The General Theory of Scientific Variability for Technological Evolution
Abstract
:1. Introduction and Observations on Evolution in Science and Technology
2. Critique of Current Theories in Technological Evolution: Incompleteness of Drivers
3. Research Methodology
3.1. Research Philosophy of Proposed General Theory of Scientific Variability
3.2. The Extension of Postulates of the Variability in Science
Extension of the Postulates of Variability in the Science and Technology Domain
- (a)
- Scientific topics in research fields have different variability.
- (b)
- Variability in research fields drives the evolution, variability ⇒ evolution.
- (c)
- Variability in research fields is basic for evolution and adaptation to changing environments.
3.3. Proposed Theory of Scientific Variability for Technological Evolution
Prediction of the Theory of Scientific Variability for Technological Evolution
3.4. Testable Implications of the Prediction of Proposed Theory of Scientific Variability for Technological Evolution
- Scientific variability changes between research fields of the same discipline.
- The pace of technological evolution can depend on scientific variability in related research fields.
Research Setting to Test the Predictions: Research Fields in Quantum Technologies
3.5. Study Design
3.5.1. Sources of Data, Samples, and Measures for the Analysis of Variation in Research Fields
- -
- Quantum Meteorology: 2028 scientific documents from 1972 to 2023
- -
- Quantum Sensing: 1726 scientific documents from 2000 to 2023
- -
- Quantum Optics: 58,060 scientific documents from 1958 to 2023
- -
- Finally, Quantum Imaging: 753 scientific documents from 1996 to 2023
3.5.2. Sources of Data, Samples, and Measures for Technology Analysis of the Rate of Growth in Research Fields
- -
- Quantum Meteorology: 1851 scientific documents, with 8646 occurrences concerning the first 160 research topics (keywords) having high frequency (all data available from 1972 to 2023).
- -
- Quantum Sensing: 1375 scientific documents, with 6618 occurrences concerning the first 160 research topics having high frequency (data from 2000 to 2023).
- -
- Quantum Optics: 54,332 scientific documents, with 236,887 occurrences concerning the first 160 research topics with high frequency (data from 1958 to 2023).
- -
- Finally, Quantum Imaging: 673 scientific documents, with 3407 occurrences concerning the first 160 research topics having high frequency (data from 1996 to 2023).
3.5.3. Methods for Statistical Analyses of Data
- ○
- Test of the prediction n. 1 stated in Section 3.4 with the analysis of scientific variability based on entropy index
- ○
- Test of the prediction n. 2 stated in Section 3.4 that the evolution of technology depends on variability
4. Empirical Evidence
4.1. Validation of the Prediction That Scientific Variability Changes between different Research Fields in the Same Discipline
4.2. Preliminary Validation of the Prediction That Evolution of Scientific and Technological Information = f(Scientific Variability)
5. Fundamental Considerations on the General Theory of Scientific Variability for Technological Evolution
5.1. Explanation of Results
- -
- The accumulation of scientific knowledge (papers having scientific and technological information) is a factor determining variability. Lower accumulation of scientific products in younger research fields shows a higher variability, associated with a higher technological evolution and uncertainty in technological trajectories, whereas a higher accumulation of scientific outputs in older research fields is associated with a lower variability that guides more stable scientific and technological trajectories.
- -
- The specificity and nature of the research fields and technologies affect the variability and related evolutionary pathways. High variability within the complex system of research fields that are more oriented to support general purpose technologies (diving different technologies), such as Quantum Sensing, seems to induce a high rate of growth in scientific and technological evolution [29,30,83].
5.2. Deductive Implications of the General Theory of Scientific Variability for Technological Evolution
- -
- Scientific variability in research fields drives technological evolution.
- -
- Variability in research fields and technologies is due to their specific nature, scientific and technological interactions, and changes in the surrounding innovation ecosystem and ecotone (transition zone) that generate turbulence (complexity and uncertainty) and progressive convergence and evolutionary pathways.
6. Conclusions, Limitations and Prospects
6.1. Managerial and Policy Implications
- (a)
- Exploration approaches in research fields and technological pathways to detect promising trajectories, in the presence of high scientific variability, by differentiating R&D investments between different technological and innovation projects present in portfolio of firms and/or nations.
- (b)
- Exploitation strategy, when variability in research fields is low, to direct R&D investments in specific technological and innovation projects having manifold potential applications in different industries and markets.
6.2. Limitations and Future Research
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anastopoulos, I.; Bontempi, E.; Coccia, M.; Quina, M.; Shaaban, M. Sustainable strategic materials recovery, what’s next? Next Sustain. 2023, 1, 100006. [Google Scholar] [CrossRef]
- Arthur, B.W. The Nature of Technology: What it is and How it Evolves; Free Press, Simon & Schuster: London, UK, 2009. [Google Scholar]
- Basalla, G. The History of Technology; Cambridge University Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Bryan, A.; Ko, J.; Hu, S.J.; Koren, Y. Co-Evolution of Product Families and Assembly Systems. CIRP Ann. 2007, 56, 41–44. [Google Scholar] [CrossRef]
- Núñez-Delgado, A.; Zhang, Z.; Bontempi, E.; Coccia, M.; Race, M.; Zhou, Y. Editorial on the Topic “New Research on Detection and Removal of Emerging Pollutants”. Materials 2023, 16, 725. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M.; Bontempi, E. New trajectories of technologies for the removal of pollutants and emerging contaminants in the environment. Environ. Res. 2023, 229, 115938. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Kaur, J.; Milojevic’, S.; Flammini, A.; Menczer, F. Social Dynamics of Science. Sci. Rep. 2013, 3, 1069. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M. What is technology and technology change? A new conception with systemic-purposeful perspective for technology analysis. J. Soc. Adm. Sci. 2019, 6, 145–169. [Google Scholar]
- Coccia, M. Technological Innovation. In The Blackwell Encyclopedia of Sociology, 1st ed.; Ritzer, G., Ed.; Wiley: Hoboken, NJ, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Coccia, M. Why do nations produce science advances and new technology? Technol. Soc. 2019, 59, 101124. [Google Scholar] [CrossRef]
- Coccia, M. General properties of the evolution of research fields: A scientometric study of human microbiome, evolutionary robotics and astrobiology. Scientometrics 2018, 117, 1265–1283. [Google Scholar] [CrossRef]
- Coccia, M. Probability of discoveries between research fields to explain scientific and technological change. Technol. Soc. 2022, 68, 101874. [Google Scholar] [CrossRef]
- Coccia, M. Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technol. Anal. Strateg. Manag. 2017, 29, 1048–1061. [Google Scholar] [CrossRef]
- Fleming, L.; Sorenson, O. Science as a map in technological search. Strateg. Manag. J. Wiley Blackwell 2004, 25, 909–928. [Google Scholar] [CrossRef]
- Mazzolini, A.; Grilli, J.; De Lazzari, E.; Osella, M.; Lagomarsino, M.C.; Gherardi, M. Zipf and Heaps laws from dependency structures in component systems. Phys. Rev. E 2018, 98, 012315. [Google Scholar] [CrossRef] [PubMed]
- Pang, T.Y.; Maslov, S. Universal distribution of component frequencies in biological and technological systems. Proc. Natl. Acad. Sci. USA 2013, 110, 6235–6239. [Google Scholar] [CrossRef] [PubMed]
- Sahal, D. Patterns of Technological Innovation; Addison-Wesley Publishing Company, Inc.: Reading, MA, USA, 1981. [Google Scholar]
- Coccia, M. The evolution of scientific disciplines in applied sciences: Dynamics and empirical properties of experimental physics. Scientometrics 2020, 124, 451–487. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S. General laws of funding for scientific citations: How citations change in funded and unfunded research between basic and applied sciences. J. Data Inf. Sci. 2024, 9, 1–18. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S. Research funding and citations in papers of Nobel Laureates in Physics, Chemistry and Medicine, 2019–2020. J. Data Inf. Sci. 2024, 9, 1–25. [Google Scholar] [CrossRef]
- Coccia, M. Converging Artificial Intelligence and Quantum Technologies: Accelerated Growth Effects in Technological Evolution. Technologies 2024, 12, 66. [Google Scholar] [CrossRef]
- McEntire, K.D.; Gage, M.; Gawne, R.; Hadfield, M.G.; Hulshof, C.; Johnson, M.A.; Levesque, D.L.; Segura, J.; Pinter-Wollman, N. Understanding Drivers of Variation and Predicting Variability Across Levels of Biological Organization. Integr. Comp. Biol. 2022, 61, 2119–2131. [Google Scholar] [CrossRef]
- Ziman, J. (Ed.) Technological Innovation as an Evolutionary Process; Cambridge University Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Coccia, M. Law of Variability in Science Driving Technological Evolution. Preprints 2023, 2023120187. [Google Scholar] [CrossRef]
- Coccia, M. The Foundation of the General Theory of Scientific Variability for Technological Evolution. Preprints 2024, 2024041650. [Google Scholar] [CrossRef]
- Coccia, M. Variability in Research Topics Driving Different Technological Trajectories. Preprints 2024, 2024020603. [Google Scholar] [CrossRef]
- Mulkay, M. Three models of scientific development. Sociol. Rev. 1975, 23, 509–526. [Google Scholar] [CrossRef]
- Seidman, S.S. Models of scientific development in sociology. Humboldt J. Soc. Relat. 1987, 15, 119–139. Available online: http://www.jstor.org/stable/23262618 (accessed on 9 January 2024).
- Coccia, M.; Mosleh, M.; Roshani, S. Evolution of Quantum Computing: Theoretical and Innovation Management Implications for Emerging Quantum Industry. IEEE Trans. Eng. Manag. 2024, 71, 2270–2280. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S. Evolutionary Phases in Emerging Technologies: Theoretical and Managerial Implications from Quantum Technologies. IEEE Trans. Eng. Manag. 2024. [Google Scholar] [CrossRef]
- Coccia, M.; Roshani, S.; Mosleh, M. Scientific Developments and New Technological Trajectories in Sensor Research. Sensors 2021, 21, 7803. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M.; Roshani, S.; Mosleh, M. Evolution of Sensor Research for Clarifying the Dynamics and Properties of Future Directions. Sensors 2022, 22, 9419. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, T.S. The Structure of Scientific Revolutions; University of Chicago Press: Chicago, IL, USA, 1996. [Google Scholar]
- Dogan, M.; Pahre, R. Creative Marginality: Innovation at the Intersections of Social Sciences; Westview Press: Boulder, CO, USA, 1990. [Google Scholar]
- Dowling, J.P.; Milburn, G.J. Quantum technology: The second quantum revolution. Phil. Trans. R. Soc. A 2003, 361, 1655–1674. [Google Scholar] [CrossRef] [PubMed]
- Noyons, E.C.M.; van Raan, A.F.J. Monitoring scientific developments from a dynamic perspective: Self-organized structuring to map neural network research. J. Am. Soc. Inf. Sci. 1998, 49, 68–81. [Google Scholar]
- van Raan, A.F.J. On growth, ageing, and fractal differentiation of science. Scientometrics 2000, 47, 347–362. [Google Scholar] [CrossRef]
- Pistorius, C.W.I.; Utterback, J.M. Multi-mode interaction among technologies. Res. Policy 1997, 26, 67–84. [Google Scholar] [CrossRef]
- Coccia, M. Comparative Theories of the Evolution of Technology. In Global Encyclopedia of Public Administration, Public Policy, and Governance; Farazmand, A., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Coccia, M. Classification of innovation considering technological interaction. J. Econ. Bib. 2018, 5, 76–93. [Google Scholar]
- Coccia, M. A theory of classification and evolution of technologies within a Generalised Darwinism. Technol. Anal. Strateg. Manag. 2019, 31, 517–531. [Google Scholar] [CrossRef]
- Coccia, M. The theory of technological parasitism for the measurement of the evolution of technology and technological forecasting. Technol. Forecast. Soc. Chang. 2019, 141, 289–304. [Google Scholar] [CrossRef]
- Coccia, M. Theorem of not independence of any technological innovation. J. Econ. Bib. JEB 2018, 5, 29–35. [Google Scholar]
- Coccia, M.; Watts, J. A theory of the evolution of technology: Technological parasitism and the implications for innovation management. J. Eng. Technol. Manag. 2020, 55, 101552. [Google Scholar] [CrossRef]
- Utterback, J.M.; Pistorius, C.; Yilmaz, E. The Dynamics of Competition and of the Diffusion of Innovations; MIT Sloan School Working Paper 5519-18; MIT Libraries: Cambridge, MA, USA, 2019. [Google Scholar]
- Wagner, A.; Rosen, W. Spaces of the possible: Universal Darwinism and the wall between technological and biological innovation. J. R. Soc. Interface 2014, 11, 20131190. [Google Scholar] [CrossRef]
- Erwin, D.H.; Krakauer, D.C. Evolution. Insights into innovation. Science 2004, 304, 1117–1119. [Google Scholar] [CrossRef] [PubMed]
- Schuster, P. Major Transitions in Evolution and in Technology. Complexity 2016, 21, 7–13. [Google Scholar] [CrossRef]
- Solé, R.V.; Valverde, S.; Casals, M.R.; Kauffman, S.A.; Farmer, D.; Eldredge, N. The Evolutionary Ecology of Technological Innovations. Complexity 2013, 18, 25–27. [Google Scholar] [CrossRef]
- Valverde, S.; Sole, R.V.; Bedau, M.A.; Packard, N. Topology and evolution of technology innovation networks. Phys. Rev. Stat. Nonlin. Soft Matter Phys. 2007, 76, 056118. [Google Scholar] [CrossRef] [PubMed]
- Sandén, B.A.; Hillman, K.M. A framework for analysis of multi-mode interaction among technologies with examples from the history of alternative transport fuels in Sweden. Res. Policy 2011, 40, 403–414. [Google Scholar] [CrossRef]
- Coccia, M. Technological Parasitism; ©KSP Books: Istanbul, Türkiye, 2019; ISBN 978-605-7602-90-9. [Google Scholar]
- Coccia, M. New Perspectives in Innovation Failure Analysis: A taxonomy of general errors and strategic management for reducing risks. Technol. Soc. 2023, 75, 102384. [Google Scholar] [CrossRef]
- Daim, T.U.; Rueda, G.; Martin, H.; Gerdsri, P. Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technol. Forecast. Soc. Chang. 2006, 73, 981–1012. [Google Scholar] [CrossRef]
- Ghaffari, M.; Aliahmadi, A.; Khalkhali, A.; Zakery, A.; Daim, T.U.; Yalcin, H. Topic-based technology mapping using patent data analysis: A case study of vehicle tires. Technol. Forecast. Soc. Chang. 2023, 193, 122576. [Google Scholar] [CrossRef]
- Jashari, A.; Tiberius, V.; Dabić, M. Tracing the progress of scenario research in business and management. Futures Foresight Sci. 2022, 4, e2109. [Google Scholar] [CrossRef]
- Tiberius, V.; Gojowy, R.; Dabić, M. Forecasting the future of robo advisory: A three-stage Delphi study on economic, technological, and societal implications. Technol. Forecast. Soc. Chang. 2022, 182, 121824. [Google Scholar] [CrossRef]
- Zamani, M.; Yalcin, H.; Naeini, A.B.; Zeba, G.; Daim, T.U. Developing metrics for emerging technologies: Identification and assessment. Technol. Forecast. Soc. Chang. 2022, 176, 121456. [Google Scholar] [CrossRef]
- Dawkins, R. Universal Darwinism. In Evolution from Molecules to Man; Bendall, D.S., Ed.; Cambridge University Press: Cambridge, MA, USA, 1983; pp. 403–425. [Google Scholar]
- Levit, G.; Hossfeld, U.; Witt, U. Can Darwinism be “Generalized” and of what use would this be? J. Evol. Econ. 2011, 21, 545–562. [Google Scholar] [CrossRef]
- Nelson, R. Evolutionary social science and universal Darwinism. J. Evol. Econ. 2006, 16, 491–510. [Google Scholar] [CrossRef]
- Hodgson, G.M. Darwinism in economics: From analogy to ontology. J. Evol. Econ. 2002, 12, 259–281. [Google Scholar] [CrossRef]
- Hodgson, G.M.; Knudsen, T. In search of general evolutionary principles: Why Darwinism is too important to be left to the biologists. J. Bioeconomics 2008, 10, 51–69. [Google Scholar] [CrossRef]
- Hodgson, G.M.; Knudsen, T. Why we need a generalized Darwinism, and why generalized Darwinism is not enough. J. Econ. Behav. Organ. 2006, 61, 1–19. [Google Scholar] [CrossRef]
- Stoelhorst, J.W. The Explanatory Logic and Ontological Commitments of Generalized Darwinism. J. Econ. Methodol. 2008, 15, 343–363. [Google Scholar] [CrossRef]
- Schubert, C. “Generalized Darwinism” and the quest for an evolutionary theory of policy-making. J. Evol. Econ. 2014, 24, 479–513. [Google Scholar] [CrossRef]
- Oppenheimer, R. Analogy in science. In Proceedings of the Sixty-Third Annual Meeting of the American Psychological Association, San Francisco, CA, USA, 4 September 1955. [Google Scholar]
- Kauffman, S.; Macready, W. Technological evolution and adaptive organizations: Ideas from biology may find applications in economics. Complexity 1995, 1, 26–43. [Google Scholar] [CrossRef]
- Bowler, P. Variation from Darwin to the Modern Synthesis. In Variation; Academic Press: Cambridge, MA, USA, 2005. [Google Scholar] [CrossRef]
- Girone, G.; Salvemini, T. Lezioni di Statistica; Cacucci Editore: Bari, Italy, 1981; Volume I and II. [Google Scholar]
- Dobzhansky, T. Variation and Evolution. Proc. Am. Philos. Soc. 1959, 103, 252–263. Available online: http://www.jstor.org/stable/985152 (accessed on 2 February 2024).
- Stebbins, C.L., Jr. Variation and Evolution in Plants; Columbia University Press: New York, NY, USA; Chichester, UK, 1950. [Google Scholar] [CrossRef]
- Hopkins, M.J.; Gerber, S. Morphological Disparity. In Evolutionary Developmental Biology; Nuno de la Rosa, L., Müller, G., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Coccia, M. The Fishbone diagram to identify, systematize and analyze the sources of general purpose technologies. J. Adm. Soc. Sci. 2017, 4, 291–303. [Google Scholar]
- Coccia, M. Fishbone diagram for technological analysis and foresight. Int. J. Foresight Innov. Policy 2020, 14, 225–247. [Google Scholar] [CrossRef]
- .Coccia, M.; Falavigna, G.; Manello, A. The impact of hybrid public and market-oriented financing mechanisms on scientific portfolio and performances of public research labs: A scientometric analysis. Scientometrics 2015, 102, 151–168. [Google Scholar] [CrossRef]
- Pande, M.; Mulay, P. Bibliometric Survey of Quantum Machine Learning. Sci. Technol. Libr. 2020, 39, 369–382. [Google Scholar] [CrossRef]
- Rao, P.; Yu, K.; Lim, H.; Jin, D.; Choi, D. Quantum amplitude estimation algorithms on IBM quantum devices. In Proceedings of SPIE—The International Society for Optical Engineering; SPIE: Washington, DC, USA, 2020; p. 11507. [Google Scholar]
- Thew, R.; Jennewein, T.; Sasaki, M. Focus on quantum science and technology initiatives around the world. Quantum Sci. Technol. 2020, 5, 010201. [Google Scholar] [CrossRef]
- Batra, K.; Zorn, K.M.; Foil, D.H.; Minerali, E.; Gawriljuk, V.O.; Lane, T.R.; Ekins, S. Quantum Machine Learning Algorithms for Drug Discovery Applications. J. Chem. Inf. Model. 2021, 61, 2641–2647. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zeng, G.; Lin, F.; Chou, Y.; Chaoì, H. Quantum cryptography and its applications over the internet. IEEE Netw. 2015, 29, 64–69. [Google Scholar] [CrossRef]
- Latifian, A. How does cloud computing help businesses to manage big data issues. Kybernetes 2022, 51, 1917–1948. [Google Scholar] [CrossRef]
- Coccia, M. Technological trajectories in quantum computing to design a quantum ecosystem for industrial change. Technol. Anal. Strateg. Manag. 2022, 2022, 1–16. [Google Scholar] [CrossRef]
- Kozlowski, W.; Wehner, S. Towards large-scale quantum networks. In Proceedings of the 6th ACM International Conference on Nanoscale Computing and Communication, New York, NY, USA, 6 September 2019. [Google Scholar] [CrossRef]
- Scheidsteger, T.; Haunschild, R.; Bornmann, L.; Ettl, C. Bibliometric analysis in the field of quantum technology. Quantum Rep. 2021, 3, 549–575. [Google Scholar] [CrossRef]
- Tolcheev, V.O. Scientometric Analysis of the Current State and Prospects of the Development of Quantum Technologies. Autom. Doc. Math. Linguist. 2018, 52, 121–133. [Google Scholar] [CrossRef]
- Atik, J.; Jeutner, V. Quantum computing and computational law. Law Innov. Technol. 2021, 13, 302–324. [Google Scholar] [CrossRef]
- Carberry, D.; Nourbakhsh, A.; Karon, J.; Jones, M.N.; Jadidi, M.; Shahriari, K.; Beenfeldt, C.; Peter Andersson, M.; Mansouri, S.S. Building Knowledge Capacity for Quantum Computing in Engineering Education. Comput. Aided Chem. Eng. 2021, 50, 2065–2070. [Google Scholar]
- Gill, S.S.; Kumar, A.; Singh, H.; Singh, M.; Kaur, K.; Usman, M.; Buyya, R. Quantum Computing: A Taxonomy, Systematic Review and Future Directions. Softw. Pract. Exp. 2021, 52, 66–114. [Google Scholar] [CrossRef]
- Small, M.L. Departmental Conditions and the Emergence of New Disciplines: Two Cases in the Legitimation of African-American Studies. Theory Soc. 1999, 28, 659–707. Available online: http://www.jstor.org/stable/3108589 (accessed on 15 January 2024). [CrossRef]
- Mullins, N.C. The development of a scientific specialty: The phage group and the origins of molecular biology. Minerva 1972, 10, 51–82. [Google Scholar] [CrossRef]
- Wray, K.B. Rethinking Scientific Specialization. Soc. Stud. Sci. 2005, 35, 151–164. Available online: http://www.jstor.org/stable/25046633 (accessed on 10 February 2024). [CrossRef] [PubMed]
- Scopus. Start Exploring. Documents. 2023. Available online: https://www.scopus.com/search/form.uri?display=basic#basic (accessed on 24 April 2023).
- Glänzel, W.; Thijs, B. Using ‘core documents’ for detecting and labelling new emerging topics. Scientometrics 2012, 91, 399–416. [Google Scholar] [CrossRef]
- Zhang, T.; Lee, B.; Zhu, Q.; Han, X.; Chen, K. Document keyword extraction based on semantic hierarchical graph model. Scientometrics 2023, 128, 2623–2647. [Google Scholar] [CrossRef]
- Scopus. Start Exploring. Documents. 2024. Available online: https://www.scopus.com/search/form.uri?display=basic#basic (accessed on 2 February 2024).
- Gini, C. Variabilità e Mutabilità. Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche (C. Cuppini, Bologna); Tipografia di Paolo Cuppin: Bologna, Italy, 1912. [Google Scholar]
- Barton, C.M. Complexity, Social Complexity, and Modeling. J. Archaeol. Method Theory 2014, 21, 306–324. [Google Scholar] [CrossRef]
- Pierce, J.R. An Introduction to Information Theory: Symbols, Signals and Noise; Dover Publications: New York, NY, USA, 1980. [Google Scholar]
- Mickiewicz, T.; Stephan, U.; Shami, M. The Consequences of Short-Term Institutional Change in the Rule of Law for Entrepreneurship. Glob. Strategy J. 2021, 11, 709–739. [Google Scholar] [CrossRef]
- Lin, D.; Liu, W.; Guo, Y.; Meyer, M. Using technological entropy to identify technology life cycle. J. Informetr. 2021, 15, 101137. [Google Scholar] [CrossRef]
- Nunes, A.; Trappenberg, T.; Alda, M. The definition and measurement of heterogeneity. Transl. Psychiatry 2020, 10, 299. [Google Scholar] [CrossRef]
- Rényi, A. On measures of information and entropy. Proc. Fourth Berkeley Symp. Math. Stat. Probab. 1961, 114, 547–561. [Google Scholar]
- Shannon, C.E. Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Simpson, E. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Takahashi, R.; Kaibe, K.; Suzuki, K.; Takahashi, S.; Takeda, K.; Hansen, M.; Yumoto, M. New concept of the affinity between research fields using academic journal data in Scopus. Scientometrics 2023, 128, 3507–3534. [Google Scholar] [CrossRef]
- Grupp, H. The concept of entropy in scientometrics and innovation research. Scientometrics 1990, 18, 219–239. [Google Scholar] [CrossRef]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Zidek, J.V.; van Eeden, C. Uncertainty, Entropy, Variance and the Effect of Partial Information. Lect. Notes Monogr. Ser. 2003, 42, 155–167. Available online: http://www.jstor.org/stable/4356236 (accessed on 5 March 2024).
- Dosi, G. Sources, Procedures, and Microeconomic Effects of Innovation. J. Econ. Lit. 1988, 26, 1120–1171. [Google Scholar]
- Dosi, G. The Nature of the Innovation Process. In Technical Change and Economic Theory; Dosi, G., Freeman, C., Nelson, R., Silverberg, G., Soete, L., Eds.; Pinter: London, UK, 1988; pp. 221–238. [Google Scholar]
- Lewontin, R.C. The Genetic Basis of Evolutionary Change; Columbia University Press: New York, NY, USA, 1974; Volume 560. [Google Scholar]
- Brandon, R.N. Adaptation and Evolutionary Theory. Stud. Hist. Phil. Sci. 1978, 9, 181–206. [Google Scholar] [CrossRef]
- Wright, S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. In Proceedings of the Sixth International Congress of Genetics, Ithica, NY, USA, 24–31 August 1932; pp. 356–366. [Google Scholar]
- McFall-Ngai, M.; Hadfield, M.G.; Bosch, T.C.G.; Carey, H.V.; Domazet-Lošo, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F.; et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 2013, 110, 3229–3236. [Google Scholar] [CrossRef]
- Coccia, M.; Ghazinoori, S.; Roshani, S. Evolutionary Pathways of Ecosystem Literature in Organization and Management Studies. Res. Sq. 2023, 20, 1–35. [Google Scholar] [CrossRef]
- Fukami, T.; Wardle, D.A.; Bellingham, P.J.; Mulder, C.P.H.; Towns, D.R.; Yeates, G.W.; Bonner, K.I.; Durrett, M.S.; Grant-Hoffman, M.N.; Williamson, W.M. Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol. Lett. 2006, 9, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
- Ke, Q. Interdisciplinary research and technological impact: Evidence from biomedicine. Scientometrics 2023, 128, 2035–2077. [Google Scholar] [CrossRef]
- May, R.M. Models for two interacting populations. In Theoretical Ecology: Principles and Applications; May, R.M., Ed.; Sinauer: Sunderland, MA, USA, 1981. [Google Scholar]
- Winther, R.G. Darwin on Variation and Heredity. J. Hist. Biol. 2000, 33, 425–455. Available online: http://www.jstor.org/stable/4331610 (accessed on 10 December 2023). [CrossRef]
- Jang, B.; Choung, J.-Y.; Kang, I. Knowledge production patterns of China and the US: Quantum technology. Scientometrics 2022, 127, 5691–5719. [Google Scholar] [CrossRef]
- Coccia, M. Destructive Technologies for Industrial and Corporate Change. In Global Encyclopedia of Public Administration, Public Policy, and Governance; Farazmand, A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Coccia, M. Asymmetry of the technological cycle of disruptive innovations. Technol. Anal. Strateg. Manag. 2020, 32, 1462–1477. [Google Scholar] [CrossRef]
- Coccia, M. Sources of disruptive technologies for industrial change. L’industria Riv. Econ. Politica Ind. 2017, 38, 97–120. [Google Scholar] [CrossRef]
- Aiello, M.; Bulanov, P.; Groefsema, H. Requirements and tools for variability management. In Proceedings of the 4th IEEE Workshop on Requirement Engineering for Services (REFS 2010), Seoul, Republic of Korea, 19–23 July 2010; IEEE Computer Society: Washington, DC, USA, 2010; pp. 245–250. [Google Scholar]
- Fried, D.M. Technology variability and product design implications. In Proceedings of the 2011 IEEE International Integrated Reliability Workshop Final Report, South Lake Tahoe, CA, USA, 16–20 October 2011; p. 22. [Google Scholar] [CrossRef]
- Davids, K.; Bennett, S.; Newell, K. (Eds.) Movement System Variability; Human Kinetics: Champaign, IL, USA, 2006. [Google Scholar]
- Gibbons, S.; Overman, H.G.; Pelkonen, P. Area Disparities in Britain: Understanding the Contribution of People vs. Place Through Variance Decompositions. Oxf. Bull. Econ. Stat. 2014, 76, 745–763. [Google Scholar] [CrossRef]
- Gómez, R.L. Variability and detection of invariant structure. Psychol. Sci. 2002, 13, 431–436. [Google Scholar] [CrossRef]
- Higdon, R. Experimental Design, Variability. In Encyclopedia of Systems Biology; Dubitzky, W., Wolkenhauer, O., Cho, K.H., Yokota, H., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.; Zhu, W. Variability: Human nature and its impact on measurement and statistical analysis. J. Sport Health Sci. 2019, 8, 527–531. [Google Scholar] [CrossRef]
- Mahdavi-Hezavehi, S.; Galster, M.; Avgeriou, P. Variability in quality attributes of service-based software systems: A systematic literature review. Inf. Softw. Technol. 2018, 55, 320–343. [Google Scholar] [CrossRef]
- Nair, S.S.; Becker, M.; Tenev, V. A Comparative Study on Variability Code Analysis Technology. In Proceedings of the 24th ACM International Systems and Software Product Line Conference—Volume B (SPLC ‘20); Association for Computing Machinery: New York, NY, USA, 2020; pp. 37–43. [Google Scholar] [CrossRef]
- Pandini, D. Variability in Advanced Nanometer Technologies: Challenges and Solutions. In Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2009. Lecture Notes in Computer Science, vol 5953; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Seely, A.J.; Macklem, P.T. Complex systems and the technology of variability analysis. Crit. Care 2004, 8, R367–R384. [Google Scholar] [CrossRef] [PubMed]
- Wensink, M.J.; Ahrenfeldt, L.J.; Möller, S. Variability Matters. Int. J. Environ. Res. Public Health 2020, 18, 157. [Google Scholar] [CrossRef] [PubMed]
- Svahnberg, M.; van Gurp, J.; Bosch, J. A taxonomy of variability realization techniques. Softw. Pract. Exp. 2005, 35, 705–775. [Google Scholar] [CrossRef]
- Mosleh, M.; Roshani, S.; Coccia, M. Scientific laws of research funding to support citations and diffusion of knowledge in life science. Scientometrics 2022, 127, 1931–1951. [Google Scholar] [CrossRef] [PubMed]
- Roshani, S.; Bagherylooieh, M.R.; Mosleh, M.; Coccia, M. What is the relationship between research funding and citation-based performance? A comparative analysis between critical disciplines. Scientometrics 2021, 126, 7859–7874. [Google Scholar] [CrossRef]
- Coccia, M. Comparative Institutional Changes. In Global Encyclopedia of Public Administration, Public Policy, and Governance; Farazmand, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- March, J.G. Exploration and Exploitation in Organizational Learning. Organ. Sci. 1991, 2, 71–87. [Google Scholar] [CrossRef]
- .Tushman, M.L.; O’Reilly, C.A. Ambidextrous Organizations: Managing Evolutionary and Revolutionary Change. Calif. Manag. Rev. 1996, 38, 8–29. [Google Scholar] [CrossRef]
- Wright, G. Towards A More Historical Approach to Technological Change. Econ. J. 1997, 107, 1560–1566. [Google Scholar] [CrossRef]
- Coccia, M.; Wang, L. Evolution and convergence of the patterns of international scientific collaboration. Proc. Natl. Acad. Sci. USA 2016, 113, 2057–2061. [Google Scholar] [CrossRef]
- Ho, J.; Tumkaya, T.; Aryal, S.; Choi, H.; Claridge-Chang, A. Moving beyond P values: Data analysis with estimation graphics. Nat. Methods 2019, 16, 565–566. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M. The source and nature of general purpose technologies for supporting next K-waves: Global leadership and the case study of the U.S. Navy’s Mobile User Objective System. Technol. Forecast. Soc. Chang. 2017, 116, 331–339. [Google Scholar] [CrossRef]
- Pascariu, M.; Lenart, A.; Canudas-Romo, V. The maximum entropy mortality model: Forecasting mortality using statistical moments. Scand. Actuar. J. 2019, 2019, 661–685. [Google Scholar] [CrossRef]
- Coccia, M. Converging scientific fields and new technological paradigms as main drivers of the division of scientific labour in drug discovery process: The effects on strategic management of the R&D corporate change. Technol. Anal. Strateg. Manag. 2014, 26, 733–749. [Google Scholar] [CrossRef]
- Soyer, E.; Hogarth, R.M. The illusion of predictability: How regression statistics mislead experts. Int. J. Forecast. 2012, 28, 695–711. [Google Scholar] [CrossRef]
- Zelkowitz, M.; Wallace, D.R. Experimental models for validating technology. IEEE Comput. 1998, 1998, 23–31. [Google Scholar] [CrossRef]
Research Fields | Cases | Arithmetic Mean | Std. Deviation | Relative Entropy H |
---|---|---|---|---|
Quantum Optics | 154 | 1480.48 | 4235.48 | 0.827 |
Quantum Metrology | 154 | 54.04 | 113.00 | 0.853 |
Quantum Imaging | 152 | 21.29 | 42.10 | 0.866 |
Quantum Sensing | 153 | 41.36 | 46.59 | 0.925 |
Dependent Variable: Scientific Products | ||||
---|---|---|---|---|
Coefficient b = Growth Rate | Constant a | F-Test | R2 | |
Quantum Imaging, Log y pubs i,t | 0.121 *** | −240.43 *** | 39.89 *** | 0.66 |
Quantum Metrology, Log y pubs i,t | 0.225 *** | −449.95 *** | 247.90 *** | 0.92 |
Quantum Optics, Log y pubs i,t | 0.079 *** | −151.26 *** | 150.47 *** | 0.88 |
Quantum Sensing, Log y pubs i,t | 0.265 *** | −530.63 *** | 238.76 *** | 0.92 |
Relative Entropy, H | Rate of Growth | ||
---|---|---|---|
Spearman’s Correlation, rho | Relative Entropy, H | 1 | 0.800 |
Sig. (2-tailed) | 0.17 | ||
N | 4 | 4 |
Dependent Variable: Scientific Products | ||||
---|---|---|---|---|
Quantum Technologies, i = 1, 2, 3, 4 | Coefficient z | Constant k | F-Test | R2 |
b (rate of growth)i | 1.63 | −1.244 | 3.07 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coccia, M. The General Theory of Scientific Variability for Technological Evolution. Sci 2024, 6, 31. https://doi.org/10.3390/sci6020031
Coccia M. The General Theory of Scientific Variability for Technological Evolution. Sci. 2024; 6(2):31. https://doi.org/10.3390/sci6020031
Chicago/Turabian StyleCoccia, Mario. 2024. "The General Theory of Scientific Variability for Technological Evolution" Sci 6, no. 2: 31. https://doi.org/10.3390/sci6020031
APA StyleCoccia, M. (2024). The General Theory of Scientific Variability for Technological Evolution. Sci, 6(2), 31. https://doi.org/10.3390/sci6020031