Deep Reinforcement Learning Algorithms in Intelligent Infrastructure
Abstract
:1. Introduction
1.1. Article Proposal
1.2. Article Structure
2. Research Background
2.1. Artificial Intelligence in Infrastructure
2.2. Infrastructure, Data and the Building Information Model
2.3. The Internet of Things and Cybersecurity
2.4. Deep Reinforcement Learning
3. Deep Reinforcement Learning Model
- A set of environment and agent states, S;
- A set of actions, A, of the agent;
- A set of observations O, from the agent;
- A set of temporal measurements t;
- Pa(s, st) as the probability of transition from state st to state st+1 under action at;
- Ra(s, st) as the immediate reward rt+1 after transition from state st to state st+1 under action at;
- Rules that describe agent observations.
4. Deep Reinforcement Learning in Intelligent Infrastructure
- q0 predicts that the trend of the manager neuron qm is to go upwards or up;
- q1 predicts that the trend of the manager neuron qm is downwards or down;
- q2 predicts that the trend of the manager neuron qm is to keep its value or be equal;
- qt+1 predicts the value of the manager neuron qm.
5. Deep Reinforcement Learning in Intelligent Infrastructure: Validation and Results
6. Discussion
- (1)
- The IoT enables greater sensing capabilities with distributed electronic devices that consume very low power and transmit information at very low bandwidth using LoRaWAN, Bluetooth, Wi-Fi or 5G Transmission networks. In addition, the IoT has additional application specific open protocols such as KNX, the Modbus protocol, BacNET/IT or Lonworks. This abundance of protocols and transmission networks will be designed to enable open and interoperable solutions from different manufacturers;
- (2)
- Virtual devices’ data between different digital platforms and cloud infrastructure will be standardized with a common naming scheme and relationship mapping that identifies the dependencies between different devices using common normalization structures: ideally, semantic data must capture ontology and taxonomy between assets. In addition, data obtained from different applications and systems will be normalized in common data structures;
- (3)
- Real physical devices or assets will be tagged with Universally Unique Identifiers (UUIDs) using common asset nomenclature structures based on JSON, Cascading Style Sheets (CSS) or Extensible Markup Language (XML), among others. Asset information and variables will be transmitted to the IoT cloud with standardized transmission protocols such as a MQTT server for low bandwidth applications, Hypertext Transfer Protocol Secure (HTTPS) for reliable communications or CoAP for unreliable asynchronous communications;
- (4)
- The balance between expandability, availability and the cost effective servers and data hosting provided by the cloud against edge computing on a premise that enables additional resilience and independence will be considered in terms of reliability, cybersecurity, cost and functionality. The management of devices administered by the cloud will also be normalized with additional applications that automate their configurations and updates;
- (5)
- The improved interconnection of devices and assets enabled by the IoT also increases cybersecurity risks that will be addressed with firewalls, demilitarized zones (DMZs), proxy servers, data encryption, blockchain, virtualization, microsegmentation and software define networks (SDNs);
- (6)
- Although data will be increasingly stored in redundant virtual platforms and will therefore be difficult to permanently remove, human data privacy will also be considered. Data will be encrypted, and access to private data will be monitored and authorized, where not all data will be stored: in addition, data will not identify their human generators and owners. The failure to be sensitive and open about data privacy will generate a human reaction against intelligent infrastructure;
- (7)
- Different infrastructure user interfaces will be unified in order to increase user experience (UX) from an end user perspective via mobile or web apps to management and operator users via common dashboards with unified single panes;
- (8)
- Human adoption of artificial intelligence, with its applications and innovations, will be gradual and inducted to enable a successful coexistence. Although AI and deep machine learning will enable intelligent infrastructure managers to make higher abstracted decisions as a result of enhanced data correlations that will provide tailored and greater insights, the operational and maintenance perspective can lead to job redundancies, as tasks can be done autonomously based on learned predictions. A clear example is the application of blockchain to digital ledgers that will enhance or replace the role of bankers, accountants or project managers;
- (9)
- AI will include ethics at every decision stage, enabling humans to override any AI decision to avoid catastrophic situations where AI could extinguish humans due to faulty sensor devices, nonexhaustive learning or intentional cyber attacks;
- (10)
- Finally, the additional digital infrastructure inserted into real infrastructure will increase its economic cost, where returns on investment (ROIs) are normally difficult to evidence or justify. Successful business cases that consider both CAPEX and OPEX will feature intangible benefits, applications or enhanced user experience that remain difficult to quantify from an economic perspective. A clear analogy is the quantification between the current economic benefit and the ROIs of railways built two centuries ago: the quality of life, mobility, business opportunities and user experience we are currently benefiting from would have been very difficult to justify during their respective feasibility stages.
7. Conclusions
Funding
Conflicts of Interest
Appendix A. Management Sensor Predicted Values
Appendix B. Intelligent Infrastructure Neural Schematic
References
- Serrano, W. Digital Systems in Smart City and Infrastructure: Digital as a Service. Smart Cities 2018, 1, 134–154. [Google Scholar] [CrossRef]
- Hoult, N.; Bennett, P.; Stoianov, I.; Fidler, P.; Maksimovic, C.; Middleton, C.; Graham, N.; Soga, K. Wireless sensor networks: Creating ‘smart infrastructure’. Proc. Inst. Civ. Eng. 2009, 162, 136–143. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H.; Luo, X. Collecting building occupancy data of high resolution based on WiFi and BLE network. Autom. Constr. 2019, 102, 183–194. [Google Scholar] [CrossRef]
- Lee, S.-K.; Kim, K.-R.; Yu, J.-H. BIM and ontology-based approach for building cost estimation. Autom. Constr. 2014, 41, 96–105. [Google Scholar] [CrossRef]
- Arayici, Y.; Coates, P.; Koskela, L.; Kagioglou, M.; Usher, C.; O’Reilly, K. Technology adoption in the BIM implementation for lean architectural practice. Autom. Constr. 2011, 20, 189–195. [Google Scholar] [CrossRef]
- International Telecommunication Union. Overview of the Internet of Things; Y.2060; Telecommunications Standarization Sector of ITU: Geneva, Switzerland, 2012; pp. 1–22. [Google Scholar]
- Jia, M.; Komeily, A.; Wang, Y.; Srinivasan, R. Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. Autom. Constr. 2019, 101, 111–126. [Google Scholar] [CrossRef]
- Wu, C.; Liu, H.; Huang, L.; Lin, J.; Hsu, M. Integrating BIM and IoT technology in environmental planning and protection of urban utility tunnel construction. In Proceedings of the 2018 IEEE International Conference on Advanced Manufacturing (ICAM), Yunlin, Taiwan, 16–18 November 2018. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.; Eastman, C.; Pishdad-Bozorgi, P.; Gao, X. A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Uimonen, M.; Hakkarainen, M. Accessing BIM-Related Information through AR. In Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Munich, Germany, 16–20 October 2018. [Google Scholar] [CrossRef]
- Motlagh, N.H.; Zaidan, M.; Lagerspetz, E.; Varjonen, S.; Toivonen, J.; Rebeiro-Hargrave, J.M.A.; Siekkinen, M.; Hussein, T.; Nurmi, P.; Tarkoma, S. Indoor Air Quality Monitoring Using Infrastructure-Based Motion Detectors. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki-Espoo, Finland, 22–25 July 2019. [Google Scholar]
- Costa, A.; Keane, M.; Torrens, I.; Corry, E. Building operation and energy performance: Monitoring, analysis and optimisation toolkit. Appl. Energy 2013, 101, 310–316. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, J.-L.; Liang, R. Development of an energy monitoring system for large public buildings. Energy Build. 2013, 66, 41–48. [Google Scholar] [CrossRef]
- Onyeji, I.; Bazilian, M.; Bronk, C. Cyber Security and Critical Energy Infrastructure. Electr. J. 2014, 27, 52–60. [Google Scholar] [CrossRef]
- Maglaras, L.; Kim, K.-H.; Janicke, H.; Rallis, M.A.F.S.; Fragkou, P.; Cruz, A.M.T. Cyber security of critical infrastructures. Ict Express 2018, 4, 42–45. [Google Scholar] [CrossRef]
- Sun, J.; Yan, J.; Zhang, K. Blockchain-based sharing services: What blockchain technology can contribute to smart cities. Financ. Innov. 2016, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Biswas, K.; Muthukkumarasamy, V. Securing Smart Cities Using Blockchain Technology. In Proceedings of the 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Sydney, Australia, 12–14 December 2016. [Google Scholar] [CrossRef]
- Serrano, W. The Random Neural Network with a BlockChain Configuration in Digital Documentation. In Proceedings of the International Symposium on Computer and Information Sciences, Poznan, Poland, 20–21 September 2018. [Google Scholar] [CrossRef]
- Serrano, W. The Blockchain Random Neural Network in Cybersecurity and the Internet of Things. In IFIP Advances in Information and Communication Technology Book Series, Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations, Hersonissos, Greece, 24–26 May 2019; Springer Nature: Berlin/Heidelberg, Germany, 2019; Volume 559, pp. 50–63. [Google Scholar] [CrossRef]
- Serrano, W.; Gelenbe, E.; Yin, Y. The Random Neural Network with Deep learning Clusters in Smart Search. Neurocomputing 2019, 1–20. [Google Scholar] [CrossRef]
- Serrano, W.; Gelenbe, E. Deep learning clusters in the cognitive packet network. Neurocomputing 2019, 1–25. [Google Scholar] [CrossRef]
- Serrano, W. Genetic and deep learning clusters based on neural networks for management decision structures. Neural Comput. Appl. 2019, 1–25. [Google Scholar] [CrossRef]
- Tüfekci, P. Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. Electr. Power Energy Syst. 2014, 60, 126–140. [Google Scholar] [CrossRef]
- Wang, Z.; Srinivasan, R. A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models. Renew. Sustain. Energy Rev. 2017, 75, 796–808. [Google Scholar] [CrossRef]
- Tsanasa, A.; Xifara, A. Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 2012, 49, 560–567. [Google Scholar] [CrossRef]
- Arghira, N.; Hawarah, L.; Ploix, S.; Jacomino, M. Prediction of appliances energy use in smart homes. Energy 2012, 48, 128–134. [Google Scholar] [CrossRef]
- Candanedo, L.; Feldheim, V.; Deramaix, D. Data driven prediction models of energy use of appliances in a low-energy house. Energy Build. 2017, 140, 81–97. [Google Scholar] [CrossRef]
- Bi, H.; Gelenbe, E. A Cooperative Emergency Navigation Framework Using Mobile Cloud Computing. In Proceedings of the 2014 International Symposium Computer and Information Sciences, Kuala Lumpur, Malaysia, 3–5 June 201; pp. 41–48.
- Gelenbe, E.; Bi, H. Emergency Navigation without an Infrastructure. Sensors 2014, 14, 15142–15162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, M.; Lee, J.; Hong, S.W.; Jeong, Y. Integrated system for BIM-based collaborative design. Autom. Constr. 2015, 58, 196–206. [Google Scholar] [CrossRef]
- Tookey, A.G.J.; Ghaffarianhoseini, A.; Naismith, N.; Azhar, S.; Efimova, O.; Raahemifar, K. Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges. Renew. Sustain. Energy Rev. 2017, 75, 1046–1053. [Google Scholar]
- Liu, Y.; van Nederveen, S.; Hertogh, M. Understanding effects of BIM on collaborative design and construction: An empirical study in China. Int. J. Proj. Manag. 2017, 35, 686–698. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, Z.; Chang, R.; Li, Y. Building Information Modeling (BIM) for green buildings: A critical review and future directions. Autom. Constr. 2017, 83, 134–148. [Google Scholar] [CrossRef]
- Zou, Y.; Kiviniemi, A.; Jones, S.W. A review of risk management through BIM and BIM-related technologies. Saf. Sci. 2017, 97, 88–98. [Google Scholar] [CrossRef]
- Rashid, K.M.; Louis, J.; Fiawoyife, K.K. Wireless electric appliance control for smart buildings using indoor location tracking and BIM-based virtual environments. Autom. Constr. 2019, 101, 48–58. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, S.; Liao, L.; Zhang, L. A digital construction framework integrating building information modeling and reverse engineering technologies for renovation projects. Autom. Constr. 2019, 102, 45–58. [Google Scholar] [CrossRef]
- Liu, H.; Lu, M.; Al-Hussein, M. Ontology-based semantic approach for construction-oriented quantity take-off from BIM models in the light-frame building industry. Adv. Eng. Inf. 2016, 30, 190–207. [Google Scholar] [CrossRef]
- Kim, K.; Lee, Y.-C. Automated Generation of Daily Evacuation Paths in 4D BIM. Appl. Sci. 2019, 9, 1789. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Xu, N. Digital Twin for Sustainability Evaluation of Railway Station Buildings. Front. Built Envrion. 2018, 4, 77. [Google Scholar] [CrossRef]
- Lee, G.M.; Crespi, N.; Choi, J.K.; Boussard, M. Internet of Things. In Telecommunication Services Evolution; Springer Nature: Berlin/Heidelberg, Germany, 2013; Volume 7768, pp. 257–282. [Google Scholar]
- Andrea, I.; Chrysostomou, C.; Hadjichristofi, G. Internet of Things: Security Vulnerabilities and Challenges. In Proceedings of the 2015 IEEE Symposium on Computers and Communication, Larnaca, Cyprus, 6–9 July 2015; pp. 180–187. [Google Scholar]
- Deogirikar, J.; Vidhate, A. Security attacks in IoT: A survey. In Proceedings of the IEEE International Conference on IoT in Social, Mobile, Analytics and Cloud, Palladam, India, 10–11 February 2017; pp. 32–37. [Google Scholar]
- Granjal, J.; Monteiro, E.; Silva, J.S. Security for the Internet of Things: A Survey of Existing Protocols and Open Research Issues. IEEE Commun. Surv. Tutor. 2015, 17, 1294–1312. [Google Scholar] [CrossRef]
- Jing, Q.; Vasilakos, A.; Wan, J.; Lu, J.; Qiu, D. Security of the Internet of Things: Perspectives and challenges. Wirel. Netw. 2014, 20, 2481–2501. [Google Scholar] [CrossRef]
- Roman, R.; Najera, P.; Lopez, J. Securing the Internet of Things. IEEE Comput. Soc. 2011, 44, 51–58. [Google Scholar] [CrossRef]
- Sicari, S.; Rizzardi, A.; Grieco, L.A.; Coen-Porisini, A. Security, privacy and trust in Internet of Things: The road ahead. Comput. Netw. 2015, 76, 146–164. [Google Scholar] [CrossRef]
- Zhou, L.; Chao, H.C. Multimedia Traffic Security Architecture for the Internet of Things. IEEE Netw. 2011, 25, 35–40. [Google Scholar] [CrossRef]
- Gelenbe, E.; Domanska, J.; Czàchorski, T.; Drosou, A.; Tzovaras, D. Security for Internet of Things: The SerIoT Project. In Proceedings of the 2018 IEEE International Symposium on Networks, Computers and Communications, Rome, Italy, 19–21 June 2018; pp. 1–5. [Google Scholar]
- Domanska, J.; Nowak, M.; Nowak, S.; Czachorski, T. European Cybersecurity Research and the SerIoT Project. In Proceedings of the 2018 International Symposium on Computer and Information Sciences, Poznan, Poland, 20–21 September 2018; pp. 66–173. [Google Scholar]
- Szilagyi, I.; Wira, P. An intelligent system for smart buildings using machine learning and semantic technologies: A hybrid data-knowledge approach. In Proceedings of the IEEE Industrial Cyber-Physical Systems, St. Petersburg, Russia, 15–18 May 2018; pp. 20–25. [Google Scholar] [CrossRef]
- Bajer, M. IoT for Smart Buildings—Long Awaited Revolution or Lean Evolution. In Proceedings of the IEEE 6th International Conference on Future Internet of Things and Cloud, Barcelona, Spain, 6–8 August 2018; pp. 149–154. [Google Scholar] [CrossRef]
- Jia, R.; Jin, B.; Jin, M.; Zhou, Y.; Konstantakopoulos, I.; Zou, H.; Kim, J.; Li, D.; Gu, W.; Arghandeh, R.; et al. Design Automation for Smart Building Systems. Proc. IEEE 2018, 106, 1680–1699. [Google Scholar] [CrossRef] [Green Version]
- Zantalis, F.; Koulouras, G.; Karabetsos, S.; Kandris, D. A Review of Machine Learning and IoT in Smart Transportation. Future Int. 2019, 11, 94. [Google Scholar] [CrossRef]
- Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double Q-Learning. In Proceedings of the Association for the Advancement of Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 2094–2100. [Google Scholar]
- Lillicrap, T.; Hunt, J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with Deep Reinforcement learning. arXiv 2016, arXiv:1509.02971. [Google Scholar]
- Mnih, V.; Puigdomenech, A.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for Deep Reinforcement Learning. Int. Conf. Mach. Learn. 2016, 48, 1928–1937. [Google Scholar]
- Wang, Z.; Schaul, T.; Hessel, M.; van Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement learning. In Proceedings of the 2016 International Conference on International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1995–2003. [Google Scholar]
- Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; Abbeel, P. Benchmarking deep reinforcement learning for continuous control. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1329–1338. [Google Scholar]
- Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.; Meger, D. Deep Reinforcement Learning that Matters. In Proceedings of the Association for the Advancement of Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 1–26. [Google Scholar]
- Mao, H.; Alizadeh, M.; Menache, I.; Kandula, S. Resource Management with Deep Reinforcement Learning. In Proceedings of the ACM Workshop on Hot Topics in Networks, Atlanta, GA, USA, 9–10 November 2016; pp. 50–56. [Google Scholar]
- Foerster, J.; Assael, Y.; Freitas, N.; Whiteson, S. Learning to Communicate with Deep Multi-Agent Reinforcement Learning. In Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Racanière, S.; Weber, T.; Reichert, D.; Buesing, L.; Guez, A.; Rezende, D.; Badia, A.P.; Vinyals, O.; Heess, N.; Li, Y.; et al. Imagination-Augmented Agents for Deep Reinforcement Learning. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Christiano, P.; Leike, J.; Brown, T.; Martic, M.; Legg, S.; Amodei, D. Deep Reinforcement Learning from Human references. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Kulkarni, T.D.; Narasimhan, K.R.; Saeedi, A.; Tenenbaum, J.B. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation. In Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Mnih, V.; Kavukcuoglu, K.; Rusu, D.S.a.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Fidjeland, M.R.A.K.; Ostrovski, G.; Petersen, S.; Beattie, C.; et al. Human-level control through deep reinforcement learning. Res. Lett. 2015, 518, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Haarnoja, T.; Tang, H.; Abbeel, P.; Levine, S. Reinforcement Learning with Deep Energy-Based Policies. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017. [Google Scholar]
- El Sallab, A.; Abdou, M.; Perot, E.; Yogamani, S. Deep Reinforcement Learning framework for Autonomous Driving. In Proceedings of the S&T International Symposium on Electronic Imaging Science and Technology 2017: Autonomous Vehicles and Machines 2017, Burlingame, CA, USA, 29 January–2 February 2017; pp. 70–76. [Google Scholar] [CrossRef]
- Hessel, M.; Modayil, J.; van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D. Rainbow: Combining Improvements in Deep Reinforcement Learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Zhu, Y.; Mottaghi, R.; Kolve, E.; Lim, J.J.; Gupta, A. Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp. 3357–3364. [Google Scholar]
- Caicedo, J.; Lazebnik, S. Active Object Localization with Deep Reinforcement Learning. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates. In Proceedings of the2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017. [Google Scholar] [CrossRef]
- Lample, G.; Chaplot, D.S. Playing FPS Games with Deep Reinforcement Learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement Learning: A Survey. J. Artif. Intell. Res. 1996, 4, 237–285. [Google Scholar] [CrossRef] [Green Version]
- Gelenbe, E. Random Neural Networks with Negative and Positive Signals and Product Form Solution. Neural Comput. 1989, 1, 502–510. [Google Scholar] [CrossRef]
- Gelenbe, E. Learning in the Recurrent Random Neural Network. Neural Comput. 1993, 5, 154–164. [Google Scholar] [CrossRef]
- Gelenbe, E. G-Networks with Triggered Customer Movement. J. Appl. Probab. 1993, 30, 742–748. [Google Scholar] [CrossRef]
- Gelenbe, E. Cognitive Packet Network. Patent U.S. 6804201 B1, 10 December 2004. [Google Scholar]
- Gelenbe, E.; Xu, Z.; Seref, E. Cognitive Packet Networks. In Proceedings of the International Conference on Tools with Artificial Intelligence, Chicago, IL, USA, 9–11 November 1999; pp. 47–54. [Google Scholar]
- Gelenbe, E.; Lent, R.; Xu, Z. Networks with Cognitive Packets. In Proceedings of the IEEE International Symposium on the Modeling, Analysis and Simulation of Computer and Telecommunication Systems, San Francisco, CA, USA, 29 August–1 September 2000; pp. 3–10. [Google Scholar]
- Gelenbe, E.; Lent, R.; Xu, Z. Measurement and performance of a cognitive packet network. Comput. Netw. 2001, 37, 691–701. [Google Scholar] [CrossRef]
- Gelenbe, E.; Lent, R.; Montuori, A.; Xu, Z. Cognitive Packet Networks: QoS and Performance. In Proceedings of the IEEE International Symposium on the Modeling, Analysis and Simulation of Computer and Telecommunication Systems, Fort Worth, TX, USA, 11–16 October 2002; pp. 3–9. [Google Scholar]
Key | Description |
---|---|
Data points | 22 |
Measurements | 19,736 |
Variables | Energy (W), indoor temperature (°C), indoor humidity (H), outdoor temperature (°C), outdoor humidity (H) |
Data inputs | 434,192 |
Size | 2974 kilobytes |
Testing iterations | 19,736 (100%) |
Training iterations | 0.0 (0.0%) |
Type | Description | Time |
---|---|---|
DRL-0M | No memory: same as traditional reinforcement learning | t = l−1 |
DRL-FM | Full memory: learning starts since the beginning of actions | t = 0 |
DRL-1D | Partial memory: learning covers only last day | t = l−1− 144 |
DRL-7D | Partial memory: learning covers only last week | t = l−1−144 × 7 |
DRL-DD | Partial memory: learning covers same time for all previous days | t = Δ144 |
DRL-WW | Partial memory: learning covers same time for all previous weeks | t = Δ144 × 7 |
Β | Energy | Indoor Temperature | Indoor Humidity | Outdoor Temperature | Outdoor Humidity | Total Values |
---|---|---|---|---|---|---|
1 × 100 | R: 6359 P: 13,377 A: 32.22% | R: 8889 P: 10,847 A: 45.04% | R: 11,226 P: 8510 A: 56.88% | R: 11,755 P: 7981 A: 52.50% | R: 11,493 P: 8243 A: 58.23% | R: 48,329 P: 50,351 A: 48.98% |
1 × 101 | R: 6575 P: 13,161 A: 33.31% | R: 12,827 P: 6909 A: 64.99% | R: 13,563 P: 6173 A: 68.72% | R: 13,696 P: 6040 A: 69.40% | R: 14,594 P: 5142 A: 73.95% | R: 61,255 P: 37,425 A: 62.07% |
1 × 102 | R: 6503 P: 13,233 A: 32.95% | R: 14,719 P: 5017 A: 74.58% | R: 14,360 P: 5376 A: 72.76% | R: 16,456 P: 3280 A: 83.38% | R: 16,962 P: 2774 A: 85.94% | R: 69,000 P: 29,680 A: 69.92% |
1 × 103 | R: 6503 P: 13,233 A: 32.95% | R: 14,190 P: 5546 A: 71.90% | R: 14,208 P: 5528 A: 71.99% | R: 17,606 P: 2130 A: 89.21% | R: 17,187 P: 2549 A: 87.08% | R: 69,694 P: 28,986 A: 70.63% |
1 × 104 | R: 6499 P: 13,237 A: 32.93% | R: 14,038 P: 5698 A: 71.13% | R: 14,156 P: 5580 A: 71.73% | R: 17,787 P: 1949 A: 90.12% | R: 17,341 P: 2395 A: 87.86% | R: 69,821 P: 28,859 A: 70.75% |
1 × 105 | R: 6550 P: 13,186 A: 33.19% | R: 13,883 P: 5853 A: 70.34% | R: 14,306 P: 5430 A: 72.49% | R: 17,860 P: 1876 A: 90.49% | R: 17,142 P: 2594 A: 86.86% | R: 69,741 P: 28,939 A: 70.67% |
Β | Energy | Indoor Temperature | Indoor Humidity | Outdoor Temperature | Outdoor Humidity | Total Values |
---|---|---|---|---|---|---|
1 × 100 | R: 6531 P: 13,205 A: 33.09% | R: 8283 P: 11,453 A: 41.97% | R: 10,129 P: 9607 A: 51.32% | R: 10,413 P: 9323 A: 52.76% | R: 12,117 P: 7619 A: 61.40% | R: 47,473 P: 51,207 A: 48.11% |
1 × 101 | R: 6646 P: 13,090 A: 33.67% | R: 13,473 P: 6263 A: 68.27% | R: 14,337 P: 5399 A: 72.64% | R: 14,321 P: 5415 A: 72.56% | R: 15,373 P: 4363 A: 77.89% | R: 64,150 P: 34,530 A: 65.01% |
1 × 102 | R: 6633 P: 13,103 A: 33.61% | R: 15,211 P: 4525 A: 77.07% | R: 15,021 P: 4715 A: 76.11% | R: 17,099 P: 2637 A: 86.64% | R: 17,254 P: 2482 A: 87.42% | R: 71,218 P: 27,462 A: 72.17% |
1 × 103 | R: 6624 P: 13,112 A: 33.56% | R: 14,640 P: 5096 A: 74.18% | R: 14,734 P: 5002 A: 74.66% | R: 18,016 P: 1720 A: 91.28% | R: 17,524 P: 2212 A: 88.79% | R: 71,538 P: 27,142 A: 72.49% |
1 × 104 | R: 6621 P: 13,115 A: 33.55% | R: 14,425 P: 5311 A: 73.09% | R: 14,726 P: 5010 A: 74.61% | R: 18,131 P: 1605 A: 91.87% | R: 17,575 P: 2161 A: 89.05% | R: 71,478 P: 27,202 A: 72.43% |
1 × 105 | R: 6621 P: 13,115 A: 33.55% | R: 14,389 P: 5347 A: 72.91% | R: 14,716 P: 5020 A: 74.56% | R: 18,153 P: 1583 A: 91.98% | R: 17,590 P: 2146 A: 89.13% | R: 71,469 P: 27,211 A: 72.43% |
α | Energy | Indoor Temperature | Indoor Humidity | Outdoor Temperature | Outdoor Humidity | Total Values |
---|---|---|---|---|---|---|
0.1 | R: 6536 P: 13,200 A: 33.12% | R: 14,592 P: 5144 A: 73.94% | R: 14,255 P: 5481 A: 72.23% | R: 17,282 P: 2454 A: 87.57% | R: 17,368 P: 2368 A: 88.00% | R: 70,033 P: 28,647 A: 70.97% |
0.25 | R: 6530 P: 13,206 A: 33.09% | R: 14,483 P: 5253 A: 73.38% | R: 14,290 P: 5446 A: 72.41% | R: 17,717 P: 2019 A: 89.77% | R: 17,226 P: 2510 A: 87.28% | R: 70,246 P: 28,434 A: 71.19% |
0.5 | R: 6503 P: 13,233 A: 32.95% | R: 14,190 P: 5546 A: 71.90% | R: 14,208 P: 5528 A: 71.99% | R: 17,606 P: 2130 A: 89.21% | R: 17,187 P: 2549 A: 87.08% | R: 69,694 P: 28,986 A: 70.63% |
0.75 | R: 6478 P: 13,258 A: 32.82% | R: 13,978 P: 5758 A: 70.82% | R: 14,043 P: 5693 A: 71.15% | R: 17,625 P: 2111 A: 89.30% | R: 17,329 P: 2407 A: 87.80% | R: 69,453 P: 29,227 A: 70.38% |
0.9 | R: 6485 P: 13,251 A: 32.86% | R: 13,997 P: 5739 A: 70.92% | R: 14,150 P: 5586 A: 71.70% | R: 17,720 P: 2016 A: 89.79% | R: 17,276 P: 2460 A: 87.54% | R: 69,628 P: 29,052 A: 70.56% |
α | Energy | Indoor Temperature | Indoor Humidity | Outdoor Temperature | Outdoor Humidity | Total Values |
---|---|---|---|---|---|---|
0.1 | R: 6591 P: 13,145 A: 33.40% | R: 14,894 P: 4842 A: 75.47% | R: 14,855 P: 4881 A: 75.27% | R: 17,399 P: 2337 A: 88.16% | R: 16,818 P: 2918 A: 85.21% | R: 70,557 P: 28,123 A: 71.50% |
0.25 | R: 6636 P: 13,100 A: 33.62% | R: 14,874 P: 4862 A: 75.36% | R: 14,875 P: 4861 A: 75.37% | R: 17,795 P: 1941 A: 90.17% | R: 17,326 P: 2410 A: 87.79% | R: 71,506 P: 27,174 A: 72.46% |
0.5 | R: 6624 P: 13,112 A: 33.56% | R: 14,640 P: 5096 A: 74.18% | R: 14,734 P: 5002 A: 74.66% | R: 18,016 P: 1720 A: 91.28% | R: 17,524 P: 2212 A: 88.79% | R: 71,538 P: 27,142 A: 72.49% |
0.75 | R: 6630 P: 13,106 A: 33.59% | R: 14,420 P: 5316 A: 73.06% | R: 14,718 P: 5018 A: 74.57% | R: 18,103 P: 1633 A: 91.73% | R: 17,574 P: 2162 A: 89.05% | R: 71,445 P: 27,235 A: 72.40% |
0.9 | R: 6632 P: 13,104 A: 3.60% | R: 14,483 P: 5253 A: 73.38% | R: 14,731 P: 5005 A: 74.64% | R: 18,105 P: 1631 A: 91.74% | R: 17,571 P: 2165 A: 89.03% | R: 71,522 P: 27,158 A: 72.48% |
γ | Energy | Indoor Temperature | Indoor Humidity | Outdoor Temperature | Outdoor Humidity | Total Values |
---|---|---|---|---|---|---|
0.1 | 5.14 × 10−1 | 3.34 × 10−4 | 2.36 × 10−3 | 1.23 × 10−3 | 6.85 × 10−3 | 5.25 × 10−1 |
0.25 | 5.15 × 10−1 | 3.84 × 10−4 | 2.60 × 10−3 | 1.45 × 10−3 | 8.0 × 10−3 | 5.28 × 10−1 |
0.5 | 5.29 × 10−1 | 5.30 × 10−4 | 3.27 × 10−3 | 2.09 × 10−3 | 1.14 × 10−2 | 5.46 × 10−1 |
0.75 | 5.61 × 10−1 | 9.33 × 10−4 | 4.97 × 10−3 | 3.80 × 10−3 | 2.00 × 10−2 | 5.90 × 10−1 |
0.9 | 6.09 × 10−1 | 1.90 × 10−3 | 8.69 × 10−3 | 7.88 × 10−3 | 3.89 × 10−2 | 6.67 × 10−1 |
γ | Energy | Indoor Temperature | Indoor Humidity | Outdoor Temperature | Outdoor Humidity | Total Values |
---|---|---|---|---|---|---|
0.1 | 7.42 × 10−1 | 1.26 × 10−2 | 3.49 × 10−2 | 3.43 × 10−2 | 1.03 × 10−1 | 9.27 × 10−1 |
0.25 | 7.43 × 10−1 | 1.26 × 10−2 | 3.49 × 10−2 | 3.43 × 10−2 | 1.03 × 10−1 | 9.27 × 10−1 |
0.5 | 7.43 × 10−1 | 1.26 × 10−2 | 3.49 × 10−2 | 3.43 × 10−2 | 1.03 × 10−1 | 9.27 × 10−1 |
0.75 | 7.43 × 10−1 | 1.26 × 10−2 | 3.49 × 10−2 | 3.44 × 10−2 | 1.03 × 10−1 | 9.28 × 10−1 |
0.9 | 7.44 × 10−1 | 1.26 × 10−2 | 3.50 × 10−2 | 3.44 × 10−2 | 1.03 × 10−1 | 9.29 × 10−1 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, W. Deep Reinforcement Learning Algorithms in Intelligent Infrastructure. Infrastructures 2019, 4, 52. https://doi.org/10.3390/infrastructures4030052
Serrano W. Deep Reinforcement Learning Algorithms in Intelligent Infrastructure. Infrastructures. 2019; 4(3):52. https://doi.org/10.3390/infrastructures4030052
Chicago/Turabian StyleSerrano, Will. 2019. "Deep Reinforcement Learning Algorithms in Intelligent Infrastructure" Infrastructures 4, no. 3: 52. https://doi.org/10.3390/infrastructures4030052
APA StyleSerrano, W. (2019). Deep Reinforcement Learning Algorithms in Intelligent Infrastructure. Infrastructures, 4(3), 52. https://doi.org/10.3390/infrastructures4030052