Next Issue
Volume 8, December
Previous Issue
Volume 8, June
 
 

Quantum Beam Sci., Volume 8, Issue 3 (September 2024) – 8 articles

Cover Story (view full-size image): Proton therapy is increasingly widespread and requires an accelerator to provide the high energy protons. Most often, the accelerators used for proton therapy are cyclotrons and the maximum initial beam energy (MIBE) is about 230 MeV or more to be able to achieve a range of approximately 30 cm in water. We ask whether such a high energy is necessary for adequate dosimetry for pathologies to be treated with proton beams. Eight patients of different clinical sites (brain, prostate, and head and neck cancers) were selected to conduct this study. We analyzed the tumor dose coverage and homogeneity, as well as healthy tissue protection for MIBE values of 120, 160, 180, 200 and 230 MeV. For each patient, a proton plan was developed using the particular MIBE and then using multifield optimization (MFO). View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
24 pages, 3584 KiB  
Review
Tracking Detectors in Low-Energy Nuclear Physics: An Overview
by Jelena Vesić
Quantum Beam Sci. 2024, 8(3), 24; https://doi.org/10.3390/qubs8030024 - 3 Sep 2024
Viewed by 1043
Abstract
Advances in accelerator technology have enabled the use of exotic and intense radioactive ion beams. Enhancements to tracking detectors are necessary to accommodate increased particle rates. Recent advancements in digital electronics have led to the construction or planning of next-generation detectors. To conduct [...] Read more.
Advances in accelerator technology have enabled the use of exotic and intense radioactive ion beams. Enhancements to tracking detectors are necessary to accommodate increased particle rates. Recent advancements in digital electronics have led to the construction or planning of next-generation detectors. To conduct kinematically complete measurements, it is essential to track and detect all particles produced as a result of the reaction. Furthermore, the need for high-precision physics experiments has led to significant developments in the detector field. In recent years, highly efficient and highly granular tracking detectors have been developed. These detectors significantly enhance the physics programme at dedicated facilities. An overview of charged-particle tracking detectors in low-energy nuclear physics will be given. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2024)
Show Figures

Figure 1

20 pages, 6840 KiB  
Article
Does the Maximum Initial Beam Energy for Proton Therapy Have to Be 230 MeV?
by Chris J. Beltran, Alvaro Perales and Keith M. Furutani
Quantum Beam Sci. 2024, 8(3), 23; https://doi.org/10.3390/qubs8030023 - 3 Sep 2024
Viewed by 792
Abstract
Proton therapy is increasingly widespread and requires an accelerator to provide the high energy protons. Most often, the accelerators used for proton therapy are cyclotrons and the maximum initial beam energy (MIBE) is about 230 MeV or more to be able to achieve [...] Read more.
Proton therapy is increasingly widespread and requires an accelerator to provide the high energy protons. Most often, the accelerators used for proton therapy are cyclotrons and the maximum initial beam energy (MIBE) is about 230 MeV or more to be able to achieve a range of approximately 30 cm in water. We ask whether such a high energy is necessary for adequate dosimetry for pathologies to be treated with proton beams. Eight patients of different clinical sites (brain, prostate, and head and neck cancers) were selected to conduct this study. We analyzed the tumor dose coverage and homogeneity, as well as healthy tissue protection for MIBE values of 120, 160, 180, 200 and 230 MeV. For each patient, a proton plan was developed using the particular MIBE and then using multifield optimization (MFO). In this way, 34 plans in total were generated to fulfill the unique clinical goals. This study found that MIBE of 120 MeV for brain tumors; 160 MeV for head and neck cancer; and remarkably, for prostate cancer, only 160 MeV for one patient case and 180 MeV for the remainder satisfied the clinical goals (words: 187 < approx. 200 words or less) Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2024)
Show Figures

Figure 1

17 pages, 10560 KiB  
Article
Multi-Technique Characterization of Cartonnage and Linen Samples of an Egyptian Mummy from the Roman Period
by Francis Sanches, Isis Franzi, Josiane Cavalcante, Roberta Borges, Anderson de Paula, Alessandra Machado, Raysa Nardes, Ramon Santos, Hamilton Gama Filho, Renato Freitas, Joaquim Assis, Marcelino Anjos, Ricardo Lopes and Davi Oliveira
Quantum Beam Sci. 2024, 8(3), 22; https://doi.org/10.3390/qubs8030022 - 1 Sep 2024
Cited by 1 | Viewed by 905
Abstract
The historical and cultural significance of artistic works and archaeological artifacts underscores the imperative use of non-destructive testing methods in cultural heritage objects. Analyzing pigments in artwork poses a specific analytical challenge that demands a combination of various techniques to accurately determine chemical [...] Read more.
The historical and cultural significance of artistic works and archaeological artifacts underscores the imperative use of non-destructive testing methods in cultural heritage objects. Analyzing pigments in artwork poses a specific analytical challenge that demands a combination of various techniques to accurately determine chemical compositions. In this context, our work focused on the multi-analytical characterization of samples derived from fragments of a Roman-era Egyptian mummy named Kherima, dating back to around 200 AD. To identify the layers and elemental composition of the pigments used in the decoration, various techniques were employed: X-ray microfluorescence (µXRF), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), high-resolution optical microscopy (OM), and X-ray computed microtomography (microCT). This multi-analytical approach facilitated the identification of the original pigments in the analyzed mummy fragments, along with insights into the materials used in the ground layer and the techniques applied in artifact manufacturing, indicating their accordance with the historical period and region to which they originally belonged. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2024)
Show Figures

Figure 1

13 pages, 1975 KiB  
Communication
Generalized N-Dimensional Effective Temperature for Cryogenic Systems in Accelerator Physics
by Heetae Kim and Chang-Soo Park
Quantum Beam Sci. 2024, 8(3), 21; https://doi.org/10.3390/qubs8030021 - 27 Aug 2024
Viewed by 620
Abstract
Investigations into the properties of generalized effective temperature are conducted across arbitrary dimensions. Maxwell–Boltzmann distribution is displayed for one, two, and three dimensions, with effective temperatures expressed for each dimension. The energy density of blackbody radiation is examined as a function of dimensionality. [...] Read more.
Investigations into the properties of generalized effective temperature are conducted across arbitrary dimensions. Maxwell–Boltzmann distribution is displayed for one, two, and three dimensions, with effective temperatures expressed for each dimension. The energy density of blackbody radiation is examined as a function of dimensionality. Effective temperatures for non-uniform temperature distributions in one, two, three, and higher dimensions are presented, with generalizations extended to arbitrary dimensions. Furthermore, the application of generalized effective temperature is explored not only for linearly non-uniform temperature distributions but also for scenarios involving the volume fraction of two distinct temperature distributions. The effective temperature is determined for a cryogenic system supplied with both liquid nitrogen and liquid helium. This effective temperature is applied to the Coefficient of Performance (COP) in cryogenic systems and can also be applied to high-energy accelerator physics, including high-dimensional physics. Full article
Show Figures

Figure 1

16 pages, 4422 KiB  
Article
Coulomb Spike Model of Radiation Damage in Wide Band-Gap Insulators
by Jean-Marc Costantini and Tatsuhiko Ogawa
Quantum Beam Sci. 2024, 8(3), 20; https://doi.org/10.3390/qubs8030020 - 9 Aug 2024
Viewed by 747
Abstract
A novel Coulomb spike concept is applied to the radiation damage induced in LiF and SiO2 with about the same mass density (~2.65 g cm−3) by Ni2860 and Kr3684 ions of 1.0-MeV u−1 [...] Read more.
A novel Coulomb spike concept is applied to the radiation damage induced in LiF and SiO2 with about the same mass density (~2.65 g cm−3) by Ni2860 and Kr3684 ions of 1.0-MeV u−1 energy for about the same electronic energy loss (~10 MeV µm−1). This is an alternative concept to the already known models of the Coulomb spike and inelastic thermal spike for the damage induced by swift heavy ion irradiations. The distribution of ionizations and electrostatic energy gained in the electric field by the ionized atoms is computed with the PHITS code for both targets. Further, the atomic collision cascades induced by these low-energy hot ions of about 500 eV are simulated with the SRIM2013 code. It is found that melting is reached in a small volume for SiO2 due to the energy deposition in the subthreshold events of nuclear collisions induced by the Si and O ions. For LiF, the phonon contribution to the stopping power of the lighter Li and F ions is not sufficient to induce melting, even though the melting temperature is lower than for SiO2. The formation of amorphous domains in SiO2 is likely after fast quenching of the small molten pockets, whereas only point defects may be formed in LiF. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2024)
Show Figures

Figure 1

42 pages, 11257 KiB  
Review
Quantum Correlation Enhanced Optical Imaging
by Siddhant Vernekar and Jolly Xavier
Quantum Beam Sci. 2024, 8(3), 19; https://doi.org/10.3390/qubs8030019 - 2 Aug 2024
Viewed by 1706
Abstract
Quantum correlations, especially time correlations, are crucial in ghost imaging for significantly reducing the background noise on the one hand while increasing the imaging resolution. Moreover, the time correlations serve as a critical reference, distinguishing between signal and noise, which in turn enable [...] Read more.
Quantum correlations, especially time correlations, are crucial in ghost imaging for significantly reducing the background noise on the one hand while increasing the imaging resolution. Moreover, the time correlations serve as a critical reference, distinguishing between signal and noise, which in turn enable clear visualization of biological samples. Quantum imaging also addresses the challenge involved in imaging delicate biological structures with minimal photon exposure and sample damage. Here, we explore the recent progress in quantum correlation-based imaging, notably its impact on secure imaging and remote sensing protocols as well as on biological imaging. We also exploit the quantum characteristics of heralded single-photon sources (HSPS) combined with decoy state methods for secure imaging. This method uses Quantum Key Distribution (QKD) principles to reduce measurement uncertainties and protect data integrity. It is highly effective in low-photon number regimes for producing high-quality, noise-reduced images. The versatility of decoy state methods with WCSs (WCS) is also discussed, highlighting their suitability for scenarios requiring higher photon numbers. We emphasize the dual advantages of these techniques: improving image quality through noise reduction and enhancing data security with quantum encryption, suggesting significant potential for quantum imaging in various applications, from delicate biological imaging to secure quantum imaging and communication. Full article
(This article belongs to the Section Medical and Biological Applications)
Show Figures

Figure 1

16 pages, 1814 KiB  
Article
Comparative Evaluation of Two Analytical Functions for the Microdosimetry of Ions from 1H to 238U
by Alessio Parisi, Keith M. Furutani, Tatsuhiko Sato and Chris J. Beltran
Quantum Beam Sci. 2024, 8(3), 18; https://doi.org/10.3390/qubs8030018 - 10 Jul 2024
Cited by 1 | Viewed by 1140
Abstract
The analytical microdosimetric function (AMF) implemented in the Monte Carlo code PHITS is a unique tool that bridges the gap between macro- and microscopic scales of radiation interactions, enabling accurate microdosimetric calculations over macroscopic bodies. The original AMF was published in 2006, based [...] Read more.
The analytical microdosimetric function (AMF) implemented in the Monte Carlo code PHITS is a unique tool that bridges the gap between macro- and microscopic scales of radiation interactions, enabling accurate microdosimetric calculations over macroscopic bodies. The original AMF was published in 2006, based on the results of track structure calculations. Recently, a newer version of the AMF was proposed, incorporating an improved description of the energy loss at the microscopic scale. This study compares the older and the newer AMFs in computing microdosimetric probability distributions, mean values, and the relative biological effectiveness (RBE). To this end, 16000 microdosimetric lineal energy probability density distributions were simulated with PHITS for ions from 1H to 238U over a broad energy range (1–1000 MeV/n). The newer AMF was found to offer superior performance, particularly for very heavy ions, producing results that align more closely with published in vitro clonogenic survival experiments. These findings suggest that the updated AMF provides a more reliable tool for microdosimetric calculations and RBE modeling, essential for ion radiation therapy and space radiation protection. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2024)
Show Figures

Figure 1

8 pages, 1959 KiB  
Technical Note
Prototype Setup Hardware Choice for the DUCK System
by Dmitriy Beznosko, Valeriy Aseykin, Alexander Dyshkant, Alexander Iakovlev, Oleg Krivosheev, Tatiana Krivosheev, Vladimir Shiltsev and Valeriy Zhukov
Quantum Beam Sci. 2024, 8(3), 17; https://doi.org/10.3390/qubs8030017 - 10 Jul 2024
Viewed by 644
Abstract
This article covers the overall design hardware choices for the prototyping activities for the DUCK (Detector system of Unusual Cosmic ray casKades). The primary goal of the DUCK system is to verify the existence of the unusual cosmic events reported by other collaborations [...] Read more.
This article covers the overall design hardware choices for the prototyping activities for the DUCK (Detector system of Unusual Cosmic ray casKades). The primary goal of the DUCK system is to verify the existence of the unusual cosmic events reported by other collaborations and to look at the possibilities of adding innovations to the EAS (Extensive Atmospheric Shower) analysis methods of the EAS disk measurements at the observation level. Additionally, design and construction of the system provide educational experience to the students involved in the project and are developing the research capabilities of the university campus. The prototyping process has helped to choose between various design solutions in the process of optimizing of the individual detector components. Full article
(This article belongs to the Section Instrumentation and Facilities)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop