Modeling Rollover Crash Risks: The Influence of Road Infrastructure and Traffic Stream Characteristics
Abstract
:1. Introduction
2. Literature Review
3. Research Method
3.1. Study Area
3.2. Data Collection
3.3. Investigating the Correlation of Independent Variables
3.4. Modeling Crashes and Calculating Marginal Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- NHTSA. 2020 Fatality Data Show Increased Traffic Fatalities During Pandemic; National Highway Traffic Safety Administration: Washington, DC, USA, 2021.
- El-Menyar, A.; Al-Thani, H.; Tuma, M.; Parchani, A.; Abdulrahman, H.; Peralta, R.; Asim, M.; Zarour, A.; Latifi, R. Epidemiology, causes and prevention of car rollover crashes with ejection. Ann. Med. Health Sci. Res. 2014, 4, 495–502. [Google Scholar] [CrossRef] [PubMed]
- NHTSA. Early estimates of motor vehicle traffic fatalities and fatality rate by sub-categories in 2020. In Crash•Stats Brief Statistical Summary; National Highway Traffic Safety Administration: Washington, DC, USA, 2021. [Google Scholar]
- Frechede, B.; Mcintosh, A.S.; Grzebieta, R.; Bambach, M.R. Characteristics of single vehicle rollover fatalities in three Australian states (2000–2007). Accid. Anal. Prev. 2011, 43, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Funk, J.R.; Cormier, J.M.; Manoogian, S.J. Comparison of risk factors for cervical spine, head, serious, and fatal injury in rollover crashes. Accid. Anal. Prev. 2012, 45, 67–74. [Google Scholar] [CrossRef]
- Gloeckner, D.C.; Moore, T.L.; Steffey, D.; Bare, C.; Corrigan, C.F. Implications of vehicle roll direction on occupant ejection and injury risk. Annual proceedings. Assoc. Adv. Automot. Med. 2006, 50, 155–170. [Google Scholar]
- Padmanaban, J.; Moffatt, E.A.; Marth, D.R. Factors Influencing the Likelihood of Fatality and Serious/Fatal Injury in Single-Vehicle Rollover Crashes. In SAE 2005 World Congress & Exhibition; Society of Automotive Engineers (SAE): Detroit, MI, USA, 2005. [Google Scholar]
- Parenteau, C.S.; Shah, M. Driver Injuries in US Single-Event Rollovers; Paper 2000-01-0633; Society of Automotive Engineers: Warrendale, PA, USA, 2000. [Google Scholar]
- Parker, D.D.; Ray, R.M.; Moore, T.L.A.; Keefer, R.E. Rollover Severity and Occupant Protection—A Review of NASS/CDS Data. SAE Trans. 2007, 116, 464–471. [Google Scholar]
- Viano, D.C.; Parenteau, C.S.; Edwards, M.L. Edwards, Rollover injury: Effects of near- and far-seating position, belt use, and number of quarter rolls. Traffic Inj. Prev. 2007, 8, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Brumbelow, M.L.; Teoh, E.R.; Zuby, D.S.; McCartt, A.T. Roof Strength and Injury Risk in Rollover Crashes. Traffic Inj. Prev. 2009, 10, 252–265. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Status Report on Road Safety; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Alrejjal, A.; Farid, A.; Ksaibati, K. A correlated random parameters approach to investigate large truck rollover crashes on mountainous interstates. Accid. Anal. Prev. 2021, 159, 106233. [Google Scholar] [CrossRef] [PubMed]
- Alrejjal, A.; Farid, A.; Ksaibati, K. Investigating factors influencing rollover crash risk on mountainous interstates. J. Saf. Res. 2022, 80, 391–398. [Google Scholar] [CrossRef]
- Alrejjal, A.; Ksaibati, K. Impact of mountainous interstate alignments and truck configurations on rollover propensity. J. Saf. Res. 2022, 80, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Alrejjal, A.; Ksaibati, K. Impact of crosswinds and truck weight on rollover propensity when negotiating combined curves. Int. J. Transp. Sci. Technol. 2022, 12, 86–102. [Google Scholar] [CrossRef]
- Anarkooli, A.J.; Hosseinpour, M.; Kardar, A. Investigation of factors affecting the injury severity of single-vehicle rollover crashes: A random-effects generalized ordered probit model. Accid. Anal. Prev. 2017, 106, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Azimi, G.; Rahimi, A.; Asgari, H.; Jin, X. Severity analysis for large truck rollover crashes using a random parameter ordered logit model. Accid. Anal. Prev. 2020, 135, 105355. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.R.; Cai, C.S.; Wolshon, B. From Normal Operation to Evacuation: Single-Vehicle Safety under Adverse Weather, Topographic, and Operational Conditions. Nat. Hazards Rev. 2009, 10, 68–76. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, G.; Qian, Z.; Tarefder, R.A.; Tian, Z. Investigating driver injury severity patterns in rollover crashes using support vector machine models. Accid. Anal. Prev. 2016, 90, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Conroy, C.; Hoyt, D.B.; Eastman, A.B.; Erwin, S.; Pacyna, S.; Holbrook, T.L.; Vaughan, T.; Sise, M.; Kennedy, F.; Velky, T. Rollover crashes: Predicting serious injury based on occupant, vehicle, and crash characteristics. Accid. Anal. Prev. 2006, 38, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Farmer, C.M.; Lund, A.K. Rollover risk of cars and light trucks after accounting for driver and environmental factors. Accid. Anal. Prev. 2002, 34, 163–173. [Google Scholar] [CrossRef]
- Gong, L.; Fan, W. Modeling single-vehicle run-off-road crash severity in rural areas: Accounting for unobserved heterogeneity and age difference. Accid. Anal. Prev. 2017, 101, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, E.; Shamshiripour, A.; Samimi, A.; Mohammadian, A. Investigating the injury severity of single-vehicle truck crashes in a developing country. Accid. Anal. Prev. 2020, 137, 105444. [Google Scholar] [CrossRef]
- Khan, I.U.; Vachal, K. Factors affecting injury severity of single-vehicle rollover crashes in the United States. Traffic Inj. Prev. 2020, 21, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Bullard, C.; Jones, S.; Adanu, E.K.; Liu, J. Crash severity analysis of single-vehicle rollover crashes in Namibia: A mixed logit approach. IATSS Res. 2023, 47, 318–324. [Google Scholar] [CrossRef]
- Khan, I.U.; Motuba, D.; Vachal, K. Investigating factors affecting injury severity of single-vehicle run-off-road crashes. Accid. Anal. Prev. 2024, 208, 107786. [Google Scholar] [CrossRef]
- Ren, Q.; Xu, M.; Yan, X. An investigation of heterogeneous impact, temporal stability, and aggregate shift in factors affecting the driver injury severity in single-vehicle rollover crashes. Accid. Anal. Prev. 2024, 200, 107562. [Google Scholar] [CrossRef] [PubMed]
- Baskara, S.N.; Yaacob, H.; Hainin, M.R.; Hassan, S.A. Accident Due to Pavement Condition €“ A Review. J. Teknol. 2016, 78, 75–82. [Google Scholar] [CrossRef]
- Jannat, G.; Tighe, S. Performance based Evaluation of overall Pavement Condition Indices for Ontario Highway Systems. In Proceedings of the Transportation Association of Canada Conference and Exhibition. 2015. (2 vols) Getting You There Safely, Charlottetown, PE, Canada, 27–30 September 2015. [Google Scholar]
- Allison, P.D. Multiple Regression: A Primer; Pine Forge Press: Thousand Oaks, CA, USA, 1999. [Google Scholar]
- Williams, R. Multicollinearity. 2015. Available online: https://www3.nd.edu/~rwilliam/stats2/l11.pdf (accessed on 4 December 2024).
- Hosseinlou, M.H.; Mahdavi, A.; Nooghabi, M.J. Validation of the influencing factors associated with traffic violations and crashes on freeways of developing countries: A case study of Iran. Accid. Anal. Prev. 2018, 121, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.; Tarko, A.P. Adequacy of negative binomial models for managing safety on rural local roads. Accid. Anal. Prev. 2019, 128, 148–158. [Google Scholar] [CrossRef]
- Jiang, X.; Abdel-Aty, M.; Alamili, S. Application of Poisson random effect models for highway network screening. Accid. Anal. Prev. 2014, 63, 74–82. [Google Scholar] [CrossRef]
- Khattak, M.W.; Pirdavani, A.; De Winne, P.; Brijs, T.; De Backer, H. Estimation of safety performance functions for urban intersections using various functional forms of the negative binomial regression model and a generalized Poisson regression model. Accid. Anal. Prev. 2021, 151, 105964. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Saat, M.R.; Qin, X.; Barkan, C.P. Analysis of U.S. freight-train derailment severity using zero-truncated negative binomial regression and quantile regression. Accid. Anal. Prev. 2013, 59, 87–93. [Google Scholar] [CrossRef]
- Mathew, S.; Pulugurtha, S.S.; Duvvuri, S. Exploring the effect of road network, demographic, and land use characteristics on teen crash frequency using geographically weighted negative binomial regression. Accid. Anal. Prev. 2022, 168, 106615. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Alluri, P.; Dumbaugh, E.; Gan, A. Application of the Poisson-Tweedie distribution in analyzing crash frequency data. Accid. Anal. Prev. 2020, 137, 105456. [Google Scholar] [CrossRef] [PubMed]
- Rusli, R.; Haque, M.; Afghari, A.P.; King, M. Applying a random parameters Negative Binomial Lindley model to examine multi-vehicle crashes along rural mountainous highways in Malaysia. Accid. Anal. Prev. 2018, 119, 80–90. [Google Scholar] [CrossRef] [PubMed]
- StataCorp. Stata Statistical Software: Release 15; Statistical Software; StataCorp LLC: College Station, TX, USA, 2017. [Google Scholar]
Road Distress Based on Quality Index | Distress Intensity (Si) | ||||
---|---|---|---|---|---|
Very Low | Low | Mediocre | High | Very High | |
Distress Density (Di) | |||||
Road Distress Based on Quantity Index | Low | Mediocre | Significant | Failure | Destructed |
Percentage Distress Developed | <10 | 10–20 | 20–50 | 50–80 | >80 |
Variable | Abbreviation | Unit |
---|---|---|
Rollover crash index | RolooverCI | Number |
Logarithm of seasonal average daily traffic | LSADT | Logarithm (number) |
Heavy vehicle percentage in the traffic | HV | % |
Left shoulder width | LeftShoulder | Meter |
Pavement width | PavementWidth | Meter |
Right shoulder width | RightShoulder | Meter |
Pavement quality Very low = 1 Low = 2 Mean = 3 High = 4 Very high = 5 | PaveQual | Categorical variable |
Speed camera Not installed = 1 Only pole installed = 2 Speed camera installed = 3 | SpeedCamera | Categorical variable |
Rest area Without rest area = 0 With rest area = 1 | RestArea | Categorical variable |
Wxit ramp density | ExitRamp | Number per kilometer |
Wntry ramp density | EntryRamp | Number per kilometer |
Un-channelized T intersection density | UnChanalizedT | Number per kilometer |
Channelized T intersection density | ChanalizedT | Number per kilometer |
4-leg intersection/roundabout density | IntersectionRandabout | Number per kilometer |
Exit U-turn density | ExitUTurn | Number per kilometer |
Entry U-turn density | EntryUTurn | Number per kilometer |
Interchange | Interchange | Number per kilometer |
Roadside parking density | RoadSideParking | Number per kilometer |
Mean speed | MeanSpeed | kph |
Standard deviation of speed | STDSpeed | kph |
Mean speed violation percentage | MeanSpeedVio | % |
Standard deviation of speed violation percentage | STDSpeedVio | % |
Mean headway violation percentage | MeanDistanceVio | % |
Standard deviation of headway violation percentage | STDDistanceVio | % |
Section ID | sectionid | - |
Time quarter | timequa | - |
Variable | VIF | 1/VIF |
---|---|---|
Lsadt | 10.16 | 0.098424 |
Hv | 3.44 | 0.290798 |
Leftshoulder | 7.86 | 0.127251 |
Pavementwidth | 7.97 | 0.125530 |
Rightshoulderwidth | 2.24 | 0.445516 |
Pavequal | ||
2 | 4.65 | 0.215136 |
3 | 5.97 | 0.167565 |
4 | 3.49 | 0.286820 |
Speedcamera | ||
2 | 1.97 | 0.506331 |
3 | 1.71 | 0.585262 |
L. RestArea | 4.61 | 0.217083 |
Exitramp | 124.50 | 0.008032 |
Entryramp | 123.73 | 0.008082 |
UnchanalizedT | 3.71 | 0.269448 |
Chanalizedt | 1.61 | 0.622009 |
Intersection | 4.81 | 0.208041 |
Exituturn | 8.92 | 0.112112 |
Entryuturn | 11.49 | 0.087010 |
Interchange | 3.90 | 0.256301 |
Roadsideparking | 3.12 | 0.320127 |
Meanspeed | 4.88 | 0.204933 |
Meanspeedvio | 5.43 | 0.184038 |
Meandistanvio | 2.03 | 0.491606 |
Stdspeed | 2.13 | 0.468553 |
Stdspeedvio | 2.45 | 0.408484 |
Stddistancvio | 1.44 | 0.695103 |
Mean VIF | 13.78 |
Variable | VIF | SQRT VIF | Tolerance | R-Squared |
---|---|---|---|---|
Exitramp | 44.31 | 6.66 | 0.0226 | 0.9774 |
Entryramp | 44.31 | 6.66 | 0.0226 | 0.9774 |
Mean VIF | 44.31 |
Variable | VIF | SQRT VIF | Tolerance | R-Squared |
---|---|---|---|---|
Exituturn | 4.81 | 2.19 | 0.2080 | 0.7920 |
Entryuturn | 4.81 | 2.19 | 0.2080 | 0.7920 |
Mean VIF | 4.81 |
Number | Old Variables | New Compound Variables | New Variable Abbreviation |
---|---|---|---|
1 | exitramp, entryramp | exitramp × entryramp | exitentryramp |
2 | exituturn, entryuturn | exitutrun × entryuturn | exitentryuturn |
Variable | VIF | 1/VIF |
---|---|---|
Lsadt | 8.59 | 0.116391 |
Hv | 3.40 | 0.294088 |
Leftshoulder | 5.06 | 0.197522 |
Pavementwidth | 6.30 | 0.158700 |
Rightshoulderwidth | 2.07 | 0.483303 |
Pavequal | ||
2 | 4.28 | 0.233601 |
3 | 5.93 | 0.168572 |
4 | 2.92 | 0.342367 |
Speedcamera | ||
2 | 1.99 | 0.501978 |
3 | 1.63 | 0.613948 |
L. RestArea | 3.99 | 0.250553 |
Exitentryramp | 3.65 | 0.273622 |
UnchanalizedT | 3.55 | 0.281992 |
Chanalizedt | 1.63 | 0.614226 |
Intersection | 2.93 | 0.341746 |
Exitentryuturn | 4.81 | 0.207853 |
Interchange | 3.52 | 0.284079 |
Roadsideparking | 2.59 | 0.386471 |
Meanspeed | 4.11 | 0.243014 |
Meanspeedvio | 4.49 | 0.222481 |
Meandistanvio | 1.94 | 0.514634 |
Stdspeed | 2.11 | 0.473212 |
Stdspeedvio | 2.46 | 0.406674 |
Stddistancvio | 1.44 | 0.696405 |
Mean VIF | 3.56 |
Variable | Obs | Mean | Dev. Std | Min | Max |
---|---|---|---|---|---|
rolooverci | 261 | 10.77333 | 11.75208 | 0 | 59.26 |
LSADT | 261 | 3.584538 | 0.3941255 | 2.8456 | 4.21075 |
HV | 261 | 41.44977 | 14.19489 | 11.85 | 67.87 |
LeftShoulder | 261 | 1.418506 | 0.5574679 | 0 | 2.25 |
PavementWidth | 261 | 7.049809 | 1.046004 | 3.65 | 8 |
RightSoulder | 261 | 1.742337 | 0.227737 | 1.15 | 2.15 |
Pavequal | |||||
2 | 261 | 0.1494253 | 0.3571921 | 0 | 1 |
3 | 261 | 0.7049808 | 0.4569276 | 0 | 1 |
4 | 261 | 0.0766284 | 0.2665119 | 0 | 1 |
Speedcamera | |||||
2 | 261 | 0.1494253 | 0.3571921 | 0 | 1 |
3 | 261 | 0.2988506 | 0.4586337 | 0 | 1 |
L. RestArea | 261 | 0.137931 | 0.3454901 | 0 | 1 |
ExitEntryRamp | 261 | 0.1037173 | 0.2139524 | 0.000356 | 0.9384766 |
UnchanalizedT | 261 | 0.249513 | 0.2178584 | 0.030303 | 0.8043478 |
ChanalizedT | 261 | 0.0157404 | 0.0217447 | 0 | 0.0869565 |
Inter~Randabout | 261 | 0.024356 | 0.027621 | 0 | 0.09375 |
ExitEntryUTurn | 261 | 0.0288343 | 0.032202 | 0 | 0.1171875 |
Interchange | 261 | 0.0324525 | 0.0543085 | 0 | 0.1818182 |
RoadsideParking | 261 | 0.0703401 | 0.584383 | 0 | 0.2727273 |
MeanSpeed | 261 | 85.29318 | 6.266493 | 67.71 | 94.48 |
MeanSpeedVio | 261 | 15.83398 | 9.101875 | 1.71 | 40.74 |
MeanDistanceVio | 261 | 6.645249 | 3.000259 | 1.9 | 15.95 |
STDSpeed | 261 | 3.241954 | 1.86318 | 0.92 | 9.86 |
STDSpeedVio | 261 | 4.024061 | 2.389754 | 0.69 | 16.58 |
STDDistanceVio | 261 | 2.425019 | 1.394873 | 0.44 | 6.52 |
Regression Coefficients | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Poisson | NB2 | ZTP | ZTNB | ZIP | ZINB | REPoisson | RENB | FEPoisson | FENB | |||
Specific condition for y* | no | no | no | no | If y = 0 | If y > 0 | If y = 0 | If y > 0 | no | no | no | no |
LSADT | 0.4194 | 0.6944 | 0.2973 | −0.1659 | −0.299 | −3.7305 | −0.16 | 4.7531 | −0.5165 | 0.8945 | 1.0349 | 0.2848 |
HV | −0.0065 | −0.0081 | −0.0155 | −0.0146 | −0.0155 | −0.0681 | −0.0136 | −0.0868 | −0.0057 | 0.0129 | −0.00666 | 0.0151 |
LeftShoulder | −0.0541 | −0.1859 | −0.0678 | −0.1562 | −0.0685 | 3.2304 | −0.1848 | 4.7193 | 0.0137 | −0.1102 | −59.525 | 0.2289 |
PavementWidth | 0.0112 | 0.0279 | 0.1906 | 0.2333 | 0.1925 | −0.4843 | 0.2684 | −0.487 | 0.0227 | −0.1613 | 7.14151 | −0.1432 |
RightSoulder | 0.1205 | −0.3188 | −0.0021 | −0.195 | −0.0025 | −3.8444 | −0.2088 | −5.6225 | −0.8394 | 0.508 | −49.7167 | 1.711 |
Pavequal | ||||||||||||
2 | −0.8112 | −0.9584 | −1.0337 | −1.18 | −1.034 | 19.490 | −1.1849 | 18.142 | −0.7158 | −0.2761 | −0.70788 | −0.3549 |
3 | −0.7470 | −1.1369 | −0.7102 | −0.8177 | −0.711 | 20.577 | −0.861 | 19.333 | −0.9448 | −0.6472 | −0.96244 | −0.8155 |
4 | −0.5144 | −0.7655 | −0.6808 | −0.7332 | −0.6795 | 18.238 | −0.7165 | 16.834 | −0.3919 | −0.1121 | −0.55832 | −0.4768 |
SpeedCamera | ||||||||||||
2 | 0.2960 | 0.1994 | 0.1887 | 0.1028 | 0.1882 | −1.2509 | 0.0677 | −2.6434 | 0.3238 | 0.3747 | 0.329141 | 0.3687 |
3 | 0.0207 | 0.1465 | −0.0269 | −0.1082 | −0.0273 | −0.6809 | −0.1098 | −0.9602 | 0.1089 | −0.0575 | 0.119412 | −0.0479 |
RestArea | −0.0617 | −0.0226 | −0.1626 | −0.1629 | −0.2881 | −0.1362 | −0.2245 | −0.0997 | 0.0971 | −0.03292 | 0.1851 | |
ExitEntryRamp | 0.4956 | 0.3124 | 0.4569 | −0.1484 | 0.459 | −8.8442 | 0.4004 | −4.1508 | 0.0542 | 0.0162 | 0.20918 | 0.1611 |
UnchanalizedT | −0.5355 | −0.562 | −0.7726 | 0.3158 | −0.7715 | 0.5865 | −0.7984 | 2.3934 | −0.7419 | 0.2912 | 0.000 | 0.8415 |
ChanalizedT | 0.9486 | 3.7107 | −0.6115 | −0.8272 | −0.6208 | −37.203 | 0.1653 | −47.665 | −3.8965 | 3.3269 | 0.000 | −4.4702 |
Inter~Randabout | −5.4289 | −6.313 | −1.5593 | 0.2699 | −1.5467 | 5.8912 | 0.7872 | 2.9129 | −2.204 | −9.0754 | 0.000 | −16.004 |
ExitEntryUTurn | 8.5641 | 14.132 | −0.7234 | 0.0911 | −0.7377 | −33.657 | −0.379 | −76.876 | 11.387 | 19.5266 | 9.139741 | 15.505 |
Interchange | 1.1166 | −0.3857 | 0.8952 | 0.3441 | 0.8966 | −25.04 | −0.0809 | −25.789 | 4.9418 | 2.472 | 0.000 | 7.8181 |
RoadsideParking | −3.5804 | −4.4694 | −2.7945 | −0.2171 | −2.7895 | 30.514 | −3.4199 | 39.103 | 0.0821 | −4.4145 | 0.000 | −8.6664 |
MeanSpeed | 0.0178 | 0.0314 | 0.0138 | −3.4991 | 0.0138 | −0.085 | 0.017 | −0.152 | 0.0126 | 0.0247 | 0.007048 | 0.0054 |
MeanSpeedVio | −0.0212 | −0.0323 | −0.0172 | 0.0176 | −0.0172 | 0.0965 | −0.0178 | 0.1528 | −0.0076 | −0.0298 | −0.00309 | −0.0218 |
MeanDistanceVio | −0.0291 | −0.0329 | −0.0063 | −0.0177 | −0.0064 | 0.0689 | −0.0032 | 0.0513 | −0.0346 | −0.0487 | −0.02582 | −0.0395 |
STDSpeed | −0.0191 | −0.0052 | −0.0661 | 0.001 | −0.0671 | −0.322 | −0.0719 | −0.7212 | −0.0324 | −0.0005 | −0.03567 | −0.0179 |
STDSpeedVio | 0.0984 | 0.1085 | 0.0789 | −0.0512 | 0.0794 | −0.0855 | 0.0858 | 0.0778 | 0.0925 | 0.089 | 0.09662 | 0.0999 |
STDDistanceVio | −0.0817 | −0.0711 | −0.014 | 0.0733 | −0.014 | 0.3175 | −0.0272 | 0.4082 | −0.0142 | −0.0348 | −0.01301 | −0.0027 |
Constant | 0.4949 | −0.4508 | 3.275 | −0.0277 | 3.2668 | 5.8412 | 2.5794 | 17.121 | 5.1996 | −4.8917 | - | −3.4417 |
alpha (α) | - | 1.4708 | - | −0.3956 | - | 0.3954 | 0.8260 | - | - | - | ||
AIC | 3421.0 | 1752.2 | 2029.9 | 1381.4 | 2252.4 | 1592.9 | 2733.4 | 1661.9 | 2343.7 | 1305.7 | ||
BIC | 3510.1 | 1844.8 | 2111.2 | 1466.0 | 2430.6 | 1774.7 | 2826.1 | 1758.2 | 2410.5 | 1393.6 |
dy/dx | std. Err | p > |z| | |
---|---|---|---|
LSADT | 0.285 | 0.713 | 0.689 |
HV | 0.015 | 0.010 | 0.138 |
LeftShoulder | 0.223 | 0.466 | 0.623 |
PavementWidth | −0.143 | 0.234 | 0.540 |
RightSoulder | 1.711 | 0.785 | 0.029 |
Pavequal | |||
2 | −0.355 | 0.394 | 0.368 |
3 | −0.815 | 0.431 | −1.058 |
4 | −0.477 | 0.482 | −0.323 |
Speedcamera | |||
2 | 0.369 | 0.239 | 0.123 |
3 | −0.048 | 0.181 | 0.791 |
RestArea | 0.185 | 0.320 | 0.563 |
ExitEntryRamp | 0.161 | 0.596 | 0.787 |
UnchanalizedT | 0.841 | 0.960 | 0.381 |
ChanalizedT | −4.470 | 7.209 | 0.535 |
Inter~Randabout | −16.003 | 8.342 | 0.055 |
ExitEntryUTurn | 15.505 | 5.666 | 0.006 |
Interchange | 7.818 | 3.604 | 0.030 |
RoadsideParking | −8.666 | 3.265 | 0.008 |
MeanSpeed | 0.005 | 0.025 | 0.833 |
MeanSpeedVio | −0.022 | 0.018 | 0.220 |
MeanDistanceVio | −0.039 | 0.032 | 0.214 |
STDSpeed | −0.018 | 0.045 | 0.690 |
STDSpeedVio | 0.099 | 0.038 | 0.008 |
STDDistanceVio | −0.003 | 0.054 | 0.960 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khishdari, A.; Mirzahossein, H.; Jin, X.; Afandizadeh, S. Modeling Rollover Crash Risks: The Influence of Road Infrastructure and Traffic Stream Characteristics. Infrastructures 2025, 10, 31. https://doi.org/10.3390/infrastructures10020031
Khishdari A, Mirzahossein H, Jin X, Afandizadeh S. Modeling Rollover Crash Risks: The Influence of Road Infrastructure and Traffic Stream Characteristics. Infrastructures. 2025; 10(2):31. https://doi.org/10.3390/infrastructures10020031
Chicago/Turabian StyleKhishdari, Abolfazl, Hamid Mirzahossein, Xia Jin, and Shahriar Afandizadeh. 2025. "Modeling Rollover Crash Risks: The Influence of Road Infrastructure and Traffic Stream Characteristics" Infrastructures 10, no. 2: 31. https://doi.org/10.3390/infrastructures10020031
APA StyleKhishdari, A., Mirzahossein, H., Jin, X., & Afandizadeh, S. (2025). Modeling Rollover Crash Risks: The Influence of Road Infrastructure and Traffic Stream Characteristics. Infrastructures, 10(2), 31. https://doi.org/10.3390/infrastructures10020031