Automated Classification of Exchange Information Requirements for Construction Projects Using Word2Vec and SVM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Step (1): Creation of Data Collection
2.2. Steps (2) and (3): Text Preprocessing
2.3. Step (4): Text Vectorization Using Word2Vec
2.4. Steps (5) and (6): Text Classification into the ISO 19650 Standard Categories
2.4.1. Exchange Information Requirements According to the ISO 19650 Standard
2.4.2. Support Vector Machine
2.5. Step (7): Proposal for EIR Paragraph Generation and Appropriate Categorization
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Renda, A.; Schwaag Serger, S.; Tataj, D.; Morlet, A.; Isaksson, D.; Martins, F.; Mir Roca, M.; Hidalgo, C.; Huang, A.; Dixson-Declève, S.; et al. Industry 5.0, a Transformative Vision for Europe—Governing Systemic Transformations towards a Sustainable Industry; European Commission, Directorate-General for Research and Innovation: Brussels, Belgium, 2021. [Google Scholar] [CrossRef]
- Mitera-Kiełbasa, E.; Zima, K. BIM Policy Trends in Europe: Insights from a Multi-Stage Analysis. Appl. Sci. 2024, 14, 4363. [Google Scholar] [CrossRef]
- ISO 19650-1:2018; Organization and Digitization of Information about Buildings and Civil Engineering Works, Including BIM—Information Management Using Building Information Modelling—Part 1: Concepts and Principles. International Organization for Standardization: Geneva, Switzerland, 2018.
- Moreno, C.; Olbina, S.; Issa, R.R. BIM Use by Architecture, Engineering, and Construction (AEC) Industry in Educational Facility Projects. Adv. Civ. Eng. 2019, 2019, 1392684. [Google Scholar] [CrossRef]
- Suganya, R.; Buhari, S.M.; Rajaram, S. Different Applications and Importance of Digital Twin. In Digital Twin Technology; Wiley: Hoboken, NJ, USA, 2022; pp. 189–203. [Google Scholar] [CrossRef]
- Opoku, D.G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M.; Famakinwa, T.; Bamdad, K. Drivers for Digital Twin Adoption in the Construction Industry: A Systematic Literature Review. Buildings 2022, 12, 113. [Google Scholar] [CrossRef]
- Borkowski, A.S. Evolution of BIM: Epistemology, genesis and division into periods. J. Inf. Technol. Constr. 2023, 28, 646–661. [Google Scholar] [CrossRef]
- Soon Ern, P.A.; Ooi, Y.Y.; Al-Ashmori, Y.Y. Comparative Study on the Perspective towards the Benefits and Hindrances of Implementing Building Information Modelling (BIM). J. Sustain. Constr. Eng. Technol. 2020, 11, 194–205. [Google Scholar]
- Biswas, H.K.; Sim, T.Y.; Lau, S.L. Impact of Building Information Modelling and Advanced Technologies in the AEC Industry: A Contemporary Review and Future Directions. J. Build. Eng. 2024, 82, 108165. [Google Scholar] [CrossRef]
- ISO 29481-1:2016; Building Information Models—Information Delivery Manual—Part 1: Methodology and Format. International Standard Organization: Geneva, Switzerland, 2016.
- Gohel, P.; Dabral, R.; Lad, V.H.; Patel, K.A.; Patel, D.A. A comprehensive review on application of artificial intelligence in construction management using a science mapping approach. In Artificial Intelligence Applications for Sustainable Construction; Elsevier: Amsterdam, The Netherlands, 2024; pp. 285–300. [Google Scholar] [CrossRef]
- Rangasamy, V.; Yang, J.B. The convergence of BIM, AI and IoT: Reshaping the future of prefabricated construction. J. Build. Eng. 2024, 84, 108606. [Google Scholar] [CrossRef]
- Ma, S.; Wang, X.; Wang, X.; Liu, H.; Zhang, R. A Framework for Diagnosing Urban Rail Train Turn-Back Faults Based on Rules and Algorithms. Appl. Sci. 2021, 11, 3347. [Google Scholar] [CrossRef]
- Zheng, Z.; Lu, X.Z.; Chen, K.Y.; Zhou, Y.C.; Lin, J.R. Pretrained domain-specific language model for natural language processing tasks in the AEC domain. Comput. Ind. 2022, 142, 103733. [Google Scholar] [CrossRef]
- Dolhopolov, S.; Honcharenko, T.; Terentyev, O.; Savenko, V.; Rosynskyi, A.; Bodnar, N.; Alzidi, E. Multi-Stage Classification of Construction Site Modeling Objects Using Artificial Intelligence Based on BIM Technology. In Proceedings of the 2024 35th Conference of Open Innovations Association (FRUCT), Tampere, Finland, 24–26 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 179–185. [Google Scholar] [CrossRef]
- Bartal, A.; Jagodnik, K.M.; Chan, S.J.; Dekel, S. AI and narrative embeddings detect PTSD following childbirth via birth stories. Sci. Rep. 2024, 14, 8336. [Google Scholar] [CrossRef]
- Huang, A.H.; Wang, H.; Yang, Y. A Large Language Model for Extracting Information from Financial Text. Contemp. Account. Res. 2023, 40, 806–841. [Google Scholar] [CrossRef]
- Piazzi, M.A.; Feng, H.; Kassem, M. An investigation of concepts for the specification of graphical exchange information requirements in building information modelling. J. Inf. Technol. Constr. 2022, 27, 662–684. [Google Scholar] [CrossRef]
- Goonetillake, J.F.; Renb, G.; Lia, H.; Yaob, J. A prototype tool to embed digital exchange information requirements in construction projects. In Proceedings of the 30th EG-ICE: International Conference on Intelligent Computing in Engineering, London, UK, 4–7 July 2023; pp. 1–10. [Google Scholar]
- Tomczak, A.; v Berlo, L.; Krijnen, T.; Borrmann, A.; Bolpagni, M. A review of methods to specify information requirements in digital construction projects. IOP Conf. Ser. Earth Environ. Sci. 2022, 1101, 092024. [Google Scholar] [CrossRef]
- Luhn, H.P. The Automatic Creation of Literature Abstracts. IBM J. Res. Dev. 1958, 2, 159–165. [Google Scholar] [CrossRef]
- Shakil, H.; Farooq, A.; Kalita, J. Abstractive Text Summarization: State of the Art, Challenges, and Improvements. Neurocomputing 2024, 603, 128255. [Google Scholar] [CrossRef]
- Iqbal, T.; Qureshi, S. The survey: Text generation models in deep learning. J. King Saud. Univ. Comput. Inf. Sci. 2022, 34, 2515–2528. [Google Scholar] [CrossRef]
- Han, M.; Zhang, X.; Yuan, X.; Jiang, J.; Yun, W.; Gao, C. A survey on the techniques, applications, and performance of short text semantic similarity. Concurr. Comput. 2021, 33, e5971. [Google Scholar] [CrossRef]
- Wang, Z.; Dou, J.; Zhang, Y. Unsupervised Sentence Textual Similarity with Compositional Phrase Semantics. In Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju, Republic of Korea, 12–17 October 2022; pp. 4976–4995. [Google Scholar]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. In Proceedings of the International Conference on Learning Representations, Scottsdale, AZ, USA, 2–4 May 2013. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Word2vec Code. 2024. Available online: https://code.google.com/archive/p/word2vec/ (accessed on 24 May 2024).
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and their Compositionality. Adv. Neural Inf. Process. Syst. 2013. [Google Scholar] [CrossRef]
- Zima, K.; Mitera-Kiełbasa, E. Employer’s information requirements: A case study implementation of BIM on the example of selected construction projects in Poland. Appl. Sci. 2021, 11, 10587. [Google Scholar] [CrossRef]
- Polish Association of Construction Engineers and Technicians; Polish Association of Construction Employers; Association of Polish Architects. BIM Standard PL. 2020. Available online: https://globalbim.org/info-collection/bim-standard-pl/ (accessed on 20 October 2024).
- Zima, K.; Mitera-Kiełbasa, E. Level of Information Need for BIM Models: Australia, New Zealand and ISO 19650. Civ. Environ. Eng. Rep. 2022, 32, 1–3. [Google Scholar] [CrossRef]
- Poole, D.L.; Mackworth, A.K. Artificial Intelligence; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Schölkopf, B.; Smola, A.J. Learning with Kernels; The MIT Press: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Burges, C.J.C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Scikit-Learn Developers (BSD License). Scikit-Learn. Machine Learning in Python. 2024. Available online: https://scikit-learn.org/ (accessed on 13 September 2024).
- Hobson, L.; Howard, C.; Hapke, H. Przetwarzanie Języka Naturalnego w Akcji. Rozumienie, Analiza i Generowanie Tekstu w Pythonie Na Przykładzie Języka Angielskiego, 1st ed.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2021. [Google Scholar]
No. | Sentence | Predicted Category |
---|---|---|
1 | The contractor shall compile in the BEP, for approval, the file formats that will be delivered to the client at each stage of the project. | |
2 | Each model should be exported to the open Industry Foundation Classes (IFC) format. | |
3 | The final BEP shall include information related to ‘Project Roles & Responsibilities’. | |
4 | All issues should be promptly reported to the client in the common data environment. |
No. | Phrase | Predicted Category | Most Similar Paragraph or New Paragraph | Similarity |
---|---|---|---|---|
1 | Energy analysis | Energy analysis. | 0.95 | |
2 | Simulation of work sequences | Project controls: The model will be capable of being utilized for identifying temporary as well as permanent works and provide a critical path analysis of site activities to prevent “trade clashes” and to provide the most efficient way of arranging working areas for operatives. | 0.92 | |
3 | Architectural model designed in Revit | Developing constituent parts of the information model in connection with specific tasks. | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitera-Kiełbasa, E.; Zima, K. Automated Classification of Exchange Information Requirements for Construction Projects Using Word2Vec and SVM. Infrastructures 2024, 9, 194. https://doi.org/10.3390/infrastructures9110194
Mitera-Kiełbasa E, Zima K. Automated Classification of Exchange Information Requirements for Construction Projects Using Word2Vec and SVM. Infrastructures. 2024; 9(11):194. https://doi.org/10.3390/infrastructures9110194
Chicago/Turabian StyleMitera-Kiełbasa, Ewelina, and Krzysztof Zima. 2024. "Automated Classification of Exchange Information Requirements for Construction Projects Using Word2Vec and SVM" Infrastructures 9, no. 11: 194. https://doi.org/10.3390/infrastructures9110194
APA StyleMitera-Kiełbasa, E., & Zima, K. (2024). Automated Classification of Exchange Information Requirements for Construction Projects Using Word2Vec and SVM. Infrastructures, 9(11), 194. https://doi.org/10.3390/infrastructures9110194