Application of Capillary Barrier Systems for Slope Stabilization Under Extreme Rainfall: A Case Study of National Highway 10, India
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Rainfall Patterns and Topographical Data
3.2. Soil Properties and CBS Settings
3.3. GEOtop Model
3.4. Factor of Safety (FoS) Calculation
4. Results
4.1. Simulation Results of Pore–Water Pressure (PWP)
4.2. Simulation Results of Slope Stability
4.3. Spatial Risk Distribution
5. Discussion
5.1. Effectiveness of CBS in Enhancing Slope Stability
5.2. Recommendations for Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Dz (Layer Thickness, in mm) | Kh (Lateral Hydraulic Conductivity, in mm/s) | Kv (Normal Hydraulic Conductivity, in mm/s) | res (Residual Water Content) | sat (Saturated Water Content) | a (Alpha Parameter of Van Genuchten) | n (N parameter of Van Genuchten) | v (M parameter of Van Genuchten) |
---|---|---|---|---|---|---|---|
200 | 1.2 × 10−3 | 1.2 × 10−3 | 0.017894 | 0.387 | 0.000878 | 3.671354 | 0.727621 |
200 | 1.2 × 10−3 | 1.2 × 10−3 | 0.017894 | 0.387 | 0.000878 | 3.671354 | 0.727621 |
200 | 4 | 4 | 0.010575 | 0.437 | 0.045042 | 3.886801 | 0.742719 |
400 | 1.32 × 10−2 | 1.32 × 10−2 | 0.0779 | 0.3962 | 0.008899 | 1.976090 | 0.493950 |
500 | 1.32 × 10−2 | 1.32 × 10−2 | 0.0779 | 0.3962 | 0.008899 | 1.976090 | 0.493950 |
500 | 1.32 × 10−2 | 1.32 × 10−2 | 0.0779 | 0.3962 | 0.008899 | 1.976090 | 0.493950 |
3000 | 1.32 × 10−2 | 1.32 × 10−2 | 0.0779 | 0.3962 | 0.008899 | 1.976090 | 0.493950 |
5000 | 1.32 × 10−5 | 1.32 × 10−5 | 0.0779 | 0.3962 | 0.008899 | 1.976090 | 0.493950 |
Date | Precipitation (mm/h) | Date | Precipitation (mm/h) | Date | Precipitation (mm/h) | Date | Precipitation (mm/h) |
---|---|---|---|---|---|---|---|
16/10/2013 07:00 | 12.67 | 16/10/2013 19:00 | 12.67 | 17/10/2013 07:00 | 0 | 17/10/2013 19:00 | 0 |
16/10/2013 08:00 | 12.67 | 16/10/2013 20:00 | 12.67 | 17/10/2013 08:00 | 0 | 17/10/2013 20:00 | 0 |
16/10/2013 09:00 | 12.67 | 16/10/2013 21:00 | 12.67 | 17/10/2013 09:00 | 0 | 17/10/2013 21:00 | 0 |
16/10/2013 10:00 | 12.67 | 16/10/2013 22:00 | 12.67 | 17/10/2013 10:00 | 0 | 17/10/2013 22:00 | 0 |
16/10/2013 11:00 | 12.67 | 16/10/2013 23:00 | 12.67 | 17/10/2013 11:00 | 0 | 17/10/2013 23:00 | 0 |
16/10/2013 12:00 | 12.67 | 17/10/2013 00:00 | 12.67 | 17/10/2013 12:00 | 0 | 18/10/2013 00:00 | 0 |
16/10/2013 12:00 | 12.67 | 17/10/2013 01:00 | 12.67 | 17/10/2013 12:00 | 0 | 18/10/2013 01:00 | 0 |
16/10/2013 14:00 | 12.67 | 17/10/2013 02:00 | 12.67 | 17/10/2013 14:00 | 0 | 18/10/2013 02:00 | 0 |
16/10/2013 15:00 | 12.67 | 17/10/2013 03:00 | 12.67 | 17/10/2013 15:00 | 0 | 18/10/2013 03:00 | 0 |
16/10/2013 16:00 | 12.67 | 17/10/2013 04:00 | 12.67 | 17/10/2013 16:00 | 0 | 18/10/2013 04:00 | 0 |
16/10/2013 17:00 | 12.67 | 17/10/2013 05:00 | 12.67 | 17/10/2013 17:00 | 0 | 18/10/2013 05:00 | 0 |
16/10/2013 18:00 | 12.67 | 17/10/2013 06:00 | 12.67 | 17/10/2013 18:00 | 0 | 18/10/2013 06:00 | 0 |
Appendix B
Rainfall Stages | Slope Stability Categories | 0.8 m | 1.25 m | 1.75 m | |||
---|---|---|---|---|---|---|---|
Original Slope | CBS Slope | Original Slope | CBS Slope | Original Slope | CBS Slope | ||
Natural state | Very high risk | 0.00% | 0.00% | 0.00% | 0.00% | 0.53% | 0.67% |
High risk | 0.00% | 0.00% | 0.10% | 0.20% | 4.71% | 5.34% | |
Moderate risk | 0.00% | 0.00% | 1.46% | 2.09% | 11.12% | 11.82% | |
Low risk | 100.00% | 100.00% | 98.44% | 97.71% | 83.64% | 82.17% | |
6 h of rainfall | Very high risk | 0.00% | 0.00% | 0.00% | 0.00% | 1.67% | 1.91% |
High risk | 0.00% | 0.00% | 0.10% | 0.20% | 7.36% | 8.00% | |
Moderate risk | 0.00% | 0.00% | 1.47% | 2.10% | 13.25% | 13.77% | |
Low risk | 100.00% | 100.00% | 98.43% | 97.70% | 77.72% | 76.32% | |
12 h of rainfall | Very high risk | 0.00% | 0.00% | 0.00% | 0.01% | 2.05% | 2.31% |
High risk | 0.00% | 0.00% | 0.11% | 0.21% | 7.88% | 8.46% | |
Moderate risk | 0.00% | 0.00% | 1.50% | 2.14% | 13.51% | 14.04% | |
Low risk | 100.00% | 100.00% | 98.39% | 97.65% | 76.56% | 75.19% | |
18 h of rainfall | Very high risk | 0.51% | 0.00% | 0.00% | 0.01% | 2.35% | 2.58% |
High risk | 10.59% | 0.14% | 0.12% | 0.23% | 8.18% | 8.78% | |
Moderate risk | 22.35% | 6.04% | 1.60% | 2.22% | 13.64% | 14.16% | |
Low risk | 66.55% | 93.82% | 98.28% | 97.54% | 75.83% | 74.47% | |
24 h of rainfall | Very high risk | 10.11% | 0.79% | 0.08% | 0.02% | 2.56% | 2.80% |
High risk | 21.04% | 15.00% | 5.62% | 0.28% | 8.42% | 8.99% | |
Moderate risk | 18.50% | 20.49% | 18.66% | 2.52% | 13.79% | 14.28% | |
Low risk | 50.35% | 63.71% | 75.63% | 97.18% | 75.23% | 73.93% | |
6 h after rainfall ends | Very high risk | 12.00% | 4.66% | 5.56% | 0.07% | 2.76% | 3.00% |
High risk | 19.80% | 18.13% | 22.54% | 0.48% | 9.28% | 9.18% | |
Moderate risk | 17.71% | 19.54% | 20.84% | 5.23% | 16.39% | 14.35% | |
Low risk | 50.49% | 57.67% | 51.06% | 94.22% | 71.56% | 73.47% | |
12 h after rainfall ends | Very high risk | 11.25% | 4.67% | 10.59% | 0.14% | 3.21% | 3.19% |
High risk | 19.30% | 17.73% | 22.41% | 1.30% | 13.26% | 9.34% | |
Moderate risk | 17.69% | 19.53% | 18.60% | 12.01% | 20.53% | 14.42% | |
Low risk | 51.77% | 58.07% | 48.40% | 86.54% | 62.99% | 73.05% | |
18 h after rainfall ends | Very high risk | 10.64% | 4.41% | 12.77% | 0.21% | 4.50% | 3.34% |
High risk | 18.96% | 17.26% | 21.38% | 2.94% | 17.63% | 9.47% | |
Moderate risk | 17.70% | 19.48% | 18.11% | 16.28% | 21.63% | 14.51% | |
Low risk | 52.69% | 58.85% | 47.75% | 80.58% | 56.24% | 72.68% | |
24 h after rainfall ends | Very high risk | 10.16% | 4.18% | 13.66% | 0.29% | 6.22% | 3.48% |
High risk | 18.70% | 16.88% | 20.91% | 4.65% | 20.79% | 9.58% | |
Moderate risk | 17.73% | 19.41% | 17.87% | 18.60% | 21.14% | 14.58% | |
Low risk | 53.42% | 59.54% | 47.56% | 76.46% | 51.85% | 72.37% |
Appendix C
References
- Fischer, E.M.; Knutti, R. Observed Heavy Precipitation Increase Confirms Theory and Early Models. Nat. Clim. Change 2016, 6, 986–991. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of Extreme Precipitation Increases Extensively with Event Rareness under Global Warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef] [PubMed]
- Suradi, M.; Fourie, A.B.; Saynor, M.J. An Experimental and Numerical Study of a Landslide Triggered by an Extreme Rainfall Event in Northern Australia. Landslides 2016, 13, 1125–1138. [Google Scholar] [CrossRef]
- Wen, Y.; Gao, P.; Mu, X.; Li, M.; Su, Y.; Wang, H. Experimental Study on Landslides in Terraced Fields in the Chinese Loessial Region under Extreme Rainfall. Water 2021, 13, 270. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, W.; Ai, D.; Xu, H.; Yuan, J.; Kou, L.; Luo, X. Catastrophic Landslide Triggered by Extreme Rainfall in Chongqing, China: July 13, 2020, Niuerwan Landslide. Landslides 2022, 19, 2397–2407. [Google Scholar] [CrossRef]
- Martha, T.R.; Roy, P.; Govindharaj, K.B.; Kumar, K.V.; Diwakar, P.G.; Dadhwal, V.K. Landslides Triggered by the June 2013 Extreme Rainfall Event in Parts of Uttarakhand State, India. Landslides 2015, 12, 135–146. [Google Scholar] [CrossRef]
- Das, T.; Rao, V.D.; Choudhury, D. Numerical Investigation of the Stability of Landslide−Affected Slopes in Kerala, India, under Extreme Rainfall Event. Nat. Hazards 2022, 114, 751–785. [Google Scholar] [CrossRef]
- Roccati, A.; Faccini, F.; Luino, F.; Ciampalini, A.; Turconi, L. Heavy Rainfall Triggering Shallow Landslides: A Susceptibility Assessment by a GIS−Approach in a Ligurian Apennine Catchment (Italy). Water 2019, 11, 605. [Google Scholar] [CrossRef]
- Lazzari, M.; Piccarreta, M. Landslide Disasters Triggered by Extreme Rainfall Events: The Case of Montescaglioso (Basilicata, Southern Italy). Geosciences 2018, 8, 377. [Google Scholar] [CrossRef]
- Rahardjo, H.; Nistor, M.-M.; Gofar, N.; Satyanaga, A.; Xiaosheng, Q.; Chui Yee, S.I. Spatial Distribution, Variation and Trend of Five−Day Antecedent Rainfall in Singapore. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2020, 14, 177–191. [Google Scholar] [CrossRef]
- Rahardjo, H.; Zhai, Q.; Satyanaga, A.; Li, Y.; Rangarajan, S.; Rahimi, A. Slope Susceptibility Map for Preventive Measures against Rainfall−Induced Slope Failure. Urban Lifeline 2023, 1, 5. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a Changing Climate. Earth−Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Jiang, W.; Tan, Y. Heavy Rainfall−Related Excavation Failures in China during 1994 to 2018: An Overview. Eng. Fail. Anal. 2021, 129, 105695. [Google Scholar] [CrossRef]
- Ross, B. The Diversion Capacity of Capillary Barriers. Water Resour. Res. 1990, 26, 2625–2629. [Google Scholar] [CrossRef]
- Stormont, J.C. The Effectiveness of Two Capillary Barriers on a 10% Slope. Geotech. Geol. Eng. 1996, 14, 243–267. [Google Scholar] [CrossRef]
- Rahardjo, H.; Kim, Y.; Satyanaga, A. Role of Unsaturated Soil Mechanics in Geotechnical Engineering. Int. J. Geo−Eng. 2019, 10, 8. [Google Scholar] [CrossRef]
- Satyanaga, A.; Rahardjo, H.; Hua, C.J. Numerical Simulation of Capillary Barrier System under Rainfall Infiltration in Singapore. Numer. Simul. Capill. Barrier Syst. Rainfall Infiltration Singap. 2019, 5, 43–54. [Google Scholar] [CrossRef]
- Tami, D.; Rahardjo, H.; Leong, E.-C.; Fredlund, D. A Physical Model for Sloping Capillary Barriers. Geotech. Test. J. 2004, 27, 173–183. [Google Scholar] [CrossRef]
- Rahardjo, H.; Santoso, V.A.; Leong, E.C.; Ng, Y.S.; Hua, C.J. Performance of an Instrumented Slope Covered by a Capillary Barrier System. J. Geotech. Geoenvironmental Eng. 2012, 138, 481–490. [Google Scholar] [CrossRef]
- Scarfone, R.; Wheeler, S.J.; Smith, C.C. Numerical Modelling of the Application of Capillary Barrier Systems for Prevention of Rainfall−Induced Slope Instability. Acta Geotech. 2023, 18, 355–378. [Google Scholar] [CrossRef]
- Scarfone, R.; Wheeler, S.J.; Smith, C.C. Numerical Study of the Application of Capillary Barrier Systems for Prevention of Rainfall−Induced Slope Instabilities. In Proceedings of the 4th European Conference on Unsaturated Soils (E−UNSAT 2020), Lisboa, Portugal, 24–26 June 2020; Volume 195. [Google Scholar]
- Gao, C.; Zhu, Y.; Zhang, Y. Stability Analysis of the Inclined Capillary Barrier Covers under Rainfall Condition. Buildings 2022, 12, 1218. [Google Scholar] [CrossRef]
- Rahardjo, H.; Krisnanto, S.; Leong, E.C. Effectiveness of Capillary Barrier and Vegetative Slope Covers in Maintaining Soil Suction. Soils Rocks 2016, 39, 51–69. [Google Scholar] [CrossRef]
- Li, Y.; Satyanaga, A.; Rahardjo, H. Characteristics of Unsaturated Soil Slope Covered with Capillary Barrier System and Deep−Rooted Grass under Different Rainfall Patterns. Int. Soil Water Conserv. Res. 2021, 9, 405–418. [Google Scholar] [CrossRef]
- Kirschbaum, D.B.; Adler, R.; Hong, Y.; Hill, S.; Lerner−Lam, A. A Global Landslide Catalog for Hazard Applications: Method, Results, and Limitations. Nat. Hazards 2010, 52, 561–575. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Stanley, T.; Zhou, Y. Spatial and Temporal Analysis of a Global Landslide Catalog. Geomorphology 2015, 249, 4–15. [Google Scholar] [CrossRef]
- Gupta, A.; Chattaraj, R. The Challenges Faced in Maintaining the Sevoke−Rangpo Section of NH−10. In Proceedings of the 228th Mid−Term Council Meeting of IRC, Siliguri, West Bengal, India, 14−15 June 2024; pp. 91–109. [Google Scholar]
- Dey, S.; Das, S. Landslide Susceptibility Mapping Through Hyperparameter Optimized Bagging and Boosting Ensembles: Case Study of NH−10, West Bengal, India. In Geo−Environmental Hazards Using AI−enabled Geospatial Techniques and Earth Observation Systems; Choudhury, T., Koley, B., Nath, A., Um, J.−S., Patidar, A.K., Eds.; Advances in Geographic Information Science; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 123–140. ISBN 978-3-031-53762-2. [Google Scholar]
- Arnfield, A.J. Koppen Climate Classification. Available online: https://www.britannica.com/science/Koppen−climate−classification (accessed on 16 September 2024).
- Department of Industry, Commerce & Enterprises Government of West Bengal Climate of West Bengal. Available online: https://wbindustries.gov.in/Climate.html (accessed on 16 September 2024).
- Shaffie, S.; Mozaffari, G.; Khosravi, Y. Determination of Extreme Precipitation Threshold and Analysis of Its Effective Patterns (Case Study: West of Iran). Nat. Hazards 2019, 99, 857–878. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Ren, G. Variation of Extreme Precipitation over Large River Basins in China. Adv. Clim. Change Res. 2011, 2, 108–114. [Google Scholar] [CrossRef]
- Das, S.; Pandit, K.; Sarkar, S.; Kanungo, D.P. Stability and Hazard Assessment of the Progressive Zero Landslide in the Kalimpong Region of Darjeeling Himalaya, India. Geotech. Geol. Eng. 2024, 42, 1693–1709. [Google Scholar] [CrossRef]
- State−Wise Ground Water Levels in India. Available online: https://iced.niti.gov.in/climate−and−environment/water/ground−water−levels (accessed on 7 September 2024).
- NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team ASTER Global Digital Elevation Model V003 2019. Available online: https://lpdaac.usgs.gov/products/astgtmv003/ (accessed on 16 September 2024).
- Chawla, A.; Sarkar, K.; Abhishek, R.; Chawla, S.; Pasupuleti, S.; Mishra, S. A Geotechnical Approach to Compare Different Slope Stabilization Techniques for Failed Slope in the Darjeeling Hills, India. Environ. Earth Sci. 2023, 82, 376. [Google Scholar] [CrossRef]
- Dikshit, A.; Satyam, N.; Pradhan, B. Estimation of Rainfall−Induced Landslides Using the TRIGRS Model. Earth Syst. Environ. 2019, 3, 575–584. [Google Scholar] [CrossRef]
- Gardner, W.R. Some steady−state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 1958, 85, 228–232. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A Closed−Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Morgenstern, N.R.; Widger, R.A. The Shear Strength of Unsaturated Soils. Can. Geotech. J. 1978, 15, 313–321. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A. Equations for the Soil−Water Characteristic Curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Leong, E.C.; Rahardjo, H. Permeability Functions for Unsaturated Soils. J. Geotech. Geoenvironmental Eng. 1997, 123, 1118–1126. [Google Scholar] [CrossRef]
- Rigon, R.; Bertoldi, G.; Over, T.M. GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets. J. Hydrometeorol. 2006, 7, 371–388. [Google Scholar] [CrossRef]
- Richards, L.A. Capillary Conduction of Liquids Through Porous Mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Taylor, D.W. Fundamentals of Soil Mechanics. Soil Sci. 1948, 66, 161. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide Triggering by Rain Infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef]
- Graham, J. Methods of Stability Analysis. In Slope Instability; Wiley: New York, NY, USA, 1984; pp. 171–215. [Google Scholar]
- Rahardjo, H.; Li, Y.; Satyanaga, A. The Importance of Unsaturated Soil Properties in the Development of Slope Susceptibility Map for Old Alluvium in Singapore. E3S Web Conf. 2023, 382, 06009. [Google Scholar] [CrossRef]
- Qian, T.; Huo, L.; Zhao, D. Laboratory Investigation into Factors Affecting Performance of Capillary Barrier System in Unsaturated Soil. Water. Air. Soil Pollut. 2010, 206, 295–306. [Google Scholar] [CrossRef]
- Vishnu, G.; Bharat, T.V. Influence of Soil Hydraulic Characteristics in Modelling Capillary Barrier Systems. In Proceedings of the Geo−Congress 2022, Charlotte, NC, USA, 20–23 March 2022; American Society of Civil Engineers: Charlotte, NC, USA, 2022; pp. 265–273. [Google Scholar]
- Rahardjo, H.; Santoso, V.A.; Leong, E.C.; Ng, Y.S.; Tam, C.P.H.; Satyanaga, A. Use of Recycled Crushed Concrete and Secudrain in Capillary Barriers for Slope Stabilization. Can. Geotech. J. 2013, 50, 662–673. [Google Scholar] [CrossRef]
Parameters | Residual Soil | Fine−Grained Soil | Coarse−Grained Soil |
---|---|---|---|
Saturated hydraulic conductivity (Ks) | 1.32 10−5 m/s | 1.2 10−6 m/s | 4.0 10−3 m/s |
Saturated water content (θs) | 0.3962 | 0.387 | 0.437 |
Residual water content (θr) | 0.0779 | 0.0179 | 0.0106 |
αG | 0.271 kPa−1 | − | − |
aFX | − | 10 kPa | 0.2 kPa |
nFX | − | 5 | 6 |
mFX | − | 1.2 | 1.2 |
αVG | 0.8899 kPa−1 | 8.78 10−2 kPa−1 | 4.5042 kPa−1 |
nVG | 1.9761 | 3.6714 | 3.8868 |
mVG | 0.4940 | 0.7276 | 0.7427 |
Effective cohesion (c′) | 0.65 kPa | 0 | 0 |
Unit weight (γ) | 17.24 kN/m3 | 19.0 kN/m3 | 20.0 kN/m3 |
Saturated unit weight (γsat) | 20 kN/m3 | 25.393 kN/m3 | 27.762 kN/m3 |
Effective friction angle (φ′) | 30° | 34° | 35° |
Slope Stability Categories | FoS Range |
---|---|
Very high risk | FoS ≤ 1 |
High risk | 1 < FOS ≤ 1.25 |
Moderate risk | 1.25 < FOS ≤ 1.5 |
Low risk | FOS > 1.5 |
Landslide Points | Longitude | Latitude | Minimum FoS Value for Each Depth | |||||
---|---|---|---|---|---|---|---|---|
0.8 m | 1.25 m | 1.75 m | ||||||
OS | CBS | OS | CBS | OS | CBS | |||
North point | 88.4308 | 27.0713 | 0.86 | 1.00 | 0.88 | 1.23 | 0.87 | 0.87 |
Central point | 88.4301 | 27.0257 | 0.78 | 0.97 | 0.92 | 1.23 | 0.78 | 0.78 |
South point | 88.4481 | 26.9722 | 0.83 | 0.93 | 0.82 | 1.16 | 0.90 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Li, Y. Application of Capillary Barrier Systems for Slope Stabilization Under Extreme Rainfall: A Case Study of National Highway 10, India. Infrastructures 2024, 9, 201. https://doi.org/10.3390/infrastructures9110201
Cheng Y, Li Y. Application of Capillary Barrier Systems for Slope Stabilization Under Extreme Rainfall: A Case Study of National Highway 10, India. Infrastructures. 2024; 9(11):201. https://doi.org/10.3390/infrastructures9110201
Chicago/Turabian StyleCheng, Yusen, and Yangyang Li. 2024. "Application of Capillary Barrier Systems for Slope Stabilization Under Extreme Rainfall: A Case Study of National Highway 10, India" Infrastructures 9, no. 11: 201. https://doi.org/10.3390/infrastructures9110201
APA StyleCheng, Y., & Li, Y. (2024). Application of Capillary Barrier Systems for Slope Stabilization Under Extreme Rainfall: A Case Study of National Highway 10, India. Infrastructures, 9(11), 201. https://doi.org/10.3390/infrastructures9110201