Permeable Pavements as a Means to Save Water in Buildings: State of the Art in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Papers Analysed
2.2. Stormwater Harvesting
2.3. Clogging
2.4. Stormwater Quantity
2.5. Stormwater Quality
2.6. LCA, LCEA and LCCA
2.7. Hydraulic and Structural Design
3. Results and Discussion
3.1. Model Characteristics and Stormwater Quantity
3.2. Harvested Water Quality
3.3. Potential for Potable Water Savings
3.4. Hydraulic and Structural Design
3.5. Environmental Burden of Systems
3.6. Clogging, Maintenance and Operational Aspects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Max Roser, H.R.; Ortiz-Ospina, E. World Population Growth. Our World in Data. 2013. Available online: https://ourworldindata.org/world-population-growth (accessed on 15 August 2021).
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water Supply and Water Scarcity. Water 2020, 12, 2347. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 1–6. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present, and future. Earth’s Future 2017, 5, 545–559. [Google Scholar] [CrossRef]
- Muller, M. Cape Town’s drought: Don’t blame climate change. Nature 2018, 559, 174–176. [Google Scholar] [CrossRef] [Green Version]
- Soriano, É.; De Resende Londe, L.; Di Gregorio, L.T.; Coutinho, M.P.; Santos, L.B.L. Water crisis in são paulo evaluated under the disaster’s point of view. Ambiente E Soc. 2016, 19, 21–42. [Google Scholar] [CrossRef] [Green Version]
- Riswan, M.; Bushra Beegom, R.K. Water Scarcity in Urban Water Supply System: A Case of Thirukkovil, Sri Lanka; Technical Report 1; Faculty of Arts and Culture; South Eastern University of Sri Lanka: Oluvil, Sri Lanka, 2019. [Google Scholar]
- Burt, T.; Boardman, J.; Foster, I.; Howden, N. More rain, less soil: Long-term changes in rainfall intensity with climate change. Earth Surf. Process. Landf. 2016, 41, 563–566. [Google Scholar] [CrossRef] [Green Version]
- Butler, D.; Ward, S.; Sweetapple, C.; Astaraie-Imani, M.; Diao, K.; Farmani, R.; Fu, G. Reliable, resilient and sustainable water management: The Safe & SuRe approach. Glob. Chall. 2017, 1, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system. J. Hydrol. 2008, 350, 100–113. [Google Scholar] [CrossRef]
- Ellis, J.B. Sustainable surface water management and green infrastructure in UK urban catchment planning. J. Environ. Plan. Manag. 2013, 56, 24–41. [Google Scholar] [CrossRef]
- Fenner, R. Spatial evaluation of multiple benefits to encourage multi-functional design of sustainable drainage in Blue-Green cities. Water 2017, 9, 953. [Google Scholar] [CrossRef] [Green Version]
- Zhong, R.; Leng, Z.; Sun Poon, C. Research and application of pervious concrete as a sustainable pavement material: A state-of-the-art and state-of-the-practice review. Constr. Build. Mater. 2018, 183, 544–553. [Google Scholar] [CrossRef]
- Balbo, J.T. Permeable Concrete Pavements—An Environmental View of Emerging Sustainable Technology (Pavimentos de Concreto Permeáveis—Uma visão Ambiental da Tecnologia Sustentável Emergente, in Portuguese), 1st ed.; Oficina de Textos: São Paulo, Brazil, 2020; p. 176. [Google Scholar]
- Xie, N.; Akin, M.; Shi, X. Permeable concrete pavements: A review of environmental benefits and durability. J. Clean. Prod. 2019, 210, 1605–1621. [Google Scholar] [CrossRef]
- Khankhaje, E.; Salim, M.R.; Mirza, J.; Salmiati; Hussin, M.W.; Khan, R.; Rafieizonooz, M. Properties of quiet pervious concrete containing oil palm kernel shell and cockleshell. Appl. Acoust. 2017, 122, 113–120. [Google Scholar] [CrossRef]
- Knabben, R.M.; Trichês, G.; Gerges, S.N.; Vergara, E.F. Evaluation of sound absorption capacity of asphalt mixtures. Appl. Acoust. 2016, 114, 266–274. [Google Scholar] [CrossRef]
- Legret, M.; Colandini, V.; Le Marc, C. Effects of a porous pavement with reservoir structure on the quality of runoff water and soil. Sci. Total Environ. 1996, 189–190, 335–340. [Google Scholar] [CrossRef]
- Legret, M.; Colandini, V. Effects of a porous pavement with reservoir structure on runoff water: Water quality and fate of heavy metals. Water Sci. Technol. 1999, 39, 111–117. [Google Scholar] [CrossRef]
- Brattebo, B.O.; Booth, D.B. Long-term stormwater quantity and quality performance of permeable pavement systems. Water Res. 2003, 37, 4369–4376. [Google Scholar] [CrossRef]
- Myers, B.; Beecham, S.; van Leeuwen, J.A. Water quality with storage in permeable pavement base course. Proc. Inst. Civ. Eng. Water Manag. 2011, 164, 361–372. [Google Scholar] [CrossRef]
- Beecham, S.; Pezzaniti, D.; Kandasamy, J. Stormwater treatment using permeable pavements. Proc. Inst. Civ. Eng. Water Manag. 2012, 165, 161–170. [Google Scholar] [CrossRef]
- Roseen, R.M.; Ballestero, T.P.; Houle, J.J.; Briggs, J.F.; Houle, K.M. Water Quality and Hydrologic Performance of a Porous Asphalt Pavement as a Storm-Water Treatment Strategy in a Cold Climate. J. Environ. Eng. 2012, 138, 81–89. [Google Scholar] [CrossRef]
- Barrett, M. Water quality associated with permeable interlocking concrete pavers. In World Environmental and Water Resources Congress 2015: Floods, Droughts, and Ecosystems—Proceedings of the 2015 World Environmental and Water Resources Congress; American Society of Civil Engineers (ASCE): Austin, TX, USA, 2015; pp. 453–463. [Google Scholar] [CrossRef]
- Abdollahian, S.; Kazemi, H.; Rockaway, T.; Gullapalli, V. Stormwater quality benefits of permeable pavement systems with deep aggregate layers. Environments 2018, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Selbig, W.R.; Buer, N.; Danz, M.E. Stormwater-quality performance of lined permeable pavement systems. J. Environ. Manag. 2019, 251, 109510. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yan, H.; Liao, Z.; Zhang, K.; Schmidt, A.R.; Tao, T. Laboratory analysis on the surface runoff pollution reduction performance of permeable pavements. Sci. Total Environ. 2019, 691, 1–8. [Google Scholar] [CrossRef]
- Pratt, C.J.; Newman, A.P.; Bond, P.C. Mineral oil big-degradation within a permeable pavement: Long term observations. Water Sci. Technol. 1999, 39, 103–109. [Google Scholar] [CrossRef]
- Selvakumar, A.; O’Connor, T.P. Organism Detection in Permeable Pavement Parking Lot Infiltrates at the Edison Environmental Center, New Jersey. Water Environ. Res. 2017, 90, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.; Alam, T.; Sanchez, A.; Guerrero, J.; Oraby, T.; Ibrahim, E.; Jones, K.D. Stormwater Runoff Quality and Quantity from Permeable and Traditional Pavements in Semiarid South Texas. J. Environ. Eng. 2020, 146, 05020001. [Google Scholar] [CrossRef]
- Tota-Maharaj, K.; Scholz, M. Efficiency of permeable pavement systems for the removal of urban runoff pollutants under varying environmental conditions. Environ. Prog. Sustain. Energy 2010, 29, 358–369. [Google Scholar] [CrossRef]
- Brown, R.A.; Borst, M. Nutrient infiltrate concentrations from three permeable pavement types. J. Environ. Manag. 2015, 164, 74–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Li, Z.; Zhang, X.; Li, Z.; Liu, D.; Li, T.; Zhang, Z. The effect of different surface materials on runoff quality in permeable pavement systems. Environ. Sci. Pollut. Res. 2017, 24, 21103–21110. [Google Scholar] [CrossRef]
- Braswell, A.S.; Anderson, A.R.; Hunt, W.F. Hydrologic and water quality evaluation of a permeable pavement and biofiltration device in series. Water 2018, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Razzaghmanesh, M.; Borst, M. Long-term effects of three types of permeable pavements on nutrient infiltrate concentrations. Sci. Total Environ. 2019, 670, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, F.; Hill, K. Effect of permeable pavement basecourse aggregates on stormwater quality for irrigation reuse. Ecol. Eng. 2015, 77, 189–195. [Google Scholar] [CrossRef]
- Paula Junior, A.C.; Jacinto, C.; Oliveira, T.M.; Polisseni, A.E.; Brum, F.M.; Teixeira, E.R.; Mateus, R. Characterisation and life cycle assessment of pervious concrete with recycled concrete aggregates. Crystals 2021, 11, 209. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Abdelhady, A.; Li, H.; Harvey, J. Initial evaluation methodology and case studies for life cycle impact of permeability of permeable pavements. Int. J. Transp. Sci. Technol. 2018, 7, 169–178. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Wang, Y.; Zhang, H. Integrated life cycle assessment of permeable pavement: Model development and case study. Transp. Res. Part D Transp. Environ. 2020, 85, 102381. [Google Scholar] [CrossRef]
- Fathollahi, A.; Coupe, S.J. Life cycle assessment (LCA) and life cycle costing (LCC) of road drainage systems for sustainability evaluation: Quantifying the contribution of different life cycle phases. Sci. Total Environ. 2021, 776, 145937. [Google Scholar] [CrossRef]
- Singh, A.; Vaddy, P.; Biligiri, K.P. Quantification of embodied energy and carbon footprint of pervious concrete pavements through a methodical lifecycle assessment framework. Resour. Conserv. Recycl. 2020, 161, 104953. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.J.; Hu, M.; Yang, H.; Tanaka, K. Design of low impact development in the urban context considering hydrological performance and life-cycle cost. J. Flood Risk Manag. 2020, 13, e12625. [Google Scholar] [CrossRef]
- Rehan, T.; Qi, Y.; Werner, A. Life-cycle cost analysis for traditional and permeable pavements. In Construction Research Congress 2018: Sustainable Design and Construction and Education—Selected Papers from the Construction Research Congress; American Society of Civil Engineers (ASCE): New Orleans, LA, USA, 2018; pp. 422–431. [Google Scholar] [CrossRef]
- Antunes, L.N.; Ghisi, E.; Thives, L.P. Permeable pavements life cycle assessment: A literature review. Water 2018, 10, 1575. [Google Scholar] [CrossRef] [Green Version]
- Antunes, L.; Thives, L.; Ghisi, E. Potential for Potable Water Savings in Buildings by Using Stormwater Harvested from Porous Pavements. Water 2016, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Antunes, L.N.; Ghisi, E.; Severis, R.M. Environmental assessment of a permeable pavement system used to harvest stormwater for non-potable water uses in a building. Sci. Total Environ. 2020, 746, 141087. [Google Scholar] [CrossRef]
- Antunes, L.N.; Sydney, C.; Ghisi, E.; Phoenix, V.R.; Thives, L.P.; White, C.; Garcia, E.S.H. Reduction of environmental impacts due to using permeable pavements to harvest stormwater. Water 2020, 12, 2840. [Google Scholar] [CrossRef]
- Garcia, E.S.; Thives, L.P.; Ghisi, E.; Antunes, L.N. Analysis of permeability reduction in drainage asphalt mixtures due to decrease in void volume. J. Clean. Prod. 2020, 248, 119292. [Google Scholar] [CrossRef]
- Ghisi, E.; Belotto, T.; Thives, L.P. The use of permeable interlocking concrete pavement to filter stormwater for non-potable uses in buildings. Water 2020, 12, 2045. [Google Scholar] [CrossRef]
- Hammes, G.; Thives, L.P.; Ghisi, E. Application of stormwater collected from porous asphalt pavements for non-potable uses in buildings. J. Environ. Manag. 2018, 222, 338–347. [Google Scholar] [CrossRef]
- Martins Vaz, I.C.; Ghisi, E.; Thives, L.P. Life cycle energy assessment and economic feasibility of stormwater harvested from pervious pavements. Water Res. 2020, 170, 115322. [Google Scholar] [CrossRef]
- Martins Vaz, I.C.; Ghisi, E.; Thives, L.P. Stormwater Harvested from Permeable Pavements as a Means to Save Potable Water in Buildings. Water 2021, 13, 1896. [Google Scholar] [CrossRef]
- Thives, L.P.; Ghisi, E.; Brecht, D.G.; Pires, D.M. Filtering capability of porous asphalt pavements. Water 2018, 10, 206. [Google Scholar] [CrossRef] [Green Version]
- Thives, L.P.; Ghisi, E.; da Silva, N.M. Potable Water Savings in Multifamily Buildings Using Stormwater Runoff from Impermeable Paved Streets. Eur. J. Sustain. Dev. 2018, 7, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Associação Brasileira De Normas Técnicas (ABNT). NBR 13969: Septic Tank—Units for Treatment and Disposal of Liquid Effluents—Project, Construction and Operation; ABNT: Rio de Janeiro, Brazil, 1997. [Google Scholar]
- Ghisi, E.; Cordova, M.M. Netuno 4 Programme (Netuno 4, Programa Computacional); LABEEE: Florianópolis, Brazil, 2014. (In Portuguese) [Google Scholar]
- Guimarães, J.M.F. Porous Asphalt Mixtures Modified with SBS Polymer and Tyre Rubber (Concreto Asfáltico Drenante em Asfaltos Modificados por Polímero SBS e Borracha moíDa de Pneus). Master’s Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2012. (In Portuguese). [Google Scholar]
- DNIT. DNER-ES 386/99—Porous Friction Layer with Polymer Asphalt; Departamento de Infraestrutura Rodoviária, Norma Rodoviária: Rio de Janeiro, Brazil, 1999. [Google Scholar]
- ASTM. Annual Book of ASTM Standards; American Society for Testing and Materials: West Conshohocken, PA, USA, 2002. [Google Scholar]
- AFNOR. NF P 98-250-2: Essais Relatifs Aux Chaussées, Preparation des Mélanges Hydrocarbonés, Partie 2: Compactage des Plaques; Association Francaise de Normalisation: Paris, France, 1991. (In French) [Google Scholar]
- AASHTO. R35—Standard Practice for Superpave Volumetric Design for Asphalt Mixtures; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2015. [Google Scholar]
- AFNOR. NF P98-254-2: Mesure de Proprietés Liées à la Perméabilité des Matériaux des Mélanges Hydrocarbonés, Partie 2; Association Francaise de Normalisation: Paris, France, 1993. (In French) [Google Scholar]
- (CEDEX): Gabinete de Formación y Documentación; Centro de Estudios y Experimentación de Obras Públicas. NLT-327/00. Permeabilidad in Situ de Pavimentos Drenantes Con el Permeámetro LCS; Centro de Estudios y Experimentación de Obras Públicas: Madrid, Spain, 1996. [Google Scholar]
- DNER (Departamento Nacional de Estradas de Rodagem). DNER-ME 081: Agregados—Determinação da Absorção e da Densidade de Agregado Graúdo; DNER: Rio de Janeiro, Bazil, 1998; Volume 81, pp. 1–6. [Google Scholar]
- DNER (Departamento Nacional de Estradas de Rodagem). ME 084/95—Agregado miúdo—Determinação da Densidade Real; DNER: São Paulo, Brazil, 1995. [Google Scholar]
- Caltrans. Method of Test for Optimum Bitumen Content (OBC) for Open Graded Friction Course—California Test 368; Caltrans: San Francisco, CA, USA, 2010. [Google Scholar]
- PMSP (Prefeitura do Município de São Paulo). ESP-10/92 Camadas de Pré-Misturado a Quente; PMSP: São Paulo, Brazil, 1992. (In Portuguese) [Google Scholar]
- Associação Brasileira De Normas Técnicas (ABNT). NBR 9781—Concrete Paving Units—Specification and Test Methods; ABNT: Rio de Janeiro, Brazil, 2013. [Google Scholar]
- ANA. Water Conservation and Reuse in Buildings. Agência Nacional de Águas; Editora Gráfica: São Paulo, Brazil, 2005. (In Portuguese) [Google Scholar]
- Associação Brasileira De Normas Técnicas (ABNT). NBR 16783: Use of Alternative Sources of Non-Potable Water in Buildings; ABNT: Rio de Janeiro, Brazil, 2019. [Google Scholar]
- Associação Brasileira De Normas Técnicas (ABNT). NBR 15527: Rainwater Harvesting from Roofs for Non-Potables Uses—Requirements (Água de Chuva—Aproveitamento de Coberturas em áreas Urbanas para Fins não Potáveis—Requisitos); ABNT: Rio de Janeiro, Brazil, 2007. (In Portuguese) [Google Scholar]
- Conselho Nacional do Meio Ambiente. Conselho Nacional do Meio Ambiente Resolução No 357, de 18 de Março de 2005. Classificação dos Corpos de Água e Diretrizes Ambientais Para Seu Enquadramento; Ministério Nacional do Meio Ambiente: Brasília, Brazil, 2005. (In Portuguese) [Google Scholar]
- Conselho Nacional do Meio Ambiente. Conselho Nacional do Meio Ambiente Resolução No 430, de 13 de Maio de 2011. Condições e Padrões de Lançamento de Efluentes; Ministério Nacional do Meio Ambiente: Brasília, Brazil, 2011. (In Portuguese) [Google Scholar]
- Drake, J.A.; Bradford, A.; Marsalek, J. Review of environmental performance of permeable pavement systems: State of the knowledge. Water Qual. Res. J. Can. 2013, 48, 203–222. [Google Scholar] [CrossRef]
- Scholz, M.; Grabowiecki, P. Review of permeable pavement systems. Build. Environ. 2007, 42, 3830–3836. [Google Scholar] [CrossRef]
- Tota-Maharaj, K.; Coleman, N. Developing novel photocatalytic cementitious permeable pavements for depollution of contaminants and impurities in urban cities. In Proceedings of the 10th International Conference on Environmental Engineering, Shenzhen, China, 27–28 April 2017; pp. 27–28. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, R.; Pang, L.X.; Zhang, W.; Tan, X. Study on Photo-catalytic Efficiency and Durability of Nano-TiO2 in Permeable Concrete Pavement Structure. IOP Conf. Ser. Earth Environ. Sci. 2019, 371, 042011. [Google Scholar] [CrossRef] [Green Version]
- Rocha, V. Netuno’s Algorithm Validation to Evaluate the Potential for Potable Water Savings and Sizing of Rainwater Reservoirs in Buildings (Validação do Algoritmo do Programa Netuno para Avaliação do Potencial de Economia de água Potável e Dimensionamento de Reservatórios de Aproveitamento de água Pluvial em Edificações. Ph.D. Thesis, Universidade Federal de Santa Catarina, Santa Catarina, Brazil, 2009. (In Portuguese). [Google Scholar]
- Acioli, L.A. Experimental Study of Permeable Pavements for the Control of Surface Runoff at the Source (Estudo Experimental de Pavimentos Permeaveis para o Controle do Escoamento Superficial na Fonte). Master’s Thesis, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil, 2005. (In Portuguese). [Google Scholar]
- Pinto, L. Performance of Permeable Pavements as a Mitigating Measure for Urban Soil Sealing (Desempenho de Pavimentos Perme aveis como Medida Mitigadora da Impermeabilizaçao do Solo Urbano). Ph.D. Thesis, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil, 2011. (In Portuguese). [Google Scholar]
- CIRIA. The Sustainable Drainage Systems (SUDS) Manual. Construction Industry Research and Information Association (CIRIA), u.k978-086 ed.; CIRIA: London, UK, 2015. [Google Scholar]
- Silveira, A.L.L.D. Hydrologic Pre-Sizing of Permeable Pavements and Infiltration Trenches (Pré-Dimensionamento Hidrológico de Pavimentos Permeáveis e Trincheiras de Infiltração). In Simpósio Brasileiro de Recursos Hídricos, XV; ABRH: Curitiba, Brazil, 2003. (In Portuguese) [Google Scholar]
- Associação Brasileira De Normas Técnicas (ABNT). NBR 16416: Pervious Concrete Pavement—Requirements and Procedures; ABNT: Rio de Janeiro, Brazil, 2015. [Google Scholar]
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; Schryver, A.D.; Struijs, J.; Zelm, R.V. ReCiPe 2008; Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer: Wageningen, The Netherlands, 2009; pp. 1–126. [Google Scholar]
ID | Authors | Year | Title |
---|---|---|---|
1 | Antunes et al. [45] | 2016 | Potential for potable water savings in buildings by using stormwater harvested from porous pavements |
2 | Antunes et al. [46] | 2020a | Environmental assessment of a permeable pavement system used to harvest stormwater for non-potable water uses in a building |
3 | Antunes et al. [47] | 2020b | Reduction of environmental impacts due to using permeable pavements to harvest stormwater |
4 | Garcia et al. [48] | 2019 | Analysis of permeability reduction in drainage asphalt mixtures due to decrease in void volume |
5 | Ghisi et al. [49] | 2020 | The use of permeable interlocking concrete pavement to filter stormwater for non-potable uses in buildings |
6 | Hammes et al. [50] | 2018 | Application of stormwater collected from porous asphalt pavements for non-potable uses in buildings |
7 | Martins Vaz et al. [51] | 2020 | Life cycle energy assessment and economic feasibility of stormwater harvested from pervious pavements |
8 | Martins Vaz et al. [52] | 2021 | Stormwater harvested from permeable pavements as a means to save potable water in buildings |
9 | Thives et al. [53] | 2018a | Filtering capability of porous asphalt pavements |
10 | Thives et al. [54] | 2018b | Potable water savings in multifamily buildings using stormwater runoff from impermeable paved streets |
Study | Potable Water Savings Potential | Clogging | Quantity | Quality | LCA LCEA or LCCA | Hydraulic Design | Structural Design |
---|---|---|---|---|---|---|---|
Antunes et al. [45] | X | - | X | X | - | - | - |
Antunes et al. [46] | X | - | - | - | X | X | - |
Antunes et al. [47] | X | - | - | - | X | X | - |
Garcia et al. [48] | - | X | - | - | - | - | - |
Ghisi et al. [49] | - | - | X | X | - | - | - |
Hammes et al. [50] | X | - | X | X | - | X | - |
Martins Vaz et al. [51] | X | - | - | - | X | X | - |
Martins Vaz et al. [52] | X | - | - | - | - | X | X |
Thives et al. [53] | - | - | X | X | - | - | - |
Thives et al. [54] | X | - | - | - | - | - | - |
Study | Model | Layer | Material | Thickness (cm) | Infiltration (%) |
---|---|---|---|---|---|
Antunes et al. [45] | 1 | Only surface | Porous asphalt mixture with tyre rubber (without water cycling) | 5 | 85.8 |
2 | Porous asphalt mixture with tyre rubber and water cycling | 84.3 | |||
3 | Porous asphalt mixture with SBS (without water cycling) | 84.6 | |||
4 | Porous asphalt mixture with SBS and water cycling | 87 | |||
Hammes et al. [50] | A | Surface | Porous asphalt mixture with tyre rubber | 5 | 70.1 |
Choker course | Coarse aggregate (19 mm) | 3 | |||
Filter course | Sand (4.75 mm) | 25 | |||
Filter blanket | Coarse aggregate (9.5 mm) | 4 | |||
Reservoir course | Coarse aggregate (37.5 mm) | 5 | |||
B | Surface | Porous asphalt mixture with tyre rubber | 5 | 80 | |
Choker course | Coarse aggregate (19 mm) | 3 | |||
Reservoir course | Coarse aggregate (37.5 mm) | 7 | |||
Thives et al. [53] | A | Surface | Porous asphalt mixture (CPA) | 7 | 86.4 |
Choker course | Pre-Hot Mix (PMQ) | 5 | |||
Reservoir course | Simple graded gravel (BGS) | 15 | |||
B | Surface | Porous asphalt mixture (Caltrans) | 7 | 83.7 | |
Choker course | Coarse aggregate (19 mm) | 5 | |||
Filter course | Sand (4.75 mm) | 15 | |||
Reservoir course | Coarse aggregate (37.5 mm) | 16 | |||
Ghisi et al. [49] | A | Surface | Permeable interlocking blocks | 6 | 78.8 |
Bedding layer | Coarse aggregate (9.5 mm) | 3 | |||
Choker course | Coarse aggregate (19 mm) | 3 | |||
Filter course | Sand (4.75 mm) | 25 | |||
Filter blanket | Coarse aggregate (9.5 mm) | 4 | |||
Reservoir course | Coarse aggregate (37.5 mm) | 5 | |||
B | Surface | Permeable interlocking blocks | 6 | 88.1 | |
Bedding layer | Coarse aggregate (9.5 mm) | 3 | |||
Choker course | Coarse aggregate (19 mm) | 3 | |||
Reservoir course | Coarse aggregate (37.5 mm) | 5 |
Limit Values | Hammes et al. [50] | Thives et al. [53] | Ghisi et al. [49] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | ANA [69] | NBR 15527 [71] | NBR 16783 [55] | CONAMA [72,73] | Runoff | Model A | Model B | Runoff | Model A | Model B | Runoff | Model A | Model B |
E. coli | - | <200/100 mL | <200/100 mL | - | na | na | na | - | - | - | - | - | - |
Faecal coliforms | nd | - | - | - | 1020 | 6.5 | 352 | - | - | - | 1716.5 | 777.8 | 1493.6 |
pH | 6.0–9.0 | 6.0–9.0 | 6.0–9.0 | - | 7.6 | 5.3 | 7.4 | 6.9 | 7.6 | 7.6 | 8 | 6.7 | 8.3 |
Colour | ≤10 HU | - | - | - | 144 | 5 | 146 | - | - | - | 179 | 172 | 151 |
Turbidity | ≤2 NTU | < 5.0 uT | < 5.0 uT | - | 51.7 | 1.7 | 23.2 | - | - | - | 31.2 | 26.9 | 17.9 |
Odour and aspect | nu | - | - | - | u | nu | u | - | - | - | nu | nu | nu |
Oil and grease | ≤1 mg/L | - | - | - | 1 | na | na | - | - | - | nd | nd | nd |
BOD | ≤10 mg/L | - | ≤20 mg/L | - | 8.2 | 5 | 8 | - | - | - | 3.3 | 0.7 | 4.7 |
Nitrate | <10 mg/L | - | - | - | 0.28 | 0.52 | 0.3 | - | - | - | 0.33 | 0.72 | 0.92 |
Ammoniacal nitrogen | ≤20 mg/L | - | - | - | 0.67 | 0.8 | 0.95 | 0.36 | 0.2 | 0.14 | 0.83 | 1.12 | 1.37 |
Nitrite | ≤1 mg/L | - | - | - | 0.04 | 0.01 | 0.06 | 0.36 | 0.2 | 0.14 | 0.05 | 0.06 | 0.12 |
Total phosphorus | ≤0.1 mg/L | - | - | - | 0.4 | 0.31 | 0.17 | 0.92 | 1.26 | 3.19 | 0.18 | 0.08 | 0.26 |
Total suspended solids | ≤5 mg/L | - | ≤2000 mg/L | - | 98 | 8 | 17 | - | - | - | 16 | 6 | 7 |
Iron | - | - | - | ≤15.00 | - | - | - | 0.54 | 0.81 | 2.12 | - | - | - |
Aluminium | - | - | - | ≤0.10 | - | - | - | 0.05 | 0.13 | 0.18 | - | - | - |
Zinc | - | - | - | ≤5.00 | - | - | - | 0.04 | 0.08 | 0.11 | - | - | - |
DO | - | - | - | ≤6.00 | - | - | - | 6.9 | 7.6 | 6.7 | - | - | - |
Chromium | - | - | - | ≤20.00 | - | - | - | 0.03 | 0.03 | 0.07 | - | - | - |
Copper | - | - | - | ≤1.00 | - | - | - | 0.32 | 0.3 | 0.37 | - | - | - |
OVC | <dL | - | - | - | - | - | - | - | - | - | <dL | <dL | <dL |
Paper | City | Annual Rainfall (mm) | Pavement Type | Infiltration Rate (%) | Type of Use | Area (m²) | Reservoir Capacity (m³) | Final Non-Potable Uses (%) | Potential for Potable Water Savings (%) |
---|---|---|---|---|---|---|---|---|---|
Antunes et al. [45] | Florianópolis | 1766 | Considered only the permeable coating (modified with SBS and tyre rubber) | 85.4 | Residential | 11,044 | 1000 | 19.4 | 19.4 |
Public | 76.0 | 75.7 | |||||||
Commercial | 70.0 | 70.0 | |||||||
Hammes et al. [50] | Florianópolis | 1720 | Model A: CPA, choker course, filter course, filter blanket, reservoir layer | 70.1 | University | 5500 | 45 | 69.0 | 53 |
Model B: CPA, choker course, reservoir layer | 80.0 | 54 | |||||||
Thives et al. [54] | Florianópolis | 1607 | Impermeable | 0.90 (runoff coefficient) | Residential | 9058 ± 10% | 1000 | 20, 30 and 40 | 19.3 to 33.4 |
Antunes et al. [46] | Florianópolis | 1764 | Model B of Hammes et al. [50] | 80.0 | Public | 5800 | 50 | 82.0 | 69.6 |
Antunes et al. [47] | Glasgow | 1032 | Model B of Hammes et al. [50] | 80.0 | Residential | 28,505 | 500 | 37.0 | 34.5 |
Martins Vaz et al. [51] | Florianópolis | 1662 | Model B of Hammes et al. [50] | 80.0 | University | 1700 | 20 | 69.0 | 42.1 |
Model of Acioli [79] | 94.9 | 43.6 | |||||||
Model of Pinto [80] | 88.0 | 42.9 | |||||||
Martins Vaz et al. [52] | Eight Brazilian cities | Variable in each city | Model B of Ghisi et al. [49] | 88.1 | University | Variable in six different buildings | 9 to 24 | 69, 77 and 85 | 18.4 to 84.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins Vaz, I.C.; Antunes, L.N.; Ghisi, E.; Thives, L.P. Permeable Pavements as a Means to Save Water in Buildings: State of the Art in Brazil. Sci 2021, 3, 36. https://doi.org/10.3390/sci3040036
Martins Vaz IC, Antunes LN, Ghisi E, Thives LP. Permeable Pavements as a Means to Save Water in Buildings: State of the Art in Brazil. Sci. 2021; 3(4):36. https://doi.org/10.3390/sci3040036
Chicago/Turabian StyleMartins Vaz, Igor Catão, Lucas Niehuns Antunes, Enedir Ghisi, and Liseane Padilha Thives. 2021. "Permeable Pavements as a Means to Save Water in Buildings: State of the Art in Brazil" Sci 3, no. 4: 36. https://doi.org/10.3390/sci3040036
APA StyleMartins Vaz, I. C., Antunes, L. N., Ghisi, E., & Thives, L. P. (2021). Permeable Pavements as a Means to Save Water in Buildings: State of the Art in Brazil. Sci, 3(4), 36. https://doi.org/10.3390/sci3040036