Effect of Oxygen Annealing Atmosphere on Structural, Electrical and Energy Storage Properties of Bi0.5Na0.5TiO3 Polycrystalline Thin Film
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural Analysis
3.2. Structural Investigations
3.3. Dielectric, Leakage Current, and Ferroelectric Properties
3.4. Energy Storage Investigation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scott, J.F.; de Araujo, C.A.P. Ferroelectric Memories. Science 1989, 246, 1400–1405. [Google Scholar] [CrossRef]
- Jaffe, H. Piezoelectric Ceramics. J. Am. Ceram. Soc. 1958, 41, 494–498. [Google Scholar] [CrossRef]
- Katzke, H.; Dietze, M.; Lahmar, A.; Es-Souni, M.; Neumann, N.; Lee, S.-G. Dielectric, ultraviolet/visible, and Raman spectroscopic investigations of the phase transition sequence in 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 crystals. Phys. Rev. B 2011, 83, 174115. [Google Scholar] [CrossRef]
- Suchanicz, J.; Ptak, W.S. On the phase transition in Na0.5Bi0.5TiO3. Ferroelectr. Lett. Sect. 1990, 12, 71–78. [Google Scholar] [CrossRef]
- Hiruma, Y.; Nagata, H.; Takenaka, T. Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J. Appl. Phys. 2009, 105, 084112. [Google Scholar] [CrossRef]
- Bai, Y.; Zheng, G.-P.; Shi, S.-Q. Abnormal electrocaloric effect of Na0.5Bi0.5TiO3–BaTiO3 lead-free ferroelectric ceramics above room temperature. Mater. Res. Bull. 2011, 46, 1866–1869. [Google Scholar] [CrossRef]
- Zannen, M.; Belhadi, J.; Benyoussef, M.; Khemakhem, H.; Zaidat, K.; El Marssi, M.; Lahmar, A. Electrostatic energy storage in antiferroelectric like perovskite. Superlattices Microstruct. 2019, 127, 43–48. [Google Scholar] [CrossRef]
- Quignon, S.; Soyer, C.; Remiens, D. Synthesis and Electrical Properties of Sputtered (Na0.5Bi0.5)TiO3 Thin Films on Silicon Substrate. J. Am. Ceram. Soc. 2012, 95, 3180–3184. [Google Scholar] [CrossRef]
- Yu, T.; Kwok, K.W.; Chan, H.L.W. Preparation and properties of sol–gel-derived Bi0.5Na0.5TiO3 lead-free ferroelectric thin film. Thin Solid Film. 2007, 515, 3563–3566. [Google Scholar] [CrossRef]
- Peng, C.; Li, J.-F.; Gong, W. Preparation and properties of (Bi1/2Na1/2)TiO3–Ba(Ti,Zr)O3 lead-free piezoelectric ceramics. Mater. Lett. 2005, 59, 1576–1580. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, J. Piezoelectric and dielectric properties of (Bi0.5Na0.5)0.94Ba0.06TiO3–Ba(Zr0.04Ti0.96)O3 lead-free piezoelectric ceramics. Ceram. Int. 2009, 35, 111–115. [Google Scholar] [CrossRef]
- Lin, D.; Kwok, K.W. Dielectric and piezoelectric properties of (Bi1−x−yNdxNa1−y)0.5BayTiO3 lead-free ceramics. Curr. Appl. Phys. 2010, 10, 422–427. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Panda, P.K. Review: Environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 2009, 44, 5049–5062. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, D.; Zhu, J. Effect of (Bi, La)(Fe, Zn)O3 thickness on the microstructure and multiferroic properties of BiFeO3 thin films. J. Appl. Phys. 2012, 112, 094109. [Google Scholar] [CrossRef]
- Bousquet, M.; Duclère, J.-R.; Orhan, E.; Boulle, A.; Bachelet, C.; Champeaux, C. Optical properties of an epitaxial Na0.5Bi0.5TiO3 thin film grown by laser ablation: Experimental approach and density functional theory calculations. J. Appl. Phys. 2010, 107, 104107. [Google Scholar] [CrossRef]
- Gallegos-Melgar, A.; Espinosa-Arbelaez, D.G.; Flores-Ruiz, F.J.; Lahmar, A.; Dellis, J.-L.; Lemée, N.; Espinoza-Beltran, F.J.; Muñoz-Saldaña, J. Ferroelectric properties of manganese doped (Bi1/2Na1/2)TiO3 and (Bi1/2Na1/2)TiO3–BaTiO3 epitaxial thin films. Appl. Surf. Sci. 2015, 359, 923–930. [Google Scholar] [CrossRef]
- Dargham, S.A.; Ponchel, F.; Abboud, N.; Soueidan, M.; Ferri, A.; Desfeux, R.; Assaad, J.; Remiens, D.; Zaouk, D. Synthesis and electrical properties of lead-free piezoelectric Bi0.5Na0.5TiO3 thin films prepared by Sol-Gel method. J. Eur. Ceram. Soc. 2018, 38, 1450–1455. [Google Scholar] [CrossRef]
- Zannen, M.; Dietze, M.; Khemakhem, H.; Es-Souni, M. Ferroelectric (Na1/2Bi1/2)TiO3 thin films showing photoluminescence properties. Appl. Phys. A 2014, 117, 1485–1490. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, C.; Zhao, S. Good energy storage properties of Na0.5Bi0.5TiO3 thin films. J. Alloys Compd. 2021, 869, 159366. [Google Scholar] [CrossRef]
- Maiwa, H.; Kogure, T.; Sakamoto, W.; Hayashi, T. Preparation and Properties of Bi0.5Na0.5TiO3 Thin Films by Chemical Solution Deposition. Ferroelectrics 2010, 405, 204–210. [Google Scholar] [CrossRef]
- Zhao, Y.; Hao, X.; Li, M. Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3 thick films. J. Alloys Compd. 2014, 601, 112–115. [Google Scholar] [CrossRef]
- Yang, C.H.; Yao, Q.; Qian, J.; Han, Y.J.; Chen, J. Growth, microstructure, energy-storage and dielectric performances of chemical-solution NBT–based thin films: Effect of sodium nonstoichimometry. Ceram. Int. 2018, 44, 9152–9158. [Google Scholar] [CrossRef]
- Kreisel, J.; Glazer, A.M.; Jones, G.; Thomas, P.A.; Abello, L.; Lucazeau, G. An X-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: The (Na1−xKx)0.5Bi0.5TiO3(0 ≤ x ≤ 1) solid solution. J. Phys. Condens. Matter. 2000, 12, 3267–3280. [Google Scholar] [CrossRef]
- Benyoussef, M.; Zannen, M.; Belhadi, J.; Manoun, B.; Dellis, J.-L.; Lahmar, A.; El Marssi, M. Complex impedance and Raman spectroscopy of Na0.5(Bi1−xDyx)0.5TiO3 ceramics. Ceram. Int. 2020, 46, 10979–10991. [Google Scholar] [CrossRef]
- Luo, L.; Ge, W.; Li, J.; Viehland, D.; Farley, C.; Bodnar, R.; Zhang, Q.; Luo, H. Raman spectroscopic study of Na1/2Bi1/2TiO3-x%BaTiO3 single crystals as a function of temperature and composition. J. Appl. Phys. 2011, 109, 113507. [Google Scholar] [CrossRef]
- Suchanicz, J.; Jankowska-Sumara, I.; Kruzina, T.V. Raman and infrared spectroscopy of Na0.5Bi0.5TiO3-BaTiO3 ceramics. J. Electroceram. 2011, 27, 45–50. [Google Scholar] [CrossRef]
- Tyunina, M.; Pacherova, O.; Kocourek, T.; Dejneka, A. Anisotropic chemical expansion due to oxygen vacancies in perovskite films. Sci. Rep. 2021, 11, 15247. [Google Scholar] [CrossRef]
- Benyoussef, M.; Zannen, M.; Belhadi, J.; Manoun, B.; Dellis, J.-L.; El Marssi, M.; Lahmar, A. Dielectric, ferroelectric, and energy storage properties in dysprosium doped sodium bismuth titanate ceramics. Ceram. Int. 2018, 44, 19451–19460. [Google Scholar] [CrossRef]
- Benyoussef, M.; Zannen, M.; Belhadi, J.; Manoun, B.; Kutnjak, Z.; Vengust, D.; Spreitzer, M.; El Marssi, M.; Lahmar, A. Structural, dielectric, and ferroelectric properties of Na0.5(Bi1−xNdx)0.5TiO3 ceramics for energy storage and electrocaloric applications. Ceram. Int. 2021, 47, 26539–26551. [Google Scholar] [CrossRef]
- Gouget, G.; Duttine, M.; Chung, U.-C.; Fourcade, S.; Mauvy, F.; Braida, M.-D.; Le Mercier, T.; Demourgues, A. High Ionic Conductivity in Oxygen-Deficient Ti-Substituted Sodium Niobates and the Key Role of Structural Features. Chem. Mater. 2019, 31, 2828–2841. [Google Scholar] [CrossRef]
- Tuschel, D. Stress, Strain, and Raman Spectroscopy. Spectroscopy 2019, 34, 10–21. [Google Scholar]
- Atkinson, A.; Jain, S.C. Spatially resolved stress analysis using Raman spectroscopy. J. Raman. Spectrosc. 1999, 30, 885–891. [Google Scholar] [CrossRef]
- De Wolf, I.; Maes, H.E.; Jones, S.K. Stress measurements in silicon devices through Raman spectroscopy: Bridging the gap between theory and experiment. J. Appl. Phys. 1996, 79, 7148–7156. [Google Scholar] [CrossRef]
- Yang, C.H.; Wang, Z.; Li, Q.X.; Wang, J.H.; Yang, Y.G.; Gu, S.L.; Yang, D.M.; Han, J.R. Properties of Na0.5Bi0.5TiO3 ferroelectric films prepared by chemical solution decomposition. J. Cryst. Growth 2005, 284, 136–141. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaoui, I.H.; Lemée, N.; Le Marrec, F.; Mebarki, M.; Cantaluppi, A.; Favry, D.; Lahmar, A. Effect of Oxygen Annealing Atmosphere on Structural, Electrical and Energy Storage Properties of Bi0.5Na0.5TiO3 Polycrystalline Thin Film. Quantum Beam Sci. 2023, 7, 29. https://doi.org/10.3390/qubs7030029
Alaoui IH, Lemée N, Le Marrec F, Mebarki M, Cantaluppi A, Favry D, Lahmar A. Effect of Oxygen Annealing Atmosphere on Structural, Electrical and Energy Storage Properties of Bi0.5Na0.5TiO3 Polycrystalline Thin Film. Quantum Beam Science. 2023; 7(3):29. https://doi.org/10.3390/qubs7030029
Chicago/Turabian StyleAlaoui, Ilham Hamdi, Nathalie Lemée, Françoise Le Marrec, Moussa Mebarki, Anna Cantaluppi, Delphine Favry, and Abdelilah Lahmar. 2023. "Effect of Oxygen Annealing Atmosphere on Structural, Electrical and Energy Storage Properties of Bi0.5Na0.5TiO3 Polycrystalline Thin Film" Quantum Beam Science 7, no. 3: 29. https://doi.org/10.3390/qubs7030029
APA StyleAlaoui, I. H., Lemée, N., Le Marrec, F., Mebarki, M., Cantaluppi, A., Favry, D., & Lahmar, A. (2023). Effect of Oxygen Annealing Atmosphere on Structural, Electrical and Energy Storage Properties of Bi0.5Na0.5TiO3 Polycrystalline Thin Film. Quantum Beam Science, 7(3), 29. https://doi.org/10.3390/qubs7030029