Quantum Correlation Enhanced Optical Imaging
Abstract
:1. Introduction
2. Building Blocks of Quantum Optical Imaging
2.1. Quantum Optical Imaging Protocol
- Generation of Non-Classical Quantum Light States: This initial step involves creating quantum light sources, for example, generating degenerate/nondegenerate photon pairs. A laser interacts with a nonlinear crystal to produce photon pairs with similar (degenerate) or different (nondegenerate) wavelengths. These entangled signals and idler photons are fundamental to quantum imaging. Techniques such as spatial light modulation may shape these photons’ wavefronts, aligning them with specific imaging needs.
- Object Illumination and Interaction: The object is illuminated with the “signal” photon, while the “idler” photon is used differently depending on the experiment. Some quantum imaging methods aim for minimal interaction with the object, aligning with specific imaging objectives.
- Detection and Image Reconstruction: Signal and idler photons are detected using sensitive single-photon detectors after illumination and interaction. The essence of quantum imaging lies in measuring the correlation between these detections, which reveals information about the object’s interaction with the signal photon.
2.2. Quantum Photonic Sources
2.2.1. Quantum Entangled Photon Sources
2.2.2. Squeezed States
2.2.3. Weak Coherent Sources of Light
2.3. Qunatum Key Distribution (QKD)
- Bit Selection by Alice: Alice randomly generates a bit, which can be either 0 or 1, using a random number generator.
- Basis Choice by Alice: she then randomly picks one of two quantum bases—the Standard basis or the Hadamard basis—for encoding her bit.
- Bit Encoding and Transmission: Alice encodes her bit in the selected basis into a qubit and sends it to Bob via a quantum channel.
- Basis Selection by Bob: Bob, just as Alice, randomly chooses either the Standard or Hadamard basis using a random generator.
- Qubit Measurement by Bob: upon receiving the qubit, Bob measures it using the basis he selected.
- Repetition of the Process: Alice and Bob repeat the above steps multiple times to generate a series of bits and corresponding bases.
- Basis Disclosure over Classical Channel: after enough bits were exchanged, Alice and Bob share the bases they used for each bit over a classical communication channel.
- Bit Filtering Based on Basis Match: They discard any bits whose chosen bases do not match, retaining only the bits encoded and decoded on the same basis. This ensures that the remaining bits are more likely identical between Alice and Bob.
- Eavesdropping Detection and Post-Processing: Alice and Bob compare a sample of their bits over a public channel to detect potential eavesdropping. If the match is within an acceptable limit, they proceed with post-processing steps, such as error correction and privacy amplification, to secure communication. In the BB84 QKD (QKD) protocol, a Quantum Bit Error Rate (QBER) exceeding 11% typically indicates a high likelihood of eavesdropping, as this threshold is the upper limit for maintaining secure communication.
2.4. Quantum Photonic Detectors
2.4.1. Characteristics of Quantum Photonic Detectors
- Spectral Range: detectors must have high efficiency within the specific wavelength range of interest for quantum imaging.
- Dead Time: dead time represents the recovery period the detector requires after absorbing a photon before registering counts again.
- Dark Count Rate (DCR): DCR refers to the false count rate originating from various sources, including material properties of the detector, biasing conditions, or external noise. Low values for both dead time and DCR are crucial for accurate photon counting.
- Timing Jitter: Timing jitter quantifies the variation in the time interval between the absorption of photons and the generation of an electrical pulse from the detector. Minimal timing jitter is desirable for precise timing measurements.
- Ability to Resolve Photon Number: Conventional detectors often trigger the same response for single-photon and multi-photon pulses. Advanced detection methods, such as arrays of detectors or specialized detectors, are required to distinguish between these cases.
- Detection Efficiency: Detection efficiency is the probability of recording a count when a photon arrives at the detector. High detection efficiency is a fundamental requirement for sensitive photon detection.
2.4.2. Important Detectors Used for Quantum Photonic Imaging Applications
- Intensified CCD (ICCD): Intensified CCD cameras (ICCDs) feature an image intensifier that boosts external photons that hit the intensifier through impact ionization. This results in effective signal enhancement and the ability to regulate exposure time [104]. ICCDs possess the potential for single photon detection, with current detection efficiencies hovering around 50 percent and maintaining minimal dark counts. Notably, the intensifier can be briefly gated, lasting durations in the picosecond range, making these cameras particularly suitable for photon correlation studies [105]. It is important to note that ICCD cameras only amplify external photons that reach the intensifier. This ensures low-noise signal amplification and nanosecond-level control over exposure to eliminate undesired light interference.
- Electron-Multiplying Charge-Coupled Devices (EMCCDs): Electron-Multiplying Charge-Coupled Devices (EMCCDs) amplify signals after a CCD detects light. They utilize a register specifically for electron multiplication, which boosts the detected electronic signal [106,107]. Regarding detection efficiency, EMCCDs outperform ICCDs and have reduced readout noise [108]. However, their signal-to-noise ratio (SNR) often falls short compared to ICCDs because of the amplified dark counts. EMCCDs necessitate cooling and are expensive.
- Single-Photon Avalanche Diodes (SPADs): SPADs are semiconductors that generate electron-hole pairs when photons strike a semiconductor material [109]. These devices work under reverse bias and use avalanche multiplication to boost their photoelectric response. They can achieve efficiencies close to 80 percent in the visible spectrum, but this drops to about 20 percent in the infrared spectrum. It is essential to understand that these detectors cannot precisely measure the number of photons. One of the intriguing features is their ability to form two-dimensional arrays of SPADs, such as 16 × 16 macro pixels, 64 × 64 pixels, and 256 × 256 pixels [110]. Each pixel acts as an individual SPAD in these configurations, which is especially advantageous for coincidence imaging. However, because of the adjacent electronic components, the fill factor (9.6, 26.5, and 61, respectively, for pixels above) is not optimal, leading to a reduction in the overall detection efficiency. A promising solution to this problem could be using microlens arrays [50,103,110,111,112].
2.4.3. Computational Ghost Imaging
- a.
- Modulation of Light: The light source is modulated using a Spatial Light Modulator (SLM). This modulation typically involves presetting intensity patterns of speckles.
- b.
- Reflection from the Target: The modulated light interacts with the target object. The properties of the object affect how this light is reflected.
- c.
- Detection: The reflected light is captured by a single-pixel detector. Unlike traditional detectors, which capture a complete image, this detector measures the total light intensity over time.
- (i)
- Intensity Pattern Modulation: a Digital Micromirror Device (DMD) modulates numerous intensity patterns, denoted as where i ranges from 1 to N, the total number of patterns.
- (ii)
- Single-Photon Detection: Single-photon detectors measure the counts (denoted as ) corresponding to each pattern. These counts reflect the interaction of each pattern with the object.
- (iii)
- Image Reconstruction: The final image O(x,y) of the object is computed by summing the weighted intensities of each pattern. The weights are derived from the count and adjusted by the mean value of counts and intensities.
3. Quantum Imaging Schemes
3.1. Quantum Ghost and Swapped Entanglement Based Imaging
3.2. Sub-Shot Noise Based Quantum Imaging (SSNQI)
3.3. Sub-Rayleigh Quantum Imaging
3.4. Quantum Imaging Using Undetected Photons
3.5. Key Breakthroughs and Advancements in Quantum Imaging Applications
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Wootters·, W.K.; Zurek, W.H. A Singe Quantum Cannot Be Cloned. Nature 1982, 299, 39–42. [Google Scholar] [CrossRef]
- Brandsema, M.J.; Narayanan, R.M.; Lanzagorta, M.O. Correlation Properties of Single Photon Binary Waveforms Used in Quantum Radar/Lidar. In Radar Sensor Technology XXIV; SPIE: Bellingham, WA, USA, 2020; Volume 11408, pp. 113–126. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Principles of Quantum Mechanics, 3rd ed.; Oxford at the Clarendon Press/Oxford University Press: Oxford, UK, 1947. [Google Scholar]
- Lanzagorta, M.; Uhlmann, J. Opportunities and Challenges of Quantum Radar. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 38–56. [Google Scholar] [CrossRef]
- Meda, A.; Losero, E.; Samantaray, N.; Scafirimuto, F.; Pradyumna, S.; Avella, A.; Ruo-Berchera, I.; Genovese, M. Photon-Number Correlation for Quantum Enhanced Imaging and Sensing. J. Opt. 2017, 19, 094002. [Google Scholar] [CrossRef]
- Brassard, G.; Méthot, A.A. Can Quantum-Mechanical Description of Physical Reality Be Considered Correct? Found. Phys. 2010, 40, 463–468. [Google Scholar] [CrossRef]
- Pittman, T.B.; Shih, Y.H.; Strekalov, D.V.; Sergienko, A.V. Optical Imaging by Means of Two-Photon Quantum Entanglement. Phys. Rev. A 1995, 52, R3429–R3432. [Google Scholar] [CrossRef] [PubMed]
- Strekalov, D.V.; Sergienko, A.V.; Klyshko, D.N.; Shih, Y.H. Observation of Two-Photon Ghost Interference and Diffraction. Phys. Rev. Lett. 1995, 74, 3600–3603. [Google Scholar] [CrossRef] [PubMed]
- Abouraddy, A.F.; Saleh, B.E.A.; Sergienko, A.V.; Teich, M.C. Role of Entanglement in Two-Photon Imaging. Phys. Rev. Lett. 2001, 87, 123602. [Google Scholar] [CrossRef] [PubMed]
- Bennink, R.S.; Bentley, S.J.; Boyd, R.W. “Two-Photon” Coincidence Imaging with a Classical Source. Phys. Rev. Lett. 2002, 89, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.H. Computational Ghost Imaging. Phys. Rev. A—At. Mol. Opt. Phys. 2008, 78, 061802. [Google Scholar] [CrossRef]
- Bromberg, Y.; Katz, O.; Silberberg, Y. Ghost Imaging with a Single Detector. Phys. Rev. A—At. Mol. Opt. Phys. 2009, 79, 053840. [Google Scholar] [CrossRef]
- Brida, G.; Genovese, M.; Berchera, I.R. Experimental Realization of Sub-Shot-Noise Quantum Imaging. Nat. Photonics 2010, 4, 227–230. [Google Scholar] [CrossRef]
- Lemos, G.B.; Borish, V.; Cole, G.D.; Ramelow, S.; Lapkiewicz, R.; Zeilinger, A. Quantum Imaging with Undetected Photons. Nature 2014, 512, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Magaña-Loaiza, O.S.; Boyd, R.W. Quantum-Secured Imaging. Appl. Phys. Lett. 2012, 101, 241103. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Tong, X.; Garrett, D.C.; Cao, R.; Wang, L.V. Quantum Imaging of Biological Organisms through Spatial and Polarization Entanglement. Sci. Adv. 2023, 10, eadk1495. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Kim, J.; Jeong, T.; Ihn, Y.S.; Kim, D.Y.; Kim, Z.; Jo, Y. Quantum-Secured Single-Pixel Imaging with Enhanced Security. Optica 2023, 10, 1461. [Google Scholar] [CrossRef]
- Berchera, I.R.; Degiovanni, I.P. Quantum Imaging with Sub-Poissonian Light: Challenges and Perspectives in Optical Metrology. Metrologia 2019, 56, 024001. [Google Scholar] [CrossRef]
- Gregory, T. Quantum Enchanced Imaging. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2022. [Google Scholar]
- Decem, R. A Dynamical Theory of the Electromagnetic Field. Nature 1927, 119, 125–127. [Google Scholar] [CrossRef]
- Planck, M. On the Law of Distribution of Energy in the Normal Spectrum. Ann. Phys. 1901, 4, 533. [Google Scholar]
- Qian, W. On the Physical Process and Essence of the Photoelectric Effect. J. Appl. Math. Phys. 2023, 11, 1580–1597. [Google Scholar] [CrossRef]
- Broglie, L. A Tentative Theory of Light Quanta. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1924, 47, 446–458. [Google Scholar] [CrossRef]
- Pérez-Delgado, C.A.; Pearce, M.E.; Kok, P. Fundamental Limits of Classical and Quantum Imaging. Phys. Rev. Lett. 2012, 109, 123601. [Google Scholar] [CrossRef] [PubMed]
- Aspuru-Guzik, A.; Walther, P. Photonic Quantum Simulators. Nat. Phys. 2012, 8, 285–291. [Google Scholar] [CrossRef]
- Bloch, I.; Dalibard, J.; Nascimbène, S. Quantum Simulations with Ultracold Quantum Gases. Nat. Phys. 2012, 8, 267–276. [Google Scholar] [CrossRef]
- Blatt, R.; Roos, C.F. Quantum Simulations with Trapped Ions. Nat. Phys. 2012, 8, 277–284. [Google Scholar] [CrossRef]
- Morton, J.J.L.; Lovett, B.W. Hybrid Solid-State Qubits: The Powerful Role of Electron Spins. Annu. Rev. Condens. Matter Phys. 2011, 2, 189–212. [Google Scholar] [CrossRef]
- Pla, J.J.; Tan, K.Y.; Dehollain, J.P.; Lim, W.H.; Morton, J.J.L.; Zwanenburg, F.A.; Jamieson, D.N.; Dzurak, A.S.; Morello, A. High-Fidelity Readout and Control of a Nuclear Spin Qubit in Silicon. Nature 2013, 496, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Houck, A.A.; Türeci, H.E.; Koch, J. On-Chip Quantum Simulation with Superconducting Circuits. Nat. Phys. 2012, 8, 292–299. [Google Scholar] [CrossRef]
- Poot, M.; van der Zant, H.S.J. Mechanical Systems in the Quantum Regime. Phys. Rep. 2012, 511, 273–335. [Google Scholar] [CrossRef]
- Kurizki, G.; Bertet, P.; Kubo, Y.; Mølmer, K.; Petrosyan, D.; Rabl, P.; Schmiedmayer, J. Quantum Technologies with Hybrid Systems. Proc. Natl. Acad. Sci. USA 2015, 112, 3866–3873. [Google Scholar] [CrossRef]
- Moreau, P.A.; Toninelli, E.; Gregory, T.; Padgett, M.J. Imaging with Quantum States of Light. Nat. Rev. Phys. 2019, 1, 367–380. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. Quantum Cryptography: Public Key Distribution and Coin Tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Ekert, A.K. Quantum Cryptography and Bell’s Theorem; Oxford University: Oxford, UK, 1992; pp. 413–418. [Google Scholar] [CrossRef]
- Bennett, C.H. Quantum Cryptography Using Any Two Nonorthogonal States. Phys. Rev. Lett. 1992, 68, 3121–3124. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, S. Conjugate Coding. ACM Sigact News 1983, 15, 78–88. [Google Scholar] [CrossRef]
- Gisin, N.; Thew, R. Quantum Communication. Nat. Photonics 2007, 1, 165–171. [Google Scholar] [CrossRef]
- DiVincenzo, D.P. The Physical Implementation of Quantum Computation. Fortschritte Phys. 2000, 48, 771–783. [Google Scholar] [CrossRef]
- Ladd, T.D.; Jelezko, F.; Laflamme, R.; Nakamura, Y.; Monroe, C.; O’Brien, J.L. Quantum Computers. Nature 2010, 464, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit. Science 2004, 306, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, G.S.; Boyd, R.W.; Nagasako, E.M.; Bentley, S.J. Comment on “Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat the Diffraction Limit”. Phys. Rev. Lett. 2001, 86, 1389. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.A.; Bowen, W.P. Quantum Metrology and Its Application in Biology. Phys. Rep. 2016, 615, 1–59. [Google Scholar] [CrossRef]
- Xavier, J.; Yu, D.; Vollmer, F.; Jones, C.; Zossimova, E. Quantum Nanophotonic and Nanoplasmonic Sensing: Towards Quantum Optical Bioscience Laboratories on Chip. Nanophotonics 2021, 10, 1387–1435. [Google Scholar] [CrossRef]
- Unternährer, M.; Bessire, B.; Gasparini, L.; Perenzoni, M.; Stefanov, A. Super-Resolution Quantum Imaging at the Heisenberg Limit. Optica 2018, 5, 1150. [Google Scholar] [CrossRef]
- Vernekar, S.; Xavier, J. Secure Quantum Imaging with Decoy State Heralded Single Photons. arXiv 2024, arXiv:2402.11675. [Google Scholar]
- Xu, D.Q.; Song, X.B.; Li, H.G.; Zhang, D.J.; Wang, H.B.; Xiong, J.; Wang, K. Experimental Observation of Sub-Rayleigh Quantum Imaging with a Two-Photon Entangled Source. Appl. Phys. Lett. 2015, 106, 10–15. [Google Scholar] [CrossRef]
- Fox, M. Quantum Optics: An Introduction; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Gilaberte Basset, M.; Setzpfandt, F.; Steinlechner, F.; Beckert, E.; Pertsch, T.; Gräfe, M. Perspectives for Applications of Quantum Imaging. Laser Photonics Rev. 2019, 13, 1900097. [Google Scholar] [CrossRef]
- Jones, C.; Xavier, J.; Kashanian, S.V.; Nguyen, M.; Aharonovich, I.; Vollmer, F. Time-Dependent Mandel Q Parameter Analysis for a Hexagonal Boron Nitride Single Photon Source. Opt. Express 2023, 31, 10794–10804. [Google Scholar] [CrossRef] [PubMed]
- Barsotti, L.; Harms, J.; Schnabel, R. Squeezed Vacuum States of Light for Gravitational Wave Detectors. Rep. Prog. Phys. 2019, 82, 016905. [Google Scholar] [CrossRef]
- Taylor, M.A.; Janousek, J.; Daria, V.; Knittel, J.; Hage, B.; Bachor, H.A.; Bowen, W.P. Subdiffraction-Limited Quantum Imaging within a Living Cell. Phys. Rev. X 2014, 4, 011017. [Google Scholar] [CrossRef]
- Basset, F.B.; Valeri, M.; Roccia, E.; Muredda, V.; Poderini, D.; Neuwirth, J.; Spagnolo, N.; Rota, M.B.; Carvacho, G.; Sciarrino, F.; et al. Quantum Key Distribution with Entangled Photons Generated on Demand by a Quantum Dot. Sci. Adv. 2021, 7, eabe6379. [Google Scholar] [CrossRef] [PubMed]
- Crespi, A.; Lobino, M.; Matthews, J.C.F.; Politi, A.; Neal, C.R.; Ramponi, R.; Osellame, R.; O’Brien, J.L. Measuring Protein Concentration with Entangled Photons. Appl. Phys. Lett. 2012, 100, 233704. [Google Scholar] [CrossRef]
- Malik, M.; Boyd, R.W. Quantum Imaging Technologies; Springer: Berlin/Heidelberg, Germany, 2014; Volume 37, ISBN 2014101000. [Google Scholar]
- Hey, T. Quantum Computing: An Introduction. Comput. Control Eng. J. 1999, 10, 105–112. [Google Scholar] [CrossRef]
- Kok, P.; Munro, W.J.; Nemoto, K.; Ralph, T.C.; Dowling, J.P.; Milburn, G.J. Linear Optical Quantum Computing with Photonic Qubits. Rev. Mod. Phys. 2007, 79, 135–174. [Google Scholar] [CrossRef]
- Degen, C.L.; Reinhard, F.; Cappellaro, P. Quantum Sensing. Rev. Mod. Phys. 2017, 89, 035002. [Google Scholar] [CrossRef]
- Polino, E.; Valeri, M.; Spagnolo, N.; Sciarrino, F. Photonic Quantum Metrology. AVS Quantum Sci. 2020, 2, 024703. [Google Scholar] [CrossRef]
- Kocher, C.A.; Commins, E.D. Polarization Correlation of Photons Emitted in an Atomic Cascade. Phys. Rev. Lett. 1967, 18, 575–577. [Google Scholar] [CrossRef]
- Aspect, A.; Dalibard, J.; Roger, G. Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers. Phys. Rev. Lett. 1982, 49, 1804–1807. [Google Scholar] [CrossRef]
- Louisell, W.H.; Yariv, A.; Siegman, A.E. Quantum Fluctuations and Noise in Parametric Processes. I. Phys. Rev. 1961, 124, 1646–1654. [Google Scholar] [CrossRef]
- Harris, S.E.; Oshman, M.K.; Byer, R.L. Observation of Tunable Optical Parametric Fluorescence. Phys. Rev. Lett. 1967, 18, 732–734. [Google Scholar] [CrossRef]
- Burnham, D.C.; Weinberg, D.L. Observation of Simultaneity in Parametric Production of Optical Photon Pairs. Phys. Rev. Lett. 1970, 25, 84–87. [Google Scholar] [CrossRef]
- Boyd, R. Nonlinear Optics. In Springer Handbook of Atomic, Molecular and Optical Physics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Franken, P.A.; Hill, A.E.; Peters, C.W.; Weinreich, G. Generation of Optical Harmonics. Phys. Rev. Lett. 1961, 7, 118–119. [Google Scholar] [CrossRef]
- Maker, P.D.; Terhune, R.W.; Nisenoff, M.; Savage, C.M. Effects of Dispersion and Focusing on the Production of Optical Harmonics. Phys. Rev. Lett. 1962, 8, 21–22. [Google Scholar] [CrossRef]
- Bass, M.; Franken, P.A.; Hill, A.E.; Peters, C.W.; Weinreich, G. Optical Mixing. Phys. Rev. Lett. 1962, 8, 18. [Google Scholar] [CrossRef]
- Moodley, C.; Forbes, A. All-Digital Quantum Ghost Imaging: Tutorial. JOSA B 2023, 40, 3073–3095. [Google Scholar] [CrossRef]
- Gerry, C.C.; Knight, P.L. Introudctory Quantum Optics; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Walls, D.F. Squeezed States of Light. Nature 1983, 306, 141–146. [Google Scholar] [CrossRef]
- Mehmet, M.; Vahlbruch, H. The Squeezed Light Source for the Advanced Virgo Detector in the Observation Run O3. Galaxies 2020, 8, 79. [Google Scholar] [CrossRef]
- Dwyer, S. Quantum Noise Reduction Using Squeezed States in LIGO. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2013; p. 223. [Google Scholar]
- Chen, M.R.; Bi, S.W.; Dou, X.B.; Liu, W.Y. Study of Non-Classical Light Imaging Technology. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 637, S130–S133. [Google Scholar] [CrossRef]
- Taylor, M.A.; Janousek, J.; Daria, V.; Knittel, J.; Hage, B.; Bachor, H.A.; Bowen, W.P. Biological Measurement beyond the Quantum Limit. Nat. Photonics 2013, 7, 229–233. [Google Scholar] [CrossRef]
- Paraïso, T.K.; Woodward, R.I.; Marangon, D.G.; Lovic, V.; Yuan, Z.; Shields, A.J. Advanced Laser Technology for Quantum Communications (Tutorial Review). Adv. Quantum Technol. 2021, 4, 2100062. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, S.L.; Li, H.W.; Yin, Z.Q.; Zhao, Y.B.; Chen, W.; Han, Z.F.; Guo, G.C. Decoy-State Theory for the Heralded Single-Photon Source with Intensity Fluctuations. Phys. Rev. A—At. Mol. Opt. Phys. 2009, 79, 062309. [Google Scholar] [CrossRef]
- Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 1997, 26, 1484–1509. [Google Scholar] [CrossRef]
- Sen, A.; Rezai, K. Comparing Qubit Platforms in the Race to Feasible Quantum Computing. J. Stud. Res. 2021, 10, 1–18. [Google Scholar] [CrossRef]
- Lancaster, G.P.T.; Guide, S.; Riebe, M.; Becher, C.; Häffner, H.; Eschner, J.; Schmidt-Kaler, F.; Chuang, I.L.; Blatt, R. Implementation of the Deutsch-Josza Algorithm on an Ion Trap Quantum Computer. Nature 2003, 421, 388. [Google Scholar] [CrossRef]
- Levine, H.; Keesling, A.; Omran, A.; Bernien, H.; Schwartz, S.; Zibrov, A.S.; Endres, M.; Greiner, M.; Vuletić, V.; Lukin, M.D. High-Fidelity Control and Entanglement of Rydberg-Atom Qubits. Phys. Rev. Lett. 2018, 121, 123603. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Lichtman, M.; Maller, K.; Carr, A.W.; Piotrowicz, M.J.; Isenhower, L.; Saffman, M. Randomized Benchmarking of Single-Qubit Gates in a 2D Array of Neutral-Atom Qubits. Phys. Rev. Lett. 2015, 114, 100503. [Google Scholar] [CrossRef]
- Isenhower, L.; Urban, E.; Zhang, X.L.; Gill, A.T.; Henage, T.; Johnson, T.A.; Walker, T.G.; Saffman, M. Demonstration of a Neutral Atom Controlled-NOT Quantum Gate. Phys. Rev. Lett. 2010, 104, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Debnath, S.; Linke, N.M.; Figgatt, C.; Landsman, K.A.; Wright, K.; Monroe, C. Demonstration of a Small Programmable Quantum Computer with Atomic Qubits. Nature 2016, 536, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. Communication Theory of Secrecy Systems. Bell Syst. Tech. J. 1949, 28, 656–715. [Google Scholar] [CrossRef]
- Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in Quantum Cryptography. Adv. Opt. Photonics 2020, 12, 1012. [Google Scholar] [CrossRef]
- Dušek, M.; Jahma, M.; Lütkenhaus, N. Unambiguous State Discrimination in Quantum Cryptography with Weak Coherent States. Phys. Rev. A—At. Mol. Opt. Phys. 2000, 62, 9. [Google Scholar] [CrossRef]
- Clarke, R.B.M.; Chefles, A.; Barnett, S.M.; Riis, E. Experimental Demonstration of Optimal Unambiguous State Discrimination. Phys. Rev. A—At. Mol. Opt. Phys. 2001, 63, 040305. [Google Scholar] [CrossRef]
- Huttner, B.; Imoto, N.; Gisin, N.; Mor, T. Quantum Cryptography with Coherent States. Phys. Rev. A 1995, 51, 1863–1869. [Google Scholar] [CrossRef]
- Lütkenhaus, N.; Jahma, M. Quantum Key Distribution with Realistic States: Photon-Number Statistics in the Photon-Number Splitting Attack. New J. Phys. 2002, 4, 44. [Google Scholar] [CrossRef]
- Gottesman, D.; Hoi-Kwonglo, L.O.; Lütkenhaus, N.; Preskill, J. Security of Quantum Key Distribution with Imperfect Devices. Quantum Inf. Comput. 2004, 4, 325–360. [Google Scholar] [CrossRef]
- Hwang, W.Y. Quantum Key Distribution with High Loss: Toward Global Secure Communication. Phys. Rev. Lett. 2003, 91, 057901. [Google Scholar] [CrossRef]
- Lo, H.K.; Ma, X.; Chen, K. Decoy State Quantum Key Distribution. Phys. Rev. Lett. 2005, 94, 15–18. [Google Scholar] [CrossRef]
- Engle, R.D.; Mailloux, L.O.; Grimaila, M.R.; Hodson, D.D.; McLaughlin, C.V.; Baumgartner, G. Implementing the Decoy State Protocol in a Practically Oriented Quantum Key Distribution System-Level Model. J. Def. Model. Simul. 2019, 16, 27–44. [Google Scholar] [CrossRef]
- Duplinskiy, A.; Ustimchik, V.; Kanapin, A.; Kurochkin, V.; Kurochkin, Y. Low Loss QKD Optical Scheme for Fast Polarization Encoding. Opt. Express 2017, 25, 28886. [Google Scholar] [CrossRef]
- Schmitt-Manderbach, T.; Weier, H.; Fürst, M.; Ursin, R.; Tiefenbacher, F.; Scheidl, T.; Perdigues, J.; Sodnik, Z.; Kurtsiefer, C.; Rarity, J.G.; et al. Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 Km. Phys. Rev. Lett. 2007, 98, 010504. [Google Scholar] [CrossRef]
- Liao, S.K.; Cai, W.Q.; Liu, W.Y.; Zhang, L.; Li, Y.; Ren, J.G.; Yin, J.; Shen, Q.; Cao, Y.; Li, Z.P.; et al. Satellite-to-Ground Quantum Key Distribution. Nature 2017, 549, 43–47. [Google Scholar] [CrossRef]
- Atchison, D. Optics of the Human Eye; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Jenkins, F.A.; White, H.E. Fundamental of Optics. Indian J. Phys. 1957, 25, 265–266. [Google Scholar] [CrossRef]
- Smith, S. Digital Signal Processing: A practical Guide for Engineers and Scientists; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Hadfield, R.H. Single-Photon Detectors for Optical Quantum Information Applications. Nat. Photonics 2009, 3, 696–705. [Google Scholar] [CrossRef]
- Madonini, F.; Severini, F.; Zappa, F.; Villa, F. Single Photon Avalanche Diode Arrays for Quantum Imaging and Microscopy. Adv. Quantum Technol. 2021, 4, 2100005. [Google Scholar] [CrossRef]
- Lampton, M. The Microchannel Image Intensifier. Sci. Am. 1981, 245, 62–71. [Google Scholar] [CrossRef]
- Cester, L.; Lyons, A.; Braidotti, M.C.; Faccio, D. Time-of-Flight Imaging at 10 Ps Resolution with an ICCD Camera. Sensors 2019, 19, 180. [Google Scholar] [CrossRef] [PubMed]
- Lantz, E.; Blanchet, J.L.; Furfaro, L.; Devaux, F. Multi-Imaging and Bayesian Estimation for Photon Counting with EMCCDs. Mon. Not. R. Astron. Soc. 2008, 386, 2262–2270. [Google Scholar] [CrossRef]
- Jerram, P.; Pool, P.J.; Bell, R.; Burt, D.J.; Bowring, S.; Spencer, S.; Hazelwood, M.; Moody, I.; Catlett, N.; Heyes, P.S. The LLCCD: Low-Light Imaging without the Need for an Intensifier. Sens. Camera Syst. Sci. Ind. Digit. Photogr. Appl. II 2001, 4306, 178. [Google Scholar] [CrossRef]
- Robbins, M.S.; Hadwen, B.J. The Noise Performance of Electron Multiplying Charge-Coupled Devices. IEEE Trans. Electron Devices 2003, 50, 1227–1232. [Google Scholar] [CrossRef]
- Izhnin, I.I.; Lozovoy, K.A.; Kokhanenko, A.P.; Khomyakova, K.I.; Douhan, R.M.H.; Dirko, V.V.; Voitsekhovskii, A.V.; Fitsych, O.I.; Akimenko, N.Y. Single-Photon Avalanche Diode Detectors Based on Group IV Materials. Appl. Nanosci. 2022, 12, 253–263. [Google Scholar] [CrossRef]
- Gyongy, I.; Calder, N.; Davies, A.; Dutton, N.A.W.; Duncan, R.R.; Rickman, C.; Dalgarno, P.; Henderson, R.K. A 256 × 256, 100-Kfps, 61% Fill-Factor SPAD Image Sensor for Time-Resolved Microscopy Applications. IEEE Trans. Electron Devices 2018, 65, 547–554. [Google Scholar] [CrossRef]
- Portaluppi, D.; Conca, E.; Villa, F.A.; Zappa, F. Time-Gated CMOS SPAD Array in 0.16 Μm BCD with Shared Timing Electronics and Background Light Rejection for LIDAR Applications. Adv. Photon Count. Tech. XII 2018, 10659, 33–40. [Google Scholar] [CrossRef]
- Perenzoni, M.; Perenzoni, D.; Stoppa, D. A 64 × 64-Pixels Digital Silicon Photomultiplier Direct TOF Sensor with 100-MPhotons/s/Pixel Background Rejection and Imaging/Altimeter Mode with 0.14% Precision up to 6 km for Spacecraft Navigation and Landing. IEEE J. Solid-State Circuits 2017, 52, 151–160. [Google Scholar] [CrossRef]
- Jin, R.B.; Fujiwara, M.; Yamashita, T.; Miki, S.; Terai, H.; Wang, Z.; Wakui, K.; Shimizu, R.; Sasaki, M. Efficient Detection of an Ultra-Bright Single-Photon Source Using Superconducting Nanowire Single-Photon Detectors. Opt. Commun. 2015, 336, 47–54. [Google Scholar] [CrossRef]
- Gili, V.F.; Piccinini, C.; Safari Arabi, M.; Kumar, P.; Besaga, V.; Brambila, E.; Gräfe, M.; Pertsch, T.; Setzpfandt, F. Experimental Realization of Scanning Quantum Microscopy. Appl. Phys. Lett. 2022, 121, 104002. [Google Scholar] [CrossRef]
- Sensitivity and Noise of Ccd, Emccd, and Scmos Sensors. Available online: https://andor.oxinst.com/learning/view/article/sensitivity-and-noise-of-ccd-emccd-and-scmos-sensors (accessed on 25 January 2024).
- Zhao, Y.B.; Zhang, W.L.; Wang, D.; Song, X.T.; Zhou, L.J.; Ding, C.B. Proof-of-Principle Experimental Demonstration of Quantum Secure Imaging Based on Quantum Key Distribution. Chin. Phys. B 2019, 28, 104203. [Google Scholar] [CrossRef]
- Aspden, R.S.; Tasca, D.S.; Boyd, R.W.; Padgett, M.J. EPR-Based Ghost Imaging Using a Single-Photon-Sensitive Camera. New J. Phys. 2013, 15, 073032. [Google Scholar] [CrossRef]
- Morris, P.A.; Aspden, R.S.; Bell, J.E.C.; Boyd, R.W.; Padgett, M.J. Imaging with a Small Number of Photons. Nat. Commun. 2015, 6, 5913. [Google Scholar] [CrossRef] [PubMed]
- Aspden, R.S.; Gemmell, N.R.; Morris, P.A.; Tasca, D.S.; Mertens, L.; Tanner, M.G.; Kirkwood, R.A.; Ruggeri, A.; Tosi, A.; Boyd, R.W.; et al. Photon-Sparse Microscopy: Visible Light Imaging Using Infrared Illumination. Optica 2015, 2, 1049. [Google Scholar] [CrossRef]
- Moreau, P.-A.; Toninelli, E.; Morris, P.A.; Aspden, R.S.; Gregory, T.; Spalding, G.; Boyd, R.W.; Padgett, M.J. Resolution Limits of Quantum Ghost Imaging. Opt. Express 2018, 26, 7528. [Google Scholar] [CrossRef] [PubMed]
- Bornman, N.; Agnew, M.; Zhu, F.; Vallés, A.; Forbes, A.; Leach, J. Ghost Imaging Using Entanglement-Swapped Photons. NPJ Quantum Inf. 2019, 5, 63. [Google Scholar] [CrossRef]
- Yao, X.; Liu, X.; You, L.; Wang, Z.; Feng, X.; Liu, F.; Cui, K.; Huang, Y.; Zhang, W. Quantum Secure Ghost Imaging. Phys. Rev. A 2018, 98, 063816. [Google Scholar] [CrossRef]
- Lloyd, S. Enhanced Sensitivity of Photodetection via Quantum Illumination. Science 2008, 321, 1463–1465. [Google Scholar] [CrossRef]
- Tan, S.H.; Erkmen, B.I.; Giovannetti, V.; Guha, S.; Lloyd, S.; Maccone, L.; Pirandola, S.; Shapiro, J.H. Quantum Illumination with Gaussian States. Phys. Rev. Lett. 2008, 101, 253601. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.H.; Lloyd, S. Quantum Illumination versus Coherent-State Target Detection. New J. Phys. 2009, 11, 063045. [Google Scholar] [CrossRef]
- Shapiro, J.H. Defeating Passive Eavesdropping with Quantum Illumination. Phys. Rev. A—At. Mol. Opt. Phys. 2009, 80, 022320. [Google Scholar] [CrossRef]
- Guha, S.; Erkmen, B.I. Gaussian-State Quantum-Illumination Receivers for Target Detection. Phys. Rev. A—At. Mol. Opt. Phys. 2009, 80, 052310. [Google Scholar] [CrossRef]
- Lopaeva, E.D.; Ruo Berchera, I.; Degiovanni, I.P.; Olivares, S.; Brida, G.; Genovese, M. Experimental Realization of Quantum Illumination. Phys. Rev. Lett. 2013, 110, 153603. [Google Scholar] [CrossRef]
- Lopaeva, E.D.; Ruo Berchera, I.; Olivares, S.; Brida, G.; Degiovanni, I.P.; Genovese, M. A Detailed Description of the Experimental Realization of a Quantum Illumination Protocol. Phys. Scr. 2014, 2014, 014026. [Google Scholar] [CrossRef]
- Ragy, S.; Berchera, I.R.; Degiovanni, I.P.; Olivares, S.; Paris, M.G.A.; Adesso, G.; Genovese, M. Quantifying the Source of Enhancement in Experimental Continuous Variable Quantum Illumination. J. Opt. Soc. Am. B 2014, 31, 2045. [Google Scholar] [CrossRef]
- Sanz, M.; Las Heras, U.; García-Ripoll, J.J.; Solano, E.; Di Candia, R. Quantum Estimation Methods for Quantum Illumination. Phys. Rev. Lett. 2017, 118, 070803. [Google Scholar] [CrossRef] [PubMed]
- Gregory, T.; Moreau, P.A.; Mekhail, S.; Wolley, O.; Padgett, M.J. Noise Rejection through an Improved Quantum Illumination Protocol. Sci. Rep. 2021, 11, 21841. [Google Scholar] [CrossRef]
- Bi, S.; Sheng, Z.; Zhou, Z.; Zhang, S.; Yao, J.; Deng, K. Technology Research of 1 km Quantum Lidar System. In Infrared Remote Sensing and Instrumentation XXXI; SPIE: Bellingham, WA, USA, 2023; Volume 12686, pp. 133–143. [Google Scholar] [CrossRef]
- Bi, S. Quantum Remote Sensing Theory and Practice. In Proceedings of the Infrared Remote Sensing and Instrumentation XXVI, San Diego, CA, USA, 20–22 August 2018; Volume 1076505, p. 6. [Google Scholar] [CrossRef]
- Bi, S.; Zhang, Y. The Study of Quantum Remote Sensing Principle Prototype. In International Conference on Optical and Photonic Engineering (icOPEN 2015); SPIE: Bellingham, WA, USA, 2015; Volume 9524, pp. 389–411. [Google Scholar] [CrossRef]
- David, S.S.; Gregg, J.; Alexander, V.S. Quantum Metrology, Imaging, and Communication; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Hochrainer, A.; Lahiri, M.; Lapkiewicz, R.; Lemos, G.B.; Zeilinger, A. Interference Fringes Controlled by Noninterfering Photons. Optica 2017, 4, 341. [Google Scholar] [CrossRef]
- Lahiri, M.; Lapkiewicz, R.; Lemos, G.B.; Zeilinger, A. Theory of Quantum Imaging with Undetected Photons. Phys. Rev. A—At. Mol. Opt. Phys. 2015, 92, 013832. [Google Scholar] [CrossRef]
- Lahiri, M.; Hochrainer, A.; Lapkiewicz, R.; Lemos, G.B.; Zeilinger, A. Nonclassicality of Induced Coherence without Induced Emission. Phys. Rev. A 2019, 100, 053839. [Google Scholar] [CrossRef]
- Buzas, A.; Wolff, E.K.; Benedict, M.G.; Ormos, P.; Der, A. Biological Microscopy with Undetected Photons. IEEE Access 2020, 8, 107539–107548. [Google Scholar] [CrossRef]
- Mandel, L. Coherence and Indistinguishability. Opt. Lett. 1991, 16, 1882. [Google Scholar] [CrossRef]
- Englert, B.G. Fringe Visibility and Which-Way Information: An Inequality. Phys. Rev. Lett. 1996, 77, 2154–2157. [Google Scholar] [CrossRef]
- Hariharan, P. Basics of Interferometry; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Zetie, K.P.; Adams, S.F.; Tocknell, R.M. How Does a Mach-Zehnder Interferometer Work? Phys. Educ. 2000, 35, 46–48. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, H.; Xu, X.; Zhang, L.; Zhu, S.; Ma, X.S. Interaction-Free, Single-Pixel Quantum Imaging with Undetected Photons. NPJ Quantum Inf. 2023, 9, 2. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, L.; Sit, A.; Amit, G.; Larocque, H.; Grenapin, F.; Harden, J.L.; Boyd, R.W.; Elitzur, A.C.; Cohen, E.; et al. Interaction-Free Quantum Imaging. In Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVII; SPIE: Bellingham, WA, USA, 2020; Volume 11254, pp. 11–17. [Google Scholar] [CrossRef]
- Fuenzalida, J.; Hochrainer, A.; Lemos, G.B.; Ortega, E.A.; Lapkiewicz, R.; Lahiri, M.; Zeilinger, A. Resolution of Quantum Imaging with Undetected Photons. Quantum 2022, 6, 646. [Google Scholar] [CrossRef]
- Walter, D.; Pitsch, C.; Paunescu, G.; Lutzmann, P. Quantum Ghost Imaging for Remote Sensing. Phys. Environ. Sci. Eng. 2019, 2023, 32. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, M. Quantum Imaging of a Polarisation Sensitive Phase Pattern with Hyper-Entangled Photons. Sci. Rep. 2021, 11, 23636. [Google Scholar] [CrossRef]
- Shafi, K.M.; Padhye, A.; Chandrashekar, C.M. Quantum Illumination Using Polarization-Path Entangled Single Photons for Low Reflectivity Object Detection in a Noisy Background. Opt. Express 2023, 31, 32093. [Google Scholar] [CrossRef]
- Prabhu, A.V.; Suri, B.; Chandrashekar, C.M. Hyperentanglement-Enhanced Quantum Illumination. Phys. Rev. A 2021, 103, 052608. [Google Scholar] [CrossRef]
- Defienne, H.; Ndagano, B.; Lyons, A.; Faccio, D. Polarization Entanglement-Enabled Quantum Holography. Nat. Phys. 2021, 17, 591–597. [Google Scholar] [CrossRef]
- Yang, J.Z.; Li, M.F.; Chen, X.X.; Yu, W.K.; Zhang, A.N. Single-Photon Quantum Imaging via Single-Photon Illumination. Appl. Phys. Lett. 2020, 117, 214001. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, T.; Lee, S.Y.; Kim, D.Y.; Kim, D.; Lee, S.; Ihn, Y.S.; Kim, Z.; Jo, Y. Heralded Single-Pixel Imaging with High Loss-Resistance and Noise-Robustness. Appl. Phys. Lett. 2021, 119, 244002. [Google Scholar] [CrossRef]
- Johnson, S.; McMillan, A.; Torre, C.; Frick, S.; Rarity, J.; Padgett, M. Single-Pixel Imaging with Heralded Single Photons. Opt. Contin. 2022, 1, 826. [Google Scholar] [CrossRef]
- Lotfipour, H.; Sobhani, H.; Khodabandeh, M. Quantum Diagnosis of Cancer with Heralded Single Photons. Laser Phys. Lett. 2022, 19, 105603. [Google Scholar] [CrossRef]
- Varnavski, O.; Gunthardt, C.; Rehman, A.; Luker, G.D.; Goodson, T. Quantum Light-Enhanced Two-Photon Imaging of Breast Cancer Cells. J. Phys. Chem. Lett. 2022, 13, 2772–2781. [Google Scholar] [CrossRef]
- Moodley, C.; Forbes, A. Advances in Quantum Imaging with Machine Intelligence. Laser Photonics Rev. 2024, 2300939. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/lpor.202300939 (accessed on 25 January 2024). [CrossRef]
Source of Light | Areas of Application | Comments |
---|---|---|
Squeezed states of light [52] | Gravitational wave detection | Squeezed light was employed to augment the sensitivity of gravitational wave detectors, such as at the Laser Interferometer Gravitational-Wave Observatory (LIGO). Squeezed states enable the detection of gravitational waves of lower intensity compared to classical light by mitigating quantum noise. |
Squeezed local oscillator [53] | Particle tracking | Using a squeezed local oscillator in particle tracking investigations can enhance the accuracy of measurements, enabling more precise monitoring of particle dynamics at the microscopic level. |
Entangled states of light [54] | QKD | The use of entangled photons is employed for the safe transmission of encryption keys. The phenomenon of entanglement guarantees that any illicit efforts to intercept information may be identified by the perturbations occurring in the entangled states. |
Entangled N00N state (N = 2) [55] | Concentration measurement of protein | This application employs entangled N00N states, where N is the number of entangled particles, to conduct high-precision measurements, such as determining protein concentration in a solution. Entangled states enable measurements with resolutions that are beyond the diffraction limit. |
Alice Encoding | Bob Decoding | |||
---|---|---|---|---|
Basis | Bit | State | X | Z |
X | 0 | + | 0 | (0 or 1) |
X | 1 | 1 | (0 or 1) | |
Z | 0 | 0 | (0 or 1) | 0 |
Z | 1 | 1 | (0 or 1) | 1 |
Experiment | Distance (km) | QBER % | Secure Key Rate | Channel |
---|---|---|---|---|
BB84 [96] | 50 | 2 | 0.5 Kbits/s | Optical fiber |
BB84 + decoy [97] | 144 | 6.48 | 12.842 bps | Free space |
BB84 + decoy [98] | 1200 | 1–3% | 1.1 Kbps | Free space |
Detectors | Operating Temperature | Efficiency (Visible/IR) | Drawbacks |
---|---|---|---|
ICCD | −30 °C | 10–30% | Large acquisition time |
EMCCD | −100 °C | 90% (visible region) | Thermal noise, costly, bulky |
SPAD | −50 °C | 30–60% | Low Fill factor |
SNSPD | 2.1 Kelvin | >80% (visible and IR) | Costly, operating temperature |
Technique | Type | Crystal Type | Detectors | Resolution/SNR/Visibility | Comments |
---|---|---|---|---|---|
Quantum imaging with undetected photons [15,148] | Interference based | PPKTP type 0 | EMCCD | Resolution is determined by the light interacting with the object, the shorter it is better. Edge function depends on the light detected by camera. | (1) Useful in biological samples and without having spatial resolving detectors. (2) Interferometric setup complexity. (3) In a low-light regime it is useful for biological samples without much perturbation to the sample, (LN type 1 crystal, detectors SPD and SLM) [146]. |
Sub-shot noise quantum imaging [14] | Correlation based | BBO Type 2 | CCD | A 50% sensitivity enhancement. | (1) Improvement in sensitivity by quantum states. (2) Precise measurement required. |
Quantum ghost imaging [120,149] | Correlation based | BBO | SPAD and ICCD | Resolution limited by point spread function of optics with camera (same as conventional imaging), SNR and visibility are reported to be better. | (1) Speckle contrast is minimal as compared to conventional imaging system. (2) Near-field and far-field imaging possible with the same setup whereas in conventional it is limited to one each. (3) Degradation in correlation reduces the resolution. |
Quantum illumination [132] | Correlation based | BBO type 2 | EMCCD | A 99.9% rejection of background light and sensor noise. | Useful in stealth object detection. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vernekar, S.; Xavier, J. Quantum Correlation Enhanced Optical Imaging. Quantum Beam Sci. 2024, 8, 19. https://doi.org/10.3390/qubs8030019
Vernekar S, Xavier J. Quantum Correlation Enhanced Optical Imaging. Quantum Beam Science. 2024; 8(3):19. https://doi.org/10.3390/qubs8030019
Chicago/Turabian StyleVernekar, Siddhant, and Jolly Xavier. 2024. "Quantum Correlation Enhanced Optical Imaging" Quantum Beam Science 8, no. 3: 19. https://doi.org/10.3390/qubs8030019
APA StyleVernekar, S., & Xavier, J. (2024). Quantum Correlation Enhanced Optical Imaging. Quantum Beam Science, 8(3), 19. https://doi.org/10.3390/qubs8030019