A Space Fractional Uphill Dispersion in Traffic Flow Model with Solutions by the Trial Equation Method
Abstract
:1. Introduction
2. Proposed Methodology
2.1. The GFFD Fractional Derivative
2.2. Outline of the Trial Equation Method
- Step 1. Using the fractional transformation,
- Step 2. Suppose the trial equation is of the form,
- Step 3. Setting the coefficients to zero yields a system of algebraic equations concerning the unknowns , , and Then, we solve this system to determine the values of and with the help of symbolic computation software such as Maple 2021.
- Step 4. Rewrite Equation (9) in the classical integral form as,
3. Problem Formulation
4. Solutions
5. Simulation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lighthill, M.J.; Whitham, G.B. On kinematic waves-II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1955, 229, 317–345. [Google Scholar]
- Richards, P.I. Shock waves on the highway. Oper. Res. 1956, 4, 42–51. [Google Scholar] [CrossRef]
- Kuhne, R.; Michalopoulos, P. Continuum Flow Models. In Traffic Flow Theory: A State of the Art Report Revised Monograph on Traffic Flow Theory; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1997. [Google Scholar]
- Ketcheson, D.I.; LeVeque, R.J.; del Razo, M.J. Riemann Problems and Jupyter Solutions; SIAM: Philadelphia, PA, USA, 2020. [Google Scholar]
- Jafaripournimchahi, A.; Cai, Y.; Wang, H.; Sun, L.; Tang, Y.; Babadi, A.A. A viscous continuum traffic flow model based on the cooperative car-following behaviour of connected and autonomous vehicles. IET Intell. Transp. Syst. 2022, 2022, 1–19. [Google Scholar] [CrossRef]
- Payne, H.J. Models of freeway traffic and control. In Mathematical Models of Public Systems; Simulation Council: Raleigh, NC, USA, 1971; Volume 1, pp. 51–61. [Google Scholar]
- Whitham, G.B. Linear and Nonlinear Waves; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Zhang, H. A theory of non-equilibrium traffic flow. Transp. Res. Part B Methodol. 1998, 32, 485–498. [Google Scholar] [CrossRef]
- Foy, L.R. Steady state solutions of hyperbolic systems of conservation laws with viscosity terms. Comm. Pure Appl. Math. 1964, 17, 177–188. [Google Scholar] [CrossRef]
- Yu, L.; Li, T.; Shi, Z.K. The effect of diffusion in a new viscous continuum traffic model. Phys. Lett. A 2010, 374, 2346–2355. [Google Scholar] [CrossRef]
- Aw, A.; Rascle, M. Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 2000, 60, 916–938. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.D. Refined Macroscopic Traffic Modelling via Systems of Conservation Laws. Master’s Thesis, Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada, 2012. [Google Scholar]
- Daganzo, C.F. Requiem for second-order fluid approximations of traffic flow. Transp. Res. Part B Methodol. 1995, 29, 277–286. [Google Scholar] [CrossRef]
- Li, J.; Chen, Q.Y.; Wang, H.; Ni, D. Analysis of LWR model with fundamental diagram subject to uncertainties. Transportmetrica 2012, 8, 387–405. [Google Scholar] [CrossRef]
- Rosini, M.D. Non-equilibrium Traffic Models. In Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications; Understanding Complex Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 175–190. [Google Scholar]
- Matveev, L.V. Anomalous nonequilibrium transport simulations using a model of statistically homogeneous fractured-porous medium. Phys. A Stat. Mech. Appl. 2014, 406, 119–130. [Google Scholar] [CrossRef]
- Peter, O.J.; Shaikh, A.S.; Ibrahim, M.O.; Nisar, K.S.; Baleanu, D.; Khan, I.; Abioye, A.I. Analysis and dynamics of fractional order mathematical model of COVID-19 in Nigeria using atangana-baleanu operator. Comput. Mater. Contin. 2021, 66, 1823–1848. [Google Scholar] [CrossRef]
- Agrawal, K.; Kumar, R.; Kumar, S.; Hadid, S.; Momani, S. Bernoulli wavelet method for non-linear fractional Glucose–Insulin regulatory dynamical system. Chaos Solitons Fract. 2022, 164, 112632. [Google Scholar] [CrossRef]
- Acay, B.; Bas, E.; Abdeljawad, T. Fractional economic models based on market equilibrium in the frame of different type kernels. Chaos Solitons Fract. 2020, 130, 109438. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999; ISBN 0-1255-8840-2. [Google Scholar]
- Phang, C.; Ismail, N.F.; Isah, A.; Loh, J.R. A new efficient numerical scheme for solving fractional optimal control problems via a Genocchi operational matrix of integration. J. Vib. Control 2018, 24, 3036–3048. [Google Scholar] [CrossRef]
- Alzabut, J.; Selvam, A.G.M.; Dhineshbabu, R.; Tyagi, S.; Ghaderi, M.; Rezapour, S. A Caputo discrete fractional-order thermostat model with one and two sensors fractional boundary conditions depending on positive parameters by using the Lipschitz-type inequality. J. Inequal. Appl. 2022, 2022, 56. [Google Scholar] [CrossRef]
- Fomin, S.; Chugunov, V.; Hashida, T. The effect of non-Fickian diffusion for modelling the anomalous diffusion of contaminant from fracture into porous rock matrix with bordering alteration zone. Transp. Por. Media 2010, 81, 187–205. [Google Scholar] [CrossRef]
- Wheatcraft, S.W.; Meerschaert, M.M. Fractional conservation of mass. Adv. Water Resour. 2008, 31, 1377–1381. [Google Scholar] [CrossRef]
- Li, T. L1 stability of conservation laws for a traffic flow model. Electron. J. Differ. Equ. 2001, 2001, 1–18. [Google Scholar]
- Ishola, C.; Taiwo, O.; Adebisi, A.; Peter, O.J. Numerical solution of two-dimensional Fredholm integro-differential equations by Chebyshev integral operational matrix method. J. Appl. Math. Comput. Mech. 2022, 21, 29–40. [Google Scholar] [CrossRef]
- Peter, O.J. Transmission dynamics of fractional order Brucellosis model using Caputo–Fabrizio operator. Int. J. Differ. Equ. 2020, 2020, 2791380. [Google Scholar] [CrossRef]
- Wu, G.C. A fractional variational iteration method for solving fractional nonlinear differential equations. Comput. Math. Appl. 2011, 61, 2186–2190. [Google Scholar] [CrossRef] [Green Version]
- Adebisi, A.F.; Ojurongbe, T.A.; Okunlola, K.A.; Peter, O.J. Application of Chebyshev polynomial basis function on the solution of Volterra integro-differential equations using Galerkin method. Math. Comput. Sci. 2021, 2, 41–51. [Google Scholar]
- Sonmezoglu, A. Exact solutions for some fractional differential equations. Adv. Math. Phys. 2015, 2015, 567842. [Google Scholar] [CrossRef] [Green Version]
- Aderyani, S.R.; Saadati, R.; Vahidi, J.; Allahviranloo, T. The exact solutions of the conformable time-fractional modified nonlinear Schrödinger equation by the Trial equation method and modified Trial equation method. Adv. Math. Phys. 2022, 2022, 4318192. [Google Scholar] [CrossRef]
- Martínez, F.; Kaabar, K.A. A Novel theoretical investigation of the Abu-Shady–Kaabar fractional derivative as a modeling tool for science and engineering. Comput. Math. Methods Med. 2022, 2022, 4119082. [Google Scholar] [CrossRef]
- Abu-Shady, M.; Kaabar, K.A. A Generalized definition of the fractional derivative with applications. Math. Probl. Eng. 2021, 2021, 9444803. [Google Scholar] [CrossRef]
- Bulut, H.; Baskonus, H.M.; Pandir, Y. The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation. Abstr. Appl. Anal. 2013, 2013, 636802. [Google Scholar] [CrossRef]
- Holmes, M.H. Texts in applied mathematics 56. In Introduction to the Foundations of Applied Mathematics; Springer Science and Business Media: Berlin, Germany, 2009. [Google Scholar]
- Gartner, N.H.; Messer, C.J.; Rathi, A.K. Revised Monograph on Traffic Flow Theory: A State-of-the-Art Report; National Transportation Library: Washington, DC, USA, 2001.
- Callister, W.D.; Rethwisch, D.G. Materials Science and Engineering, 8th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Colangeli, M.; De Masi, A.; Presutti, E. Microscopic models for uphill diffusion. J. Phys. A Math. Theor. 2017, 50, 435002. [Google Scholar] [CrossRef]
- Krishna, R. Uphill diffusion in multicomponent mixtures. J. Chem. Soc. Rev. 2015, 44, 2812–2836. [Google Scholar] [CrossRef] [Green Version]
- Meerschaert, M.M.; Zhang, Y.; Baeumer, B. Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 2008, 35, L17403. [Google Scholar] [CrossRef]
- Cartea, Á.; del Castillo-Negrete, D. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E 2007, 76, 041105. [Google Scholar] [CrossRef] [Green Version]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Schumer, R.; Benson, D.A.; Meerschaert, M.M.; Wheatcraft, S.W. Eulerian derivation of the fractional advection–dispersion equation. J. Contam. Hydrol. 2001, 48, 69–88. [Google Scholar] [CrossRef]
- Kochubei, A.N. Fractional-order diffusion. Differ. Equ. 1990, 26, 485–492. [Google Scholar]
- Greenshields, B.D. A study of traffic capacity. In Proceedings of the Fourteenth Annual Meeting of the Highway Research Board, Washington, DC, USA, 6–7 December 1934; pp. 448–477. Available online: http://pubsindex.trb.org/view.aspx?id=120649 (accessed on 8 June 2022).
- Kumar, D.; Tchier, F.; Singh, J.; Baleanu, D. An efficient computational technique for fractal vehicular traffic flow. Entropy 2018, 20, 259. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.J.; Machado, J.A.T.; Baleanu, D. On exact traveling-wave solutions for local fractional Korteweg-de Vries equation. Chaos Interdiscip. J. Nonlinear Sci. 2016, 26, 084312. [Google Scholar] [CrossRef]
- Wang, L.F.; Yang, X.J.; Baleanu, D.; Cattani, C.; Zhao, Y. Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws. Abstr. Appl. Anal. 2014, 2014, 635760. [Google Scholar] [CrossRef] [Green Version]
- Jassim, H.K. On approximate methods for fractal vehicular traffic flow. TWMS J. App. Eng. Math. 2017, 7, 58–65. [Google Scholar]
- Singh, N.; Kumar, K.; Goswami, P.; Jafari, H. Analytical method to solve the local fractional vehicular traffic flow model. Math Meth Appl Sci. 2022, 45, 3983–4001. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics informed deep learning (part I): Data-driven solutions of nonlinear partial differential equations. arXiv 2017, arXiv:1711.10561. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soliby, R.M.; Jamaian, S.S. A Space Fractional Uphill Dispersion in Traffic Flow Model with Solutions by the Trial Equation Method. Infrastructures 2023, 8, 45. https://doi.org/10.3390/infrastructures8030045
Soliby RM, Jamaian SS. A Space Fractional Uphill Dispersion in Traffic Flow Model with Solutions by the Trial Equation Method. Infrastructures. 2023; 8(3):45. https://doi.org/10.3390/infrastructures8030045
Chicago/Turabian StyleSoliby, Rfaat Moner, and Siti Suhana Jamaian. 2023. "A Space Fractional Uphill Dispersion in Traffic Flow Model with Solutions by the Trial Equation Method" Infrastructures 8, no. 3: 45. https://doi.org/10.3390/infrastructures8030045
APA StyleSoliby, R. M., & Jamaian, S. S. (2023). A Space Fractional Uphill Dispersion in Traffic Flow Model with Solutions by the Trial Equation Method. Infrastructures, 8(3), 45. https://doi.org/10.3390/infrastructures8030045