Open-Source Software for Building-Integrated Photovoltaic Tiling for Novelty Architecture
Abstract
:1. Introduction
2. Methods
- Modification Stage;
- Tiling Algorithm Stage;
- Support Generation and Energy Output Stage.
2.1. Modification Stage
2.2. Tiling Algorithm Stage
2.3. Support Generation and Energy Output Stage
2.4. Output
- [[tilt angle, orientation angle, number of solar panels on face 1], …, [tilt angle, orientation angle, number of solar panels of face n]]
2.5. Selected Example Models
2.5.1. The Thinker
2.5.2. The Winged Victory of Samothrace
2.5.3. The Colossus of Rhodes
2.5.4. The Stanford Bunny (Low-Poly Version)
2.5.5. The Tree (Low-Poly Version)
2.5.6. The Inunnguaq
2.5.7. The Pyramid
2.5.8. Solar Energy Simulation
3. Results
3.1. Designs and PV Power Capacity
3.2. Energy Simulation Results
4. Discussion
4.1. Significance of the Results and Advantages of the Proposed Approach
4.2. Current Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Staffell, I.; Pfenninger, S.; Johnson, N. A Global Model of Hourly Space Heating and Cooling Demand at Multiple Spatial Scales. Nat. Energy 2023, 8, 1328–1344. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Javanroodi, K.; Mauree, D.; Nik, V.M.; Florio, P.; Hong, T.; Chen, D. Challenges Resulting from Urban Density and Climate Change for the EU Energy Transition. Nat. Energy 2023, 8, 397–412. [Google Scholar] [CrossRef]
- Tong, S.; Prior, J.; McGregor, G.; Shi, X.; Kinney, P. Urban Heat: An Increasing Threat to Global Health. BMJ 2021, 375, n2467. [Google Scholar] [CrossRef] [PubMed]
- UN-Habitat. Urban Energy|UN-Habitat. Available online: https://unhabitat.org/topic/urban-energy (accessed on 31 August 2023).
- Ritchie, H.; Roser, M.; Rosado, P. Energy Mix. Our World in Data 2022. Available online: https://ourworldindata.org/energy-mix (accessed on 7 November 2024).
- OECD Decarbonising Buildings in Cities and Regions; OECD Urban Studies; OECD: Paris, France, 2022; ISBN 978-92-64-63968-3.
- UNEP Cities and Climate Change. Available online: http://www.unep.org/explore-topics/resource-efficiency/what-we-do/cities/cities-and-climate-change (accessed on 8 September 2023).
- IEA Buildings—Energy System. Available online: https://www.iea.org/energy-system/buildings (accessed on 8 September 2023).
- Parag, Y.; Sovacool, B.K. Electricity Market Design for the Prosumer Era. Nat. Energy 2016, 1, 16032. [Google Scholar] [CrossRef]
- Ballif, C.; Perret-Aebi, L.-E.; Lufkin, S.; Rey, E. Integrated Thinking for Photovoltaics in Buildings. Nat. Energy 2018, 3, 438–442. [Google Scholar] [CrossRef]
- Svetozarevic, B.; Begle, M.; Jayathissa, P.; Caranovic, S.; Shepherd, R.F.; Nagy, Z.; Hischier, I.; Hofer, J.; Schlueter, A. Dynamic Photovoltaic Building Envelopes for Adaptive Energy and Comfort Management. Nat. Energy 2019, 4, 671–682. [Google Scholar] [CrossRef]
- Hamzah, A.H.; Go, Y.I. Design and Assessment of Building Integrated PV (BIPV) System towards Net Zero Energy Building for Tropical Climate. e-Prime—Adv. Electr. Eng. Electron. Energy 2023, 3, 100105. [Google Scholar] [CrossRef]
- Chen, T.; Tai, K.F.; Raharjo, G.P.; Heng, C.K.; Leow, S.W. A Novel Design Approach to Prefabricated BIPV Walls for Multi-Storey Buildings. J. Build. Eng. 2023, 63, 105469. [Google Scholar] [CrossRef]
- Saw, M.H.; Singh, J.P.; Wang, Y.; Birgersson, K.E.; Khoo, Y.S. Electrical Performance Study of Colored C-Si Building-Integrated PV Modules. IEEE J. Photovolt. 2020, 10, 1027–1034. [Google Scholar] [CrossRef]
- Pelle, M.; Lucchi, E.; Maturi, L.; Astigarraga, A.; Causone, F. Coloured BIPV Technologies: Methodological and Experimental Assessment for Architecturally Sensitive Areas. Energies 2020, 13, 4506. [Google Scholar] [CrossRef]
- Sun, H.; Heng, C.K.; Reindl, T.; Lau, S.S.Y. Visual Impact Assessment of Coloured Building-Integrated Photovoltaics on Retrofitted Building Facades Using Saliency Mapping. Sol. Energy 2021, 228, 643–658. [Google Scholar] [CrossRef]
- Akbari Paydar, M. Optimum Design of Building Integrated PV Module as a Movable Shading Device. Sustain. Cities Soc. 2020, 62, 102368. [Google Scholar] [CrossRef]
- Awuku, S.A.; Bennadji, A.; Muhammad-Sukki, F.; Sellami, N. Myth or Gold? The Power of Aesthetics in the Adoption of Building Integrated Photovoltaics (BIPVs). Energy Nexus 2021, 4, 100021. [Google Scholar] [CrossRef]
- Youssef, A.M.A.; Zhai, Z.; Reffat, R.M. Generating Proper Building Envelopes for Photovoltaics Integration with Shape Grammar Theory. Energy Build. 2018, 158, 326–341. [Google Scholar] [CrossRef]
- Kaji Esfahani, S.; Tenorio, R.; Karrech, A.; Defendi, K.; Jerez, F. Analysing the Role of Roof Mounted BIPV System Optimization on Decreasing the Effect of Duck Curve in Perth, Western Australia: An Experimental Case Study. Sustain. Energy Technol. Assess. 2021, 47, 101328. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sudhakar, K.; Baredar, P. Recent Advancement in BIPV Product Technologies: A Review. Energy Build. 2017, 140, 188–195. [Google Scholar] [CrossRef]
- Munsey, C. Bottles in Mimetic Architecture. 2003. Available online: https://www.angelfire.com/zine2/thesodafizz/BottleArchitecture_July2003.pdf (accessed on 7 November 2024).
- Adams, C. Mimetic Architecture: Why Does This Building Look like a Fish? Available online: https://www.cnn.com/style/article/mimetic-architecture-osm/index.html (accessed on 2 August 2023).
- Chin, X.; Hayibo, K.S.; Pearce, J.M. BIPV Frame Generator and Associated Files. 2023. Available online: https://osf.io/erbyp/ (accessed on 7 November 2024).
- Foundation, B. Blender Version 3.5. blender.org. Available online: https://www.blender.org/download/releases/3-5/ (accessed on 2 August 2023).
- Buy Solar Module HT-SAAE HT54-18X-405W FULL BLACK|pvXchange.Com. Available online: https://www.pvxchange.com/Solar-Modules/HT-SAAE/HT54-18X-405W-FULL-BLACK_1-996000360 (accessed on 30 July 2023).
- Rodin, A. The Thinker; Art, Architecture and Engineering Library: Ann Arbor, MI, USA, 1879. [Google Scholar]
- 3D Printable. The Thinker at the Musée Rodin, France by Musée Rodin. Available online: https://www.myminifactory.com/object/3d-print-the-thinker-at-the-muse-rodin-france-2127 (accessed on 2 August 2023).
- Mayfield, M. The Winged Victory: Nike in Ancient Greece. Stud. Antiq. 2021, 20, 47–58. [Google Scholar]
- 3D Printable. Winged Victory of Samothrace at The Louvre, Paris by Scan the World. Available online: https://www.myminifactory.com/object/3d-print-winged-victory-of-samothrace-2073 (accessed on 2 August 2023).
- Maryon, H. The Colossus of Rhodes. J. Hell. Stud. 1956, 76, 68–86. [Google Scholar] [CrossRef]
- The Colossus of Rhodes Free 3D Model—Download stl File. Available online: https://3dmag.org/en/market/item/2464/ (accessed on 2 August 2023).
- The Stanford Bunny. Available online: https://faculty.cc.gatech.edu/~turk/bunny/bunny.html (accessed on 2 August 2023).
- Thingiverse.com. Low Poly Stanford Bunny by Johnny6. Available online: https://www.thingiverse.com/thing:151081 (accessed on 30 July 2023).
- Low Poly Tree Pack 3d Model. Free Download|Reazilla. Available online: https://creazilla.com/nodes/1432904-low-poly-tree-pack-3d-model (accessed on 30 July 2023).
- Hallendy, N. Inuksuit: Silent Messengers of the Arctic, 1st ed.; Douglas & McIntyre: Vancouver, BC, Canada, 2001; ISBN 978-1-55054-874-7. [Google Scholar]
- Heyes, S. Protecting the Authenticity and Integrity of Inuksuit within the Arctic Milieu. Études Inuit Stud. 2002, 26, 133–156. [Google Scholar] [CrossRef]
- Magazine, S. Ancient Pyramids Around the World. Smithsonian Magazine, 20 November 2009. [Google Scholar]
- Gilman, P.; DiOrio, N.A.; Freeman, J.M.; Janzou, S.; Dobos, A.; Ryberg, D. SAM Photovoltaic Model Technical Reference 2016 Update; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2018; p. 93. [Google Scholar]
- Milosavljević, D.D.; Kevkić, T.S.; Jovanović, S.J. Review and Validation of Photovoltaic Solar Simulation Tools/Software Based on Case Study. Open Phys. 2022, 20, 431–451. [Google Scholar] [CrossRef]
- Freeman, J.M.; DiOrio, N.A.; Blair, N.J.; Neises, T.W.; Wagner, M.J.; Gilman, P.; Janzou, S. System Advisor Model (SAM) General Description (Version 2017.9.5); National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2018; p. NREL/TP--6A20-70414. [Google Scholar]
- Hayibo, K.S.; Pearce, J.M. Vertical Free-Swinging Photovoltaic Racking Energy Modeling: A Novel Approach to Agrivoltaics. Renew. Energy 2023, 218, 119343. [Google Scholar] [CrossRef]
- Kopecek, R.; Libal, J. Towards Large-Scale Deployment of Bifacial Photovoltaics. Nat. Energy 2018, 3, 443–446. [Google Scholar] [CrossRef]
- Appelbaum, J.; Aronescu, A. Inter-Row Spacing Calculation in Photovoltaic Fields—A New Approach. Renew. Energy 2022, 200, 387–394. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-1-118-41812-3. [Google Scholar]
- van de Ven, D.-J.; Capellan-Peréz, I.; Arto, I.; Cazcarro, I.; de Castro, C.; Patel, P.; Gonzalez-Eguino, M. The Potential Land Requirements and Related Land Use Change Emissions of Solar Energy. Sci. Rep. 2021, 11, 2907. [Google Scholar] [CrossRef] [PubMed]
- Gergacz, J.W. Legal Aspects of Solar Energy: Statutory Approaches for Access to Sunlight. Boston Coll. Environ. Aff. Law Rev. 1982, 10, 1. [Google Scholar]
- Bronin, S.C. Solar Rights. Boston Univ. Law Rev. 2009, 89, 1217. [Google Scholar]
- Clarke, P. The Legal Right to Solar Access. Environment 2019, 1–15. Available online: https://acumen.architecture.com.au/environment/energy/energy-saving-technologies/the-legal-right-to-solar-access/ (accessed on 30 July 2023).
- Bowden, M.-A. Protecting Solar Access in Canada: The Common Law Approach. Dalhous. Law J. 1984, 9, 261. [Google Scholar]
- Limiting Off Property Shading of Solar Energy Systems—Sustainable Development Code. Available online: https://sustainablecitycode.org/brief/off-property-shading-of-solar-energy-systems/ (accessed on 7 November 2024).
- Empire State Building. Empire State Building Fact Sheet; Empire State Building: New York, NY, USA, 2023; p. 2. [Google Scholar]
- The CN Tower. Sustainability at the CN Tower; The CN Tower: Toronto, ON, Canada, 2022; p. 4. [Google Scholar]
- Kolokotsa, D.; Rovas, D.; Kosmatopoulos, E.; Kalaitzakis, K. A Roadmap towards Intelligent Net Zero- and Positive-Energy Buildings. Sol. Energy 2011, 85, 3067–3084. [Google Scholar] [CrossRef]
- Mousavi, S.; Villarreal-Marroquín, M.G.; Hajiaghaei-Keshteli, M.; Smith, N.R. Data-Driven Prediction and Optimization toward Net-Zero and Positive-Energy Buildings: A Systematic Review. Build. Environ. 2023, 242, 110578. [Google Scholar] [CrossRef]
- Cole, R.J.; Fedoruk, L. Shifting from Net-Zero to Net-Positive Energy Buildings. Build. Res. Inf. 2015, 43, 111–120. [Google Scholar] [CrossRef]
- Dabeedooal, Y.J.; Dindoyal, V.; Allam, Z.; Jones, D.S. Smart Tourism as a Pillar for Sustainable Urban Development: An Alternate Smart City Strategy from Mauritius. Smart Cities 2019, 2, 153–162. [Google Scholar] [CrossRef]
- Salinas Fernández, J.A.; Guaita Martínez, J.M.; Martín Martín, J.M. An Analysis of the Competitiveness of the Tourism Industry in a Context of Economic Recovery Following the COVID19 Pandemic. Technol. Forecast. Soc. Chang. 2022, 174, 121301. [Google Scholar] [CrossRef] [PubMed]
- Tostivint, F. Montant de la Facture Moyenne Électricité Par Mois + Consommation; Selectra: Paris, France, 2017. [Google Scholar]
- Seto, K.C.; Churkina, G.; Hsu, A.; Keller, M.; Newman, P.W.G.; Qin, B.; Ramaswami, A. From Low- to Net-Zero Carbon Cities: The Next Global Agenda. Annu. Rev. Environ. Resour. 2021, 46, 377–415. [Google Scholar] [CrossRef]
- O’Regan, A.C.; Nyhan, M.M. Towards Sustainable and Net-Zero Cities: A Review of Environmental Modelling and Monitoring Tools for Optimizing Emissions Reduction Strategies for Improved Air Quality in Urban Areas. Environ. Res. 2023, 231, 116242. [Google Scholar] [CrossRef]
- Mitrex Architectural Solar Facades, Reimagined—Mitrex. Available online: https://www.mitrex.com/solar-facade (accessed on 9 July 2024).
- Pearce, J.M.; Sommerfeldt, N. Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada. Energies 2021, 14, 834. [Google Scholar] [CrossRef]
- Chou, K.C.; Shih, S.G.; Liu, S.Y. Research of the Main Building Characteristics for Rotating Buildings. Appl. Mech. Mater. 2014, 638–640, 1660–1665. [Google Scholar] [CrossRef]
- Yin, H.; Qu, M.; Zhang, H.; Lim, Y. 3D Printing and Buildings: A Technology Review and Future Outlook. Technol. Archit. Des. 2018, 2, 94–111. [Google Scholar] [CrossRef]
- Mecki Answer to “How Can I Determine Whether a 2D Point Is Within a Polygon?” Stack Overflow 2008. Available online: https://stackoverflow.com/questions/217578/how-can-i-determine-whether-a-2d-point-is-within-a-polygon (accessed on 7 November 2024).
- Rana, S.; Jamil, U.; Asgari, N.; Hayibo, K.S.; Groza, J.; Pearce, J.M. Residential Sizing of Solar Photovoltaic Systems and Heat Pumps for Net Zero Sustainable Thermal Building Energy. Computation 2024, 12, 126. [Google Scholar] [CrossRef]
- Seme, S.; Štumberger, B.; Hadžiselimović, M.; Sredenšek, K. Solar Photovoltaic Tracking Systems for Electricity Generation: A Review. Energies 2020, 13, 4224. [Google Scholar] [CrossRef]
- El-Sayegh, S.; Romdhane, L.; Manjikian, S. A Critical Review of 3D Printing in Construction: Benefits, Challenges, and Risks. Archiv. Civ. Mech. Eng. 2020, 20, 34. [Google Scholar] [CrossRef]
Building Design | Angel | Bunny | Colossus | Inunnguaq | Pyramid | The Thinker | Tree |
---|---|---|---|---|---|---|---|
Culture of Origin | Greek | U.S. | Greek | Canada | Various Cultures | French | None |
Total Outer Surface (m2) | 23,287 | 11,661 | 53,117 | 13,088 | 9066 | 32,012 | 5371 |
PV Module Surface Area Coverage | 0.86 | 0.70 | 0.68 | 0.79 | 0.91 | 0.70 | 0.76 |
Real Estate Ground Footprint (m2) | 8406 | 4145 | 6674 | 1549 | 6029 | 7839 | 4902 |
Model Height (m) | 136.0 | 71.2 | 292.0 | 84.5 | 38.2 | 130.0 | 52.9 |
Number of PV Modules | 7286 | 3671 | 16,382 | 4702 | 3741 | 10,202 | 1854 |
Total PV Power (MW) | 3.42 | 1.73 | 7.70 | 2.21 | 1.76 | 4.79 | 0.87 |
Default Simulation Location | London, ON, Canada | ||||||
Cultural Heritage Simulation Location | Athens | Palo Aalto | Athens | Toronto | Cairo | Paris | Lomé |
Optimal GPV Tilt Angle at Location | 30 | 30 | 30 | 35 | 26 | 30 | 10 |
Building Model Design | Angel | Bunny | Colossus | Inunnguaq | Pyramid | The Thinker | Tree |
---|---|---|---|---|---|---|---|
Total PV Size (MW) | 3.42 | 1.73 | 7.70 | 2.21 | 1.76 | 4.79 | 0.87 |
Optimal Building Face 0 Azimuth (°) | 255.20 | 65.54 | 318.75 | 72.00 | 278.96 | 144.78 | 225.62 |
Building Annual Energy (MWh) | 2584.14 | 1318.56 | 5366.83 | 1580.16 | 1809.91 | 3729.08 | 909.64 |
Optimized GPV Annual Energy (MWh) | 4582.57 | 2308.90 | 10,303.55 | 2957.35 | 2352.92 | 6416.61 | 1166.08 |
Total PV Active Area (m2) | 14,572 | 7342 | 32,764 | 9404 | 7482 | 20,404 | 3708 |
Building Ground Footprint (m2) | 8406 | 4145 | 6674 | 1549 | 6029 | 7839 | 4902 |
Conventional PV Area (m2) | 33,954.68 | 17,172.14 | 76,470.44 | 21,927.19 | 17,451.85 | 47,660.42 | 8501.16 |
Building Energy Yield (MWh/MW) | 754.62 | 764.22 | 697.03 | 715.03 | 1029.37 | 777.71 | 1043.91 |
GPV Energy Yield (MWh/MW) | 1338 | 1338 | 1338 | 1338 | 1338 | 1338 | 1338 |
Building Energy Density (MWh/m2) | 0.31 | 0.32 | 0.80 | 1.02 | 0.30 | 0.48 | 0.19 |
GPV Energy Density (MWh/m2) | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.14 |
Building Power Density (W/m2) | 407.38 | 416.25 | 1153.66 | 1426.69 | 291.64 | 611.68 | 177.76 |
GPV Power Density (W/m2) | 100.85 | 100.47 | 100.69 | 100.79 | 100.75 | 100.61 | 102.50 |
Building Model Design | Angel | Bunny | Colossus | Inunnguaq | Pyramid | The Thinker | Tree |
---|---|---|---|---|---|---|---|
Cultural Heritage Location | Athens | Stanford | Athens | Toronto | Cairo | Paris | Lomé |
Total PV Size (MW) | 3.42 | 1.73 | 7.70 | 2.21 | 1.76 | 4.79 | 0.87 |
Optimal Building Face 0 Azimuth | 255.20 | 65.54 | 318.75 | 72.00 | 278.96 | 154.78 | 225.62 |
Building Annual Energy (MWh) | 2655.03 | 1506.49 | 5416.32 | 1609.41 | 2379.15 | 2438.91 | 1014.03 |
Optimized GPV Annual Energy (MWh) | 8406 | 4145 | 6674 | 1549 | 6029 | 7839 | 4902 |
Total PV Active Area (m2) | 4953.70 | 3027.47 | 11,138.02 | 3040.16 | 3141.53 | 4186.42 | 1206.77 |
Building Ground Footprint (m2) | 14,572 | 7342 | 32,764 | 9404 | 7482 | 20,404 | 3708 |
Conventional PV Area (m2) | 28,713.20 | 14,395.57 | 64,638.47 | 22,616.52 | 12,374.22 | 45,442.86 | 4438.61 |
Building Energy Yield (MWh/MW) | 775.32 | 873.14 | 703.46 | 728.26 | 1353.12 | 508.64 | 1163.71 |
GPV Energy Yield (MWh/MW) | 1446.58 | 1754.68 | 1446.58 | 1375.68 | 1786.71 | 873.09 | 1384.90 |
Building Energy Density (MWh/m2) | 0.32 | 0.36 | 0.81 | 1.04 | 0.39 | 0.31 | 0.21 |
GPV Energy Density (MWh/m2) | 0.17 | 0.21 | 0.17 | 0.13 | 0.25 | 0.09 | 0.27 |
Building Power Density (W/m2) | 407.38 | 416.25 | 1153.66 | 1426.69 | 291.64 | 611.68 | 177.76 |
GPV Power Density (W/m2) | 119.26 | 119.85 | 119.12 | 97.71 | 142.09 | 105.52 | 196.32 |
Decimation Level | Extremely Low (Low Resolution) | Low (Base Case) | Medium (High Resolution) |
---|---|---|---|
Total PV Size (MW) | 4.98 | 4.79 | 2.84 |
Optimal Building Face 0 Azimuth (°) | 110.27 | 154.78 | 133.70 |
Building Annual Energy (MWh) | 2424.21 | 2438.91 | 1474.72 |
Building Ground Footprint (m2) | 7839 | 7839 | 7839 |
Total PV Active Area (m2) | 21,184 | 20,404 | 12,072 |
Building Energy Yield (MWh/MW) | 486.96 | 508.64 | 519.83 |
Building Energy Density (MWh/m2) | 0.31 | 0.31 | 0.19 |
Building Power Density (W/m2) | 635.06 | 611.68 | 361.90 |
Building Height (m) | 50 | 100 | 300 | 500 | 750 |
---|---|---|---|---|---|
Total PV Size (MW) | 0.36 | 2.65 | 32.83 | 96.82 | 224.11 |
Optimal Building Face 0 Azimuth (°) | 164.78 | 154.78 | 154.78 | 154.78 | 144.78 |
Building Annual Energy (MWh) | 187.43 | 1354.69 | 16,608.22 | 48,911.45 | 113,130.28 |
Optimized GPV Annual Energy (MWh) | 1212 | 4831 | 43,592 | 121,158 | 272,490 |
Total PV Active Area (m2) | 313.92 | 2314.80 | 28,662.30 | 84,529.73 | 195,664.65 |
Building Ground Footprint (m2) | 1530 | 11,282 | 139,696 | 411,986 | 953,642 |
Conventional PV Area (1000 m2) | 3.98 | 30.43 | 375.46 | 1107.12 | 2562.71 |
Building Energy Yield (MWh/MW) | 521.28 | 510.96 | 505.91 | 505.20 | 504.81 |
GPV Energy Yield (MWh/MW) | 873.09 | 873.09 | 873.09 | 873.09 | 873.09 |
Building Energy Density (MWh/m2) | 0.15 | 0.28 | 0.38 | 0.40 | 0.42 |
GPV Energy Density (MWh/m2) | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
Building Power Density (W/m2) | 296.66 | 548.80 | 753.09 | 799.09 | 822.44 |
GPV Power Density (W/m2) | 90.24 | 87.14 | 87.44 | 87.45 | 87.45 |
System | Tiling Complex Geometry | Building Geometry Modelling | Weather Data Inputs | PV Modules and Inverter Data | System Layout and Array Configuration | POA Irradiance | Shading Evaluation | PV Energy Conversion Simulation | PV System Losses |
---|---|---|---|---|---|---|---|---|---|
Skelion | Not implemented | Create 3D model | Input from Meteonorm 8.1 | Manual input PV module power rating | Reposition but not define array configuration | Perez model | Shading factor analysis based on building geometry | Built-in empirical model | Manual input based on PVsyst results |
SAM | Not implemented | Create simplified 3D model | Built-in Meteonorm 8.1 | Manual input detailed specifications | Reposition and reconfigure façade system array | Perez model | Shading calculator based on simplify geometry | Built-in equivalent circuit model | Simulation |
PVsyst | Not implemented | Import 3D model in COLLADA format | Built-in Meteonorm 8.2 | Input detailed specifications via PAN/OND files | Reposition and reconfigure façade system array | Perez model | Shading factor analysis based on building geometry | Built-in equivalent circuit model | Simulation |
BIMsolar | Not implemented | Import 3D model in Skp format | Input from Meteonorm 8.1 | Manual input detailed specifications | Reposition and configure case system array | Ray tracing | Ray tracing | Built-in equivalent circuit model | Simulation |
Ladybug Tools | Not implemented | Create 3D model | Input from Meteonorm 8.2 | No Input | No array configuration defined | Ray tracing | Ray tracing | Calculation based on formula | Manual input based on PVsyst results |
PV*SOL | Not implemented | Import 3D model in COLLADA format | Built-in Meteonorm 8.2 | Input detailed specifications via PAN files and inverter template | Reposition and reconfigure façade system array | Hay and Davies model | Near shade calculation based on building geometry | Built-in equivalent circuit model | Simulation |
Solarius PV | Not implemented | Import 3D model in IFC format | Built EOI Meteonorm 7.1 | Manual input detailed specifications | Reposition and configure case system array | Perez model | Manual input shading factor | Built-in empirical model | Manual input based on PVsyst results |
INSIGHT | Not implemented | Create 3D model | Built-in Autodesk Climate Server | No input | No array configuration defined | Ray tracing | Ray tracing | Calculation based on formula | Manual input based on PVsyst results |
Proposed Software | 3D model input into Blender | Import 3D model into Blender and export text files | Input from NSRDB weather database | Input from CEC database or user specified inputs | Multiple orientation and tilt angle modeling | Perez model | Manual input shading factor | Equivalent circuit model based on SAM | Simulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chin, A.W.H.; Hayibo, K.S.; Pearce, J.M. Open-Source Software for Building-Integrated Photovoltaic Tiling for Novelty Architecture. Designs 2024, 8, 118. https://doi.org/10.3390/designs8060118
Chin AWH, Hayibo KS, Pearce JM. Open-Source Software for Building-Integrated Photovoltaic Tiling for Novelty Architecture. Designs. 2024; 8(6):118. https://doi.org/10.3390/designs8060118
Chicago/Turabian StyleChin, Alexander W. H., Koami Soulemane Hayibo, and Joshua M. Pearce. 2024. "Open-Source Software for Building-Integrated Photovoltaic Tiling for Novelty Architecture" Designs 8, no. 6: 118. https://doi.org/10.3390/designs8060118
APA StyleChin, A. W. H., Hayibo, K. S., & Pearce, J. M. (2024). Open-Source Software for Building-Integrated Photovoltaic Tiling for Novelty Architecture. Designs, 8(6), 118. https://doi.org/10.3390/designs8060118