Scholar] [CrossRef]
- Wegener, K.; Andrew, S.; Raatz, A.; Dröder, K.; Herrmann, C. Disassembly of Electric Vehicle Batteries Using the Example of the Audi Q5 Hybrid System. Procedia Cirp 2014, 23, 155–160. [Google Scholar] [CrossRef]
- EEUU. Summary of the Current EU Waste Legislation; Municipal Waste Europe: Brussels, Belgium, 2020. [Google Scholar]
- Bogue, R. Robots in recycling and disassembly. Ind. Robot. Int. J. Robot. Res. Appl. 2019, 46, 461–466. [Google Scholar] [CrossRef]
- Peeters, J.R.; Vanegas, P.; Mouton, C.; Dewulf, W.; Duflou, J.R. Tool Design for Electronic Product Dismantling. Procedia CIRP 2016, 48, 466–471. [Google Scholar] [CrossRef]
- Torres, F.; Puente, S.; Díaz, C. Introducing an Automatic Cooperative Disassembly Robotic System: Development of the Task Planner to Achive Cooperative Disassembly. p. 9. Available online: https://rua.ua.es/dspace/bitstream/10045/10126/1/art%C3%ADculo.pdf (accessed on 1 April 2023).
- Torres, F.; Gil, P.; Puente, S.T.; Pomares, J.; Aracil, R. Automatic PC disassembly for component recovery. Int. J. Adv. Manuf. Technol. 2004, 23, 39–46. [Google Scholar] [CrossRef]
- Gil, P.; Puente, S.T.; Torres, F.; Pomares, J.; Candelas, F.A. Data Fusion from Multiple Cameras for Automatic Disassembly. p. 6. Available online: https://core.ac.uk/download/pdf/16356315.pdf (accessed on 1 April 2023).
- Seliger, G.; Keil, T.; Rebafka, U.; Stenzel, A. Flexible disassembly tools. In Proceedings of the 2001 IEEE International Symposium on Electronics and the Environment—2001 IEEE ISEE (Cat. No.01CH37190), Denver, CO, USA, 9 May 2001; pp. 30–35. [Google Scholar] [CrossRef]
- Poschmann, H.; Brüggemann, H.; Goldmann, D. Disassembly 4.0: A Review on Using Robotics in Disassembly Tasks as a Way of Automation. Chemie Ingenieur Technik 2020, 92, 341–359. [Google Scholar] [CrossRef]
- Duflou, J.R.; Seliger, G.; Kara, S.; Umeda, Y.; Ometto, A.; Willems, B. Efficiency and feasibility of product disassembly: A case-based study. CIRP Ann. 2008, 57, 583–600. [Google Scholar] [CrossRef]
- Zhang, J.; Li, B.; Garg, A.; Liu, Y. A generic framework for recycling of battery module for electric vehicle by combining the mechanical and chemical procedures. Int. J. Energy Res. 2018, 42, 3390–3399. [Google Scholar] [CrossRef]
- Velázquez-Martínez, O.; Valio, J.; Santasalo-Aarnio, A.; Reuter, M.; Serna-Guerrero, R. A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective. Batteries 2019, 5, 68. [Google Scholar] [CrossRef]
- Pillot, C. The Rechargeable Battery Market and Main Trends 2011–2020; AABC Europe: Strasbourg, France, 2017; p. 98. [Google Scholar]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.; Hultink, E.J. The Circular Economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Alfaro-Algaba, M.; Ramirez, F.J. Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing. Resour. Conserv. Recycl. 2020, 154, 104461. [Google Scholar] [CrossRef]
- Islam, M.T.; Huda, N. Reverse logistics and closed-loop supply chain of Waste Electrical and Electronic Equipment (WEEE)/E-waste: A comprehensive literature review. Resour. Conserv. Recycl. 2018, 137, 48–75. [Google Scholar] [CrossRef]
- Lowe, M.; Tokuoka, S.; Trigg, T.; Gereffi, G. Lithium-Ion Batteries for Electric Vehicles: THE U.S. Value Chain; Technical report; Center on Globalization, Governance & Competitiveness Duke University: Durham, NC, USA, 2010. [Google Scholar]
- Awan, A. Global EV Outlook 2020; Global EV: Paris, France, 2020; p. 276. [Google Scholar]
- Choux, M.; Bigorra, E.M.; Tyapin, I. Task Planner for Robotic Disassembly of Electric Vehicle Battery Pack. Metals 2021, 11, 387. [Google Scholar] [CrossRef]
- Sakai, S.i.; Yoshida, H.; Hiratsuka, J.; Vandecasteele, C.; Kohlmeyer, R.; Rotter, V.S.; Passarini, F.; Santini, A.; Peeler, M.; Li, J.; et al. An international comparative study of end-of-life vehicle (ELV) recycling systems. J. Mater. Cycles Waste Manag. 2014, 16, 1–20. [Google Scholar] [CrossRef]
- Boks, C.; Tempelman, E. Future disassembly and recycling technology: Results of a Delphi study. Futures 1998, 30, 425–442. [Google Scholar] [CrossRef]
- Heelan, J.; Gratz, E.; Zheng, Z.; Wang, Q.; Chen, M.; Apelian, D.; Wang, Y. Current and Prospective Li-Ion Battery Recycling and Recovery Processes. JOM 2016, 68, 2632–2638. [Google Scholar] [CrossRef]
- Lazzari, M.; Scrosati, B. A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes. J. Electrochem. Soc. 1980, 127, 773. [Google Scholar] [CrossRef]
- Mizushima, K.; Jones, P.C.; Wiseman, P.J.; Goodenough, J.B. LixCoO2 (0 < x < −1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789. [Google Scholar] [CrossRef]
- Wang, X.; Gaustad, G.; Babbitt, C.W. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation. Waste Manag. 2016, 51, 204–213. [Google Scholar] [CrossRef]
- Bai, Y.; Muralidharan, N.; Sun, Y.K.; Passerini, S.; Whittingham, M.S.; Belharouak, I. Energy and environmental aspects in recycling lithium-ion batteries: Concept of Battery Identity Global Passport. Mater. Today 2020, 41, 304–315. [Google Scholar] [CrossRef]
- Andwari, A.M.; Pesiridis, A.; Rajoo, S.; Martinez-Botas, R.; Esfahanian, V. A review of Battery Electric Vehicle technology and readiness levels. Renew. Sustain. Energy Rev. 2017, 78, 414–430. [Google Scholar] [CrossRef]
- Li, L.; Zheng, P.; Yang, T.; Sturges, R.; Ellis, M.W.; Li, Z. Disassembly Automation for Recycling End-of-Life Lithium-Ion Pouch Cells. JOM 2019, 71, 4457–4464. [Google Scholar] [CrossRef]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Reddy, T.B. Linden’s Handbook of Batteries, 4th ed.; McGraw-Hill Education: New York, NY, USA, 2011. [Google Scholar]
- Park, M.; Zhang, X.; Chung, M.; Less, G.B.; Sastry, A.M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 2010, 195, 7904–7929. [Google Scholar] [CrossRef]
- Ko, J.M.; Min, B.G.; Kim, D.W.; Ryu, K.S.; Kim, K.M.; Lee, Y.G.; Chang, S.H. Thin-film type Li-ion battery, using a polyethylene separator grafted with glycidyl methacrylate. Electrochim. Acta 2004, 50, 367–370. [Google Scholar] [CrossRef]
- Schmitt, J.; Haupt, H.; Kurrat, M.; Raatz, A. Disassembly automation for lithium-ion battery systems using a flexible gripper. In Proceedings of the 2011 15th International Conference on Advanced Robotics (ICAR), Tallinn, Estonia, 20–23 June 2011; pp. 291–297. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Hannan, M.A.; Hoque, M.M.; Hussain, A.; Yusof, Y.; Ker, P.J. State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations. IEEE Access 2018, 6, 19362–19378. [Google Scholar] [CrossRef]
- Gaines, L.; Richa, K.; Spangenberger, J. Key issues for Li-ion battery recycling. MRS Energy Sustain. 2018, 5, 12. [Google Scholar] [CrossRef]
- Pagliaro, M.; Meneguzzo, F. Lithium battery reusing and recycling: A circular economy insight. Heliyon 2019, 5, e01866. [Google Scholar] [CrossRef]
- Wang, X.; Gaustad, G.; Babbitt, C.W.; Richa, K. Economies of scale for future lithium-ion battery recycling infrastructure. Resour. Conserv. Recycl. 2014, 83, 53–62. [Google Scholar] [CrossRef]
- Ijomah, W.L.; McMahon, C.A.; Hammond, G.P.; Newman, S.T. Development of design for remanufacturing guidelines to support sustainable manufacturing. Robot. Comput.-Integr. Manuf. 2007, 23, 712–719. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, J.; Pham, D.T.; Xu, W.; Ramirez, F.J.; Ji, C.; Liu, Q. Disassembly sequence planning: Recent developments and future trends. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 2019, 233, 1450–1471. [Google Scholar] [CrossRef]
- Gerbers, R.; Wegener, K.; Dietrich, F.; Dröder, K. Safe, Flexible and Productive Human-Robot-Collaboration for Disassembly of Lithium-Ion Batteries. In Recycling of Lithium-Ion Batteries: The LithoRec Way; Kwade, A., Diekmann, J., Eds.; Sustainable Production, Life Cycle Engineering and Management; Springer International Publishing: Cham, Switzerland, 2018; pp. 99–126. [Google Scholar] [CrossRef]
- Gerner, S.; Kobeissi, A.; David, B.; Binder, Z.; Descotes-Genon, B. Integrated approach for disassembly processes generation and recycling evaluation of an end-of-life product. Int. J. Prod. Res. 2005, 43, 195–222. [Google Scholar] [CrossRef]
- Santochi, M.; Dini, G.; Failli, F. Computer Aided Disassembly Planning: State of the Art and Perspectives. CIRP Ann. 2002, 51, 507–529. [Google Scholar] [CrossRef]
- Weigl-Seitz, A.; Hohm, K.; Seitz, M.; Tolle, H. On strategies and solutions for automated disassembly of electronic devices. Int. J. Adv. Manuf. Technol. 2006, 30, 561–573. [Google Scholar] [CrossRef]
- Chen, W.H.; Foo, G.; Kara, S.; Pagnucco, M. Application of a multi-head tool for robotic disassembly. Procedia CIRP 2020, 90, 630–635. [Google Scholar] [CrossRef]
- Kay, I.; Farhad, S.; Mahajan, A.; Esmaeeli, R.; Hashemi, S.R. Robotic Disassembly of Electric Vehicles’ Battery Modules for Recycling. Energies 2022, 15, 4856. [Google Scholar] [CrossRef]
- Talens Peiró, L.; Ardente, F.; Mathieux, F. Design for Disassembly Criteria in EU Product Policies for a More Circular Economy: A Method for Analyzing Battery Packs in PC-Tablets and Subnotebooks. J. Ind. Ecol. 2017, 21, 731–741. [Google Scholar] [CrossRef]
- Boothroyd, G.; Alting, L. Design for Assembly and Disassembly. CIRP Ann. 1992, 41, 625–636. [Google Scholar] [CrossRef]
- Alting, L. Life Cycle Engineering and Design. Cirp Ann. 1995, 44, 569–580. [Google Scholar] [CrossRef]
- Knoth, R.; Hoffmann, M.; Kopacek, B.; Kopacek, P.; Lembacher, C. Intelligent disassembly of electronic equipment with a flexible semi-automatic disassembly cell. In Proceedings of the Joint International Congress Electronics Goes Green, Berlin, Germany, 11–13 September 2000; p. 7. [Google Scholar]
- Vongbunyong, S.; Kara, S.; Pagnucco, M. Basic behaviour control of the vision-based cognitive robotic disassembly automation. Assem. Autom. 2013, 33, 38–56. [Google Scholar] [CrossRef]
- Merdan, M.; Lepuschitz, W.; Meurer, T.; Vincze, M. Towards ontology-based automated disassembly systems. In Proceedings of the IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010; pp. 1392–1397. [Google Scholar] [CrossRef]
- Vázquez, P.G.; Baeza, J.P.; Mendez, S.P.; Candelas Herias, F.A.; Torres Medina, F. Flexible multi-sensorial system for automatic disassembly using cooperative robots. Int. J. Comput. Integr. Manuf. 2008, 20, 757–772. [Google Scholar] [CrossRef]
- Eckerth, G.; Hönker, T.; Kreis, W. Intelligent Disassembly Systems For Industrial Reusing And Closed Loop Economy. IFAC Proc. Vol. 1998, 31, 105–110. [Google Scholar] [CrossRef]
- Hägele, M.; Schaaf, W.; Helms, E. Robot Assistants at Manual Workplaces: Effective Co-operation and Safety Aspects. In Proceedings of the 33rd ISR (International Symposium on Robotics), Stockholm, Sweden, 7–11 October 2002. [Google Scholar]
- ORNL. Automated Disassembly Line Aims to Make Battery Recycling Safer, Faster. 16 August. Available online: https://www.ameslab.gov/news/ornl-automated-disassembly-line-aims-to-make-battery-recycling-safer-faster (accessed on 1 April 2023).
- Torres, F.; Puente, S.; Aracil, R. Disassembly Planning Based on Precedence Relations among Assemblies. Int. J. Adv. Manuf. Technol. 2003, 21, 317–327. [Google Scholar] [CrossRef]
- Hesselbach, J.; Kühn, M. Survey of Processes at Disassembly Companies. IFAC Proc. Vol. 1998, 31, 99–103. [Google Scholar] [CrossRef]
- Vongbunyong, S.; Kara, S.; Pagnucco, M. Application of cognitive robotics in disassembly of products. CIRP Ann. 2013, 62, 31–34. [Google Scholar] [CrossRef]
- Yildiz, E.; Worgotter, F. DCNN-Based Screw Detection for Automated Disassembly Processes. In Proceedings of the 2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Naples, Italy, 26–29 November 2019; IEEE: Sorrento, Italy, 2019; pp. 187–192. [Google Scholar] [CrossRef]
- Zhang, J.; Song, G.; Li, Y.; Qiao, G.; Li, Z. Battery swapping and wireless charging for a home robot system with remote human assistance. IEEE Trans. Consum. Electron. 2013, 59, 747–755. [Google Scholar] [CrossRef]
- Figueiredo, W. A High-Speed Robotic Disassembly System for the Recycling and Reuse of Cellphones. Graduate Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 22 October 2018. [Google Scholar]
- Borràs, J.; Heudorfer, R.; Rader, S.; Kaiser, P.; Asfour, T. The KIT Swiss Knife Gripper for Disassembly Tasks: A Multi-Functional Gripper for Bimanual Manipulation with a Single Arm. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4590–4597. [Google Scholar] [CrossRef]
- Kasperzyk, C.; Kim, M.K.; Brilakis, I. Automated re-prefabrication system for buildings using robotics. Autom. Constr. 2017, 83, 184–195. [Google Scholar] [CrossRef]
- Rastegarpanah, A.; Ner, R.; Stolkin, R.; Marturi, N. Nut Unfastening by Robotic Surface Exploration. Robotics 2021, 10, 107. [Google Scholar] [CrossRef]
- Li, R.; Pham, D.T.; Huang, J.; Tan, Y.; Qu, M.; Wang, Y.; Kerin, M.; Jiang, K.; Su, S.; Ji, C.; et al. Unfastening of Hexagonal Headed Screws by a Collaborative Robot. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1455–1468. [Google Scholar] [CrossRef]
- Jungbluth, J.; Gerke, W.; Plapper, P. An Intelligent Agent-Controlled and Robot-Based Disassembly Assistant. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 235, 012005. [Google Scholar] [CrossRef]
- Vongbunyong, S.; Vongseela, P.; Sreerattana-aporn, J. A Process Demonstration Platform for Product Disassembly Skills Transfer. Procedia CIRP 2017, 61, 281–286. [Google Scholar] [CrossRef]
- Lan, F.; Wang, Y.; Pham, D.T.; Liu, J.; Huang, J.; Ji, C.; Su, S.; Xu, W.; Liu, Q.; Zhou, Z. Interlocking Problem in Automatic Disassembly Planning and Two Solutions. In Proceedings of the Informatics in Control, Automation and Robotics; Gusikhin, O., Madani, K., Eds.; Lecture Notes in Electrical Engineering; Springer International Publishing: Cham, Switzerland, 2020; pp. 193–213. [Google Scholar] [CrossRef]
- Schneider, D.; Schömer, E.; Wolpert, N. A motion planning algorithm for the invalid initial state disassembly problem. In Proceedings of the 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 24–27 August 2015; pp. 35–40. [Google Scholar] [CrossRef]
- Filipescu, A.; Filipescu, A. Simulated Hybrid Model of an Autonomous Robotic System Integrated into Assembly/Disassembly Mechatronics Line. IFAC Proc. Vol. 2014, 47, 9223–9228. [Google Scholar] [CrossRef]
- Chen, S.; Yi, J.; Jiang, H.; Zhu, X. Ontology and CBR based automated decision-making method for the disassembly of mechanical products. Adv. Eng. Inform. 2016, 30, 564–584. [Google Scholar] [CrossRef]
- Chen, W.H.; Foo, G.; Kara, S.; Pagnucco, M. Automated generation and execution of disassembly actions. Robot. Comput.-Integr. Manuf. 2021, 68, 102056. [Google Scholar] [CrossRef]
- Buhl, J.F.; Grønhøj, R.; Jørgensen, J.K.; Mateus, G.; Pinto, D.; Sørensen, J.K.; Bøgh, S.; Chrysostomou, D. A Dual-arm Collaborative Robot System for the Smart Factories of the Future. Procedia Manuf. 2019, 38, 333–340. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Song, A.; Ding, Y.; Wu, J. Thermal perception for information transmission: Theoretical analysis, device design, and experimental verification. IEEE Trans. Haptics 2022, 15, 679–692. [Google Scholar] [CrossRef]
- Woern, H.; Laengle, T. Cooperation between Human Beings and Robot Systems in an Industrial Environment. Proc. Mechatron. Robot. 2000, 1, 156–165. [Google Scholar]
- Cesta, A.; Orlandini, A.; Umbrico, A. Fostering Robust Human-Robot Collaboration through AI Task Planning. Procedia CIRP 2018, 72, 1045–1050. [Google Scholar] [CrossRef]
- ISO 8373. Available online: https://www.iso.org/standard/55890.html (accessed on 1 April 2023).
- ISO 10218-1/2. Available online: https://www.iso.org/standard/51330.html (accessed on 1 April 2023).
- ISO 15066. Available online: https://www.iso.org/standard/62996.html (accessed on 1 April 2023).
- Lambert, A.J.D.F.; Gupta, S.M. Disassembly Modeling for Assembly, Maintenance, Reuse and Recycling; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Kim, H.J.; Chiotellis, S.; Seliger, G. Dynamic process planning control of hybrid disassembly systems. Int. J. Adv. Manuf. Technol. 2009, 40, 1016–1023. [Google Scholar] [CrossRef]
- Kim, H.J.; Kernbaum, S.; Seliger, G. Emulation-based control of a disassembly system for LCD monitors. Int. J. Adv. Manuf. Technol. 2009, 40, 383–392. [Google Scholar] [CrossRef]
- Hjorth, S.; Chrysostomou, D. Human–robot collaboration in industrial environments: A literature review on non-destructive disassembly. Robot. Comput.-Integr. Manuf. 2022, 73, 102208. [Google Scholar] [CrossRef]
- Ajoudani, A.; Zanchettin, A.M.; Ivaldi, S.; Albu-Schäffer, A.; Kosuge, K.; Khatib, O. Progress and prospects of the human–robot collaboration. Auton. Robots 2018, 42, 957–975. [Google Scholar] [CrossRef]
- Matheson, E.; Minto, R.; Zampieri, E.G.G.; Faccio, M.; Rosati, G. Human–Robot Collaboration in Manufacturing Applications: A Review. Robotics 2019, 8, 100. [Google Scholar] [CrossRef]
- Maksymova, S.; Matarneh, R.; Lyashenko, V.V.; Belova, N.V. Voice Control for an Industrial Robot as a Combination of Various Robotic Assembly Process Models. J. Comput. Commun. 2017, 5, 1–15. [Google Scholar] [CrossRef]
- Bingol, M.C.; Aydogmus, O. Performing predefined tasks using the human–robot interaction on speech recognition for an industrial robot. Eng. Appl. Artif. Intell. 2020, 95, 103903. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L. Gesture recognition for human-robot collaboration: A review. Int. J. Ind. Ergon. 2018, 68, 355–367. [Google Scholar] [CrossRef]
- Hagiwara, H. Trends in HRC and their Effects on Human Operators’ Sense of Presence in Manufacturing Settings. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2018, 62, 1296–1300. [Google Scholar] [CrossRef]
- Tsarouchi, P.; Makris, S.; Chryssolouris, G. Human–robot interaction review and challenges on task planning and programming. Int. J. Comput. Integr. Manuf. 2016, 29, 916–931. [Google Scholar] [CrossRef]
- Maurtua, I.; Fernández, I.; Tellaeche, A.; Kildal, J.; Susperregi, L.; Ibarguren, A.; Sierra, B. Natural multimodal communication for human–robot collaboration. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417716043. [Google Scholar] [CrossRef]
- Makris, S.; Tsarouchi, P.; Surdilovic, D.; Krüger, J. Intuitive dual arm robot programming for assembly operations. CIRP Ann. 2014, 63, 13–16. [Google Scholar] [CrossRef]
- Liu, H.; Fang, T.; Zhou, T.; Wang, Y.; Wang, L. Deep Learning-based Multimodal Control Interface for Human-Robot Collaboration. Procedia CIRP 2018, 72, 3–8. [Google Scholar] [CrossRef]
- Liu, H.; Fang, T.; Zhou, T.; Wang, L. Towards Robust Human-Robot Collaborative Manufacturing: Multimodal Fusion. IEEE Access 2018, 6, 74762–74771. [Google Scholar] [CrossRef]
- Gustavsson, P.; Syberfeldt, A.; Brewster, R.; Wang, L. Human-robot Collaboration Demonstrator Combining Speech Recognition and Haptic Control. Procedia CIRP 2017, 63, 396–401. [Google Scholar] [CrossRef]
- Mohammed, A.; Wang, L. Brainwaves driven human-robot collaborative assembly. CIRP Ann. 2018, 67, 13–16. [Google Scholar] [CrossRef]
- Robla-Gómez, S.; Becerra, V.M.; Llata, J.R.; González-Sarabia, E.; Torre-Ferrero, C.; Pérez-Oria, J. Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments. IEEE Access 2017, 5, 26754–26773. [Google Scholar] [CrossRef]
- Jost, C.; Le Pévédic, B.; Belpaeme, T.; Bethel, C.; Chrysostomou, D.; Crook, N.; Grandgeorge, M.; Mirnig, N. (Eds.) Human-Robot Interaction: Evaluation Methods and Their Standardization; Springer Series on Bio- and Neurosystems; Springer International Publishing: Cham, Switzerland, 2020; Volume 12. [Google Scholar] [CrossRef]
- Kumičáková, D.; Rengevič, A.; Císar, M.; Tlach, V. Utilisation of Kinect Sensors for the Design of a Human-Robot Collaborative Workcell. Adv. Sci. Technol. Res. J. 2017, 11, 270–278. [Google Scholar] [CrossRef]
- Mazhar, O.; Navarro, B.; Ramdani, S.; Passama, R.; Cherubini, A. A real-time human-robot interaction framework with robust background invariant hand gesture detection. Robot. Comput.-Integr. Manuf. 2019, 60, 34–48. [Google Scholar] [CrossRef]
- Ferraguti, F.; Talignani Landi, C.; Costi, S.; Bonfè, M.; Farsoni, S.; Secchi, C.; Fantuzzi, C. Safety barrier functions and multi-camera tracking for human–robot shared environment. Robot. Auton. Syst. 2020, 124, 103388. [Google Scholar] [CrossRef]
- Wang, X.V.; Zhang, X.; Yang, Y.; Wang, L. A Human-Robot Collaboration System towards High Accuracy. Procedia CIRP 2020, 93, 1085–1090. [Google Scholar] [CrossRef]
- Bassily, D.; Georgoulas, C.; Guettler, J.; Linner, T.; Bock, T. Intuitive and Adaptive Robotic Arm Manipulation using the Leap Motion Controller. In Proceedings of the ISR/Robotik 2014; 41st International Symposium on Robotics, Munich, Germany, 2–3 June 2014; pp. 1–7. [Google Scholar]
- Tsarouchi, P.; Athanasatos, A.; Makris, S.; Chatzigeorgiou, X.; Chryssolouris, G. High Level Robot Programming Using Body and Hand Gestures. Procedia CIRP 2016, 55, 1–5. [Google Scholar] [CrossRef]
- de Gea Fernández, J.; Mronga, D.; Günther, M.; Knobloch, T.; Wirkus, M.; Schröer, M.; Trampler, M.; Stiene, S.; Kirchner, E.; Bargsten, V.; et al. Multimodal sensor-based whole-body control for human–robot collaboration in industrial settings. Robot. Auton. Syst. 2017, 94, 102–119. [Google Scholar] [CrossRef]
- Benli, E.; Motai, Y.; Rogers, J. Visual Perception for Multiple Human–Robot Interaction From Motion Behavior. IEEE Syst. J. 2020, 14, 2937–2948. [Google Scholar] [CrossRef]
- Gkournelos, C.; Karagiannis, P.; Kousi, N.; Michalos, G.; Koukas, S.; Makris, S. Application of Wearable Devices for Supporting Operators in Human-Robot Cooperative Assembly Tasks. Procedia CIRP 2018, 76, 177–182. [Google Scholar] [CrossRef]
- Piyathilaka, L.; Kodagoda, S. Gaussian mixture based HMM for human daily activity recognition using 3D skeleton features. In Proceedings of the 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Melbourne, Australia, 19–21 June 2013; pp. 567–572. [Google Scholar] [CrossRef]
- Berg, J.; Reckordt, T.; Richter, C.; Reinhart, G. Action Recognition in Assembly for Human-Robot-Cooperation using Hidden Markov Models. Procedia CIRP 2018, 76, 205–210. [Google Scholar] [CrossRef]
- Sharma, S.; Modi, S.; Rana, P.S.; Bhattacharya, J. Hand Gesture Recognition Using Gaussian Threshold and Different SVM Kernels. In Proceedings of the Advances in Computing and Data Sciences; Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T., Eds.; Communications in Computer and Information Science; Springer: Singapore, 2018; pp. 138–147. [Google Scholar] [CrossRef]
- Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D Convolutional Neural Networks for Human Action Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 221–231. [Google Scholar] [CrossRef]
- Roitberg, A.; Perzylo, A.; Somani, N.; Giuliani, M.; Rickert, M.; Knoll, A. Human activity recognition in the context of industrial human-robot interaction. In Proceedings of the Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, Tokyo, Japan, 9–12 December 2014; pp. 1–10. [Google Scholar] [CrossRef]
- Mohammadi Amin, F.; Rezayati, M.; van de Venn, H.W.; Karimpour, H. A Mixed-Perception Approach for Safe Human–Robot Collaboration in Industrial Automation. Sensors 2020, 20, 6347. [Google Scholar] [CrossRef]
- Zhang, J.; Li, P.; Zhu, T.; Zhang, W.A.; Liu, S. Human Motion Capture Based on Kinect and IMUs and Its Application to Human-Robot Collaboration. In Proceedings of the 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM), Shenzhen, China, 18–21 December 2020; pp. 392–397. [Google Scholar] [CrossRef]
- Moon, A.; Troniak, D.M.; Gleeson, B.; Pan, M.K.; Zheng, M.; Blumer, B.A.; MacLean, K.; Croft, E.A. Meet me where i’m gazing: How shared attention gaze affects human-robot handover timing. In Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction, Bielefeld, Germany, 3–6 March 2014; Association for Computing Machinery: New York, NY, USA, 2014. HRI ’14. pp. 334–341. [Google Scholar] [CrossRef]
- Palinko, O.; Rea, F.; Sandini, G.; Sciutti, A. Robot reading human gaze: Why eye tracking is better than head tracking for human-robot collaboration. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 5048–5054. [Google Scholar] [CrossRef]
- Kim, H.; Ohmura, Y.; Kuniyoshi, Y. Using Human Gaze to Improve Robustness Against Irrelevant Objects in Robot Manipulation Tasks. IEEE Robot. Autom. Lett. 2020, 5, 4415–4422. [Google Scholar] [CrossRef]
- Dufour, K.; Ocampo-Jimenez, J.; Suleiman, W. Visual–spatial attention as a comfort measure in human–robot collaborative tasks. Robot. Auton. Syst. 2020, 133, 103626. [Google Scholar] [CrossRef]
- Casalino, A.; Messeri, C.; Pozzi, M.; Zanchettin, A.M.; Rocco, P.; Prattichizzo, D. Operator Awareness in Human–Robot Collaboration Through Wearable Vibrotactile Feedback. IEEE Robot. Autom. Lett. 2018, 3, 4289–4296. [Google Scholar] [CrossRef]
- Bergner, F.; Dean-Leon, E.; Cheng, G. Efficient Distributed Torque Computation for Large Scale Robot Skin. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1593–1599. [Google Scholar] [CrossRef]
- Salvietti, G.; Iqbal, M.Z.; Prattichizzo, D. Bilateral Haptic Collaboration for Human-Robot Cooperative Tasks. IEEE Robot. Autom. Lett. 2020, 5, 3517–3524. [Google Scholar] [CrossRef]
- Tang, G.; Webb, P.; Thrower, J. The development and evaluation of Robot Light Skin: A novel robot signalling system to improve communication in industrial human–robot collaboration. Robot. Comput.-Integr. Manuf. 2019, 56, 85–94. [Google Scholar] [CrossRef]
- Andersen, R.S.; Madsen, O.; Moeslund, T.B.; Amor, H.B. Projecting robot intentions into human environments. In Proceedings of the 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York City, NY, USA, 26–31 August 2016; pp. 294–301. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L. An AR-based Worker Support System for Human-Robot Collaboration. Procedia Manuf. 2017, 11, 22–30. [Google Scholar] [CrossRef]
- Papanastasiou, S.; Kousi, N.; Karagiannis, P.; Gkournelos, C.; Papavasileiou, A.; Dimoulas, K.; Baris, K.; Koukas, S.; Michalos, G.; Makris, S. Towards seamless human robot collaboration: Integrating multimodal interaction. Int. J. Adv. Manuf. Technol. 2019, 105, 3881–3897. [Google Scholar] [CrossRef]
- Matsas, E.; Vosniakos, G.C.; Batras, D. Prototyping proactive and adaptive techniques for human-robot collaboration in manufacturing using virtual reality. Robot. Comput.-Integr. Manuf. 2018, 50, 168–180. [Google Scholar] [CrossRef]
- Chen, F.; Gao, B.; Selvaggio, M.; Li, Z.; Caldwell, D.; Kershaw, K.; Masi, A.; Di Castro, M.; Losito, R. A framework of teleoperated and stereo vision guided mobile manipulation for industrial automation. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016; pp. 1641–1648. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Z.; Xu, W.; Tang, Q.; Zhou, Z.; Pham, D.T. Human-robot collaboration in disassembly for sustainable manufacturing. Int. J. Prod. Res. 2019, 57, 4027–4044. [Google Scholar] [CrossRef]
- Axenopoulos, A.; Papadopoulos, G.T.; Giakoumis, D.; Kostavelis, I.; Papadimitriou, A.; Sillaurren, S.; Bastida, L.; Oguz, O.S.; Wollherr, D.; Garnica, E.; et al. A Hybrid Human-Robot Collaborative Environment for Recycling Electrical and Electronic Equipment. In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23 August 2019; pp. 1754–1759. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, W.; Liu, Z.; Zhou, Z.; Pham, D.T. Robotic Task Oriented Knowledge Graph for Human-Robot Collaboration in Disassembly. Procedia CIRP 2019, 83, 105–110. [Google Scholar] [CrossRef]
- Büker, U.; Drüe, S.; Götze, N.; Hartmann, G.; Kalkreuter, B.; Stemmer, R.; Trapp, R. Vision-based control of an autonomous disassembly station. Robot. Auton. Syst. 2001, 35, 179–189. [Google Scholar] [CrossRef]
- Bdiwi, M.; Rashid, A.; Putz, M. Autonomous disassembly of electric vehicle motors based on robot cognition. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 2500–2505. [Google Scholar] [CrossRef]
- Vongbunyong, S.; Pagnucco, M.; Kara, S. Vision-Based Execution Monitoring of State Transition in Disassembly Automation. Int. J. Autom. Technol. 2016, 10, 708–716. [Google Scholar] [CrossRef]
- ElSayed, A.; Kongar, E.; Gupta, S.; Sobh, T. A Robotic-Driven Disassembly Sequence Generator for End-Of-Life Electronic Products. J. Intell. Robot. Syst. 2012, 68, 43–52. [Google Scholar] [CrossRef]
- Roveda, L.; Vicentini, F.; Pedrocchi, N.; Tosatti, L.M. Impedance control based force-tracking algorithm for interaction robotics tasks: An analytically force overshoots-free approach. In Proceedings of the 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Colmar, France, 21–23 July 2015; Volume 2, pp. 386–391. [Google Scholar]
- Roveda, L.; Iannacci, N.; Vicentini, F.; Pedrocchi, N.; Braghin, F.; Tosatti, L.M. Optimal impedance force-tracking control design with impact formulation for interaction tasks. IEEE Robot. Autom. Lett. 2015, 1, 130–136. [Google Scholar] [CrossRef]
- Roveda, L.; Pallucca, G.; Pedrocchi, N.; Braghin, F.; Tosatti, L.M. Iterative learning procedure with reinforcement for high-accuracy force tracking in robotized tasks. IEEE Trans. Ind. Inform. 2017, 14, 1753–1763. [Google Scholar] [CrossRef]
- Roveda, L.; Iannacci, N.; Tosatti, L.M. Discrete-time formulation for optimal impact control in interaction tasks. J. Intell. Robot. Syst. 2018, 90, 407–417. [Google Scholar] [CrossRef]
- Roveda, L.; Riva, D.; Bucca, G.; Piga, D. Sensorless optimal switching impact/force controller. IEEE Access 2021, 9, 158167–158184. [Google Scholar] [CrossRef]
- Wallhoff, F.; Blume, J.; Bannat, A.; Rösel, W.; Lenz, C.; Knoll, A. A skill-based approach towards hybrid assembly. Adv. Eng. Inform. 2010, 24, 329–339. [Google Scholar] [CrossRef]
- Saukkoriipi, J.; Heikkilä, T.; Ahola, J.M.; Seppälä, T.; Isto, P. Programming and control for skill-based robots. Open Eng. 2020, 10, 368–376. [Google Scholar] [CrossRef]
- Huckaby, J.; Christensen, H. Modeling Robot Assembly Tasks in Manufacturing Using SysML. In Proceedings of the ISR/Robotik 2014; 41st International Symposium on Robotics, Munich, Germany, 2–3 June 2014; pp. 1–7. [Google Scholar]
- Schou, C.; Andersen, R.S.; Chrysostomou, D.; Bøgh, S.; Madsen, O. Skill-based instruction of collaborative robots in industrial settings. Robot. Comput.-Integr. Manuf. 2018, 53, 72–80. [Google Scholar] [CrossRef]
- Abu-Dakka, F.J.; Rozo, L.; Caldwell, D.G. Force-Based Learning of Variable Impedance Skills for Robotic Manipulation. In Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, 6–9 November 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Cherubini, A.; Passama, R.; Meline, A.; Crosnier, A.; Fraisse, P. Multimodal control for human-robot cooperation. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 2202–2207. [Google Scholar] [CrossRef]
- Krüger, J.; Lien, T.K.; Verl, A. Cooperation of human and machines in assembly lines. CIRP Ann. 2009, 58, 628–646. [Google Scholar] [CrossRef]
- Wang, L.; Schmidt, B.; Nee, A.Y. Vision-guided active collision avoidance for human-robot collaborations. Manuf. Lett. 2013, 1, 5–8. [Google Scholar] [CrossRef]
- Krüger, J.; Nickolay, B.; Heyer, P.; Seliger, G. Image based 3D Surveillance for flexible Man-Robot-Cooperation. CIRP Ann. 2005, 54, 19–22. [Google Scholar] [CrossRef]
- Corrales, J.A.; Candelas, F.A.; Torres, F. Safe human–robot interaction based on dynamic sphere-swept line bounding volumes. Robot. Comput.-Integr. Manuf. 2011, 27, 177–185. [Google Scholar] [CrossRef]
- Gecks, T.; Henrich, D. Human-robot cooperation: Safe pick-and-place operations. In Proceedings of the ROMAN 2005—IEEE International Workshop on Robot and Human Interactive Communication, Nashville, TN, USA, 13–15 August 2005; pp. 549–554. [Google Scholar] [CrossRef]
- Ebert, D.; Henrich, D. Safe human-robot-cooperation: Image-based collision detection for industrial robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002; Volume 2, pp. 1826–1831. [Google Scholar] [CrossRef]
- Tan, J.T.C.; Arai, T. Triple stereo vision system for safety monitoring of human-robot collaboration in cellular manufacturing. In Proceedings of the 2011 IEEE International Symposium on Assembly and Manufacturing (ISAM), Tampere Talo, Finland, 25–27 May 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Flacco, F.; Kröger, T.; De Luca, A.; Khatib, O. A depth space approach to human-robot collision avoidance. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St. Paul, MN, USA, 14–18 May 2012; pp. 338–345. [Google Scholar] [CrossRef]
- Chaumette, F.; Hutchinson, S. Visual servo control. I. Basic approaches. IEEE Robot. Autom. Mag. 2006, 13, 82–90. [Google Scholar] [CrossRef]
- Prats, M.; Sanz, P.J.; del Pobil, A.P. Reliable non-prehensile door opening through the combination of vision, tactile and force feedback. Auton. Robots 2010, 29, 201–218. [Google Scholar] [CrossRef]
- Safeea, M.; Neto, P.; Béarée, R. A Quest Towards Safe Human Robot Collaboration. In Proceedings of the Towards Autonomous Robotic Systems; Althoefer, K., Konstantinova, J., Zhang, K., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; pp. 493–495. [Google Scholar] [CrossRef]
- Chen, J.H.; Song, K.T. Collision-Free Motion Planning for Human-Robot Collaborative Safety Under Cartesian Constraint. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 4348–4354. [Google Scholar] [CrossRef]
- Takata, S.; Hirano, T. Human and robot allocation method for hybrid assembly systems. CIRP Ann. 2011, 60, 9–12. [Google Scholar] [CrossRef]
- Landi, C.T.; Ferraguti, F.; Costi, S.; Bonfè, M.; Secchi, C. Safety Barrier Functions for Human-Robot Interaction with Industrial Manipulators. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; pp. 2565–2570. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Cai, Y.; Xu, W.; Liu, Q.; Zhou, Z.; Pham, D.T. Dynamic risk assessment and active response strategy for industrial human-robot collaboration. Comput. Ind. Eng. 2020, 141, 106302. [Google Scholar] [CrossRef]
- Mohammed, A.; Schmidt, B.; Wang, L. Active collision avoidance for human–robot collaboration driven by vision sensors. Int. J. Comput. Integr. Manuf. 2017, 30, 970–980. [Google Scholar] [CrossRef]
- Yip, M.C.; Camarillo, D.B. Model-Less Hybrid Position/Force Control: A Minimalist Approach for Continuum Manipulators in Unknown, Constrained Environments. IEEE Robot. Autom. Lett. 2016, 1, 844–851. [Google Scholar] [CrossRef]
- Leite, A.C.; Lizarralde, F.; Hsu, L. Hybrid Adaptive Vision—Force Control for Robot Manipulators Interacting with Unknown Surfaces. Int. J. Robot. Res. 2009, 28, 911–926. [Google Scholar] [CrossRef]
- Gierlak, P.; Szuster, M. Adaptive position/force control for robot manipulator in contact with a flexible environment. Robot. Auton. Syst. 2017, 95, 80–101. [Google Scholar] [CrossRef]
- Keemink, A.Q.; van der Kooij, H.; Stienen, A.H. Admittance control for physical human–robot interaction. Int. J. Robot. Res. 2018, 37, 1421–1444. [Google Scholar] [CrossRef]
- Dimeas, F.; Aspragathos, N. Fuzzy learning variable admittance control for human-robot cooperation. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 4770–4775. [Google Scholar] [CrossRef]
- Ranatunga, I.; Cremer, S.; Popa, D.O.; Lewis, F.L. Intent aware adaptive admittance control for physical Human-Robot Interaction. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 5635–5640. [Google Scholar] [CrossRef]
- Bae, J.; Kim, K.; Huh, J.; Hong, D. Variable Admittance Control With Virtual Stiffness Guidance for Human—Robot Collaboration. IEEE Access 2020, 8, 117335–117346. [Google Scholar] [CrossRef]
- Ficuciello, F.; Villani, L.; Siciliano, B. Variable Impedance Control of Redundant Manipulators for Intuitive Human–Robot Physical Interaction. IEEE Trans. Robot. 2015, 31, 850–863. [Google Scholar] [CrossRef]
- Laffranchi, M.; Tsagarakis, N.G.; Caldwell, D.G. Safe human robot interaction via energy regulation control. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009; pp. 35–41. [Google Scholar] [CrossRef]
- Raiola, G.; Cardenas, C.A.; Tadele, T.S.; de Vries, T.; Stramigioli, S. Development of a Safety- and Energy-Aware Impedance Controller for Collaborative Robots. IEEE Robot. Autom. Lett. 2018, 3, 1237–1244. [Google Scholar] [CrossRef]
- Roveda, L.; Haghshenas, S.; Caimmi, M.; Pedrocchi, N.; Molinari Tosatti, L. Assisting operators in heavy industrial tasks: On the design of an optimized cooperative impedance fuzzy-controller with embedded safety rules. Front. Robot. AI 2019, 6, 75. [Google Scholar] [CrossRef] [PubMed]
- Roveda, L.; Maskani, J.; Franceschi, P.; Abdi, A.; Braghin, F.; Molinari Tosatti, L.; Pedrocchi, N. Model-based reinforcement learning variable impedance control for human-robot collaboration. J. Intell. Robot. Syst. 2020, 100, 417–433. [Google Scholar] [CrossRef]
- Roveda, L.; Magni, M.; Cantoni, M.; Piga, D.; Bucca, G. Human–robot collaboration in sensorless assembly task learning enhanced by uncertainties adaptation via Bayesian Optimization. Robot. Auton. Syst. 2021, 136, 103711. [Google Scholar] [CrossRef]
- Roveda, L.; Testa, A.; Shahid, A.A.; Braghin, F.; Piga, D. Q-Learning-based model predictive variable impedance control for physical human-robot collaboration. Artif. Intell. 2022, 312, 103771. [Google Scholar] [CrossRef]
- Roveda, L.; Mantovani, L.; Maccarini, M.; Braghin, F.; Piga, D. Optimal physical human–robot collaborative controller with user-centric tuning. Control. Eng. Pract. 2023, 139, 105621. [Google Scholar] [CrossRef]
- Maccarini, M.; Pura, F.; Piga, D.; Roveda, L.; Mantovani, L.; Braghin, F. Preference-Based Optimization of a Human-Robot Collaborative Controller. IFAC-PapersOnLine 2022, 55, 7–12. [Google Scholar] [CrossRef]
- Vanderborght, B.; Albu-Schaeffer, A.; Bicchi, A.; Burdet, E.; Caldwell, D.G.; Carloni, R.; Catalano, M.; Eiberger, O.; Friedl, W.; Ganesh, G.; et al. Variable impedance actuators: A review. Robot. Auton. Syst. 2013, 61, 1601–1614. [Google Scholar] [CrossRef]
- Ott, C.; Mukherjee, R.; Nakamura, Y. Unified Impedance and Admittance Control. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 554–561. [Google Scholar] [CrossRef]
- Formenti, A.; Bucca, G.; Shahid, A.A.; Piga, D.; Roveda, L. Improved impedance/admittance switching controller for the interaction with a variable stiffness environment. Complex Eng. Syst. 2022, 2, 1–18. [Google Scholar] [CrossRef]
- Makoviychuk, V.; Wawrzyniak, L.; Guo, Y.; Lu, M.; Storey, K.; Macklin, M.; Hoeller, D.; Rudin, N.; Allshire, A.; Handa, A.; et al. Isaac gym: High performance gpu-based physics simulation for robot learning. arXiv 2021, arXiv:2108.10470. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beghi, M.; Braghin, F.; Roveda, L. Enhancing Disassembly Practices for Electric Vehicle Battery Packs: A Narrative Comprehensive Review. Designs 2023, 7, 109. https://doi.org/10.3390/designs7050109
Beghi M, Braghin F, Roveda L. Enhancing Disassembly Practices for Electric Vehicle Battery Packs: A Narrative Comprehensive Review. Designs. 2023; 7(5):109. https://doi.org/10.3390/designs7050109
Chicago/Turabian StyleBeghi, Matteo, Francesco Braghin, and Loris Roveda. 2023. "Enhancing Disassembly Practices for Electric Vehicle Battery Packs: A Narrative Comprehensive Review" Designs 7, no. 5: 109. https://doi.org/10.3390/designs7050109
APA StyleBeghi, M., Braghin, F., & Roveda, L. (2023). Enhancing Disassembly Practices for Electric Vehicle Battery Packs: A Narrative Comprehensive Review. Designs, 7(5), 109. https://doi.org/10.3390/designs7050109