Fabrication of Automated Hydrostatic Pressure-Based Densitometer with a Calibrated Pressure Sensor
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Pressure Sensor and Calibration
3.2. Temperature Sensor and Calibration
4. Density Testing of Liquid Samples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adamowski, J.C.; Buiochi, F.; Simon, C.; Silva, E.C.; Sigelmann, R.A. Ultrasonic Measurement of Density of Liquids. J. Acoust. Soc. Am. 1995, 97, 354–361. [Google Scholar] [CrossRef]
- Jakoby, B.; Beigelbeck, R.; Keplinger, F.; Lucklum, F.; Niedermayer, A.; Reichel, E.K.; Riesch, C.; Voglhuber-Brunnmaier, T.; Weiss, B. Miniaturized Sensors for the Viscosity and Density of Liquids-Performance and Issues. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Spieweck, F. Sensors for Measuring Density and Viscosity. In Sensors; Bau, H.H., de Rooij, N.F., Kloeck, B., Eds.; Wiley: Hoboken, NJ, USA, 1993; pp. 359–372. ISBN 978-3-527-26773-6. [Google Scholar]
- Spieweck, F.; Bettin, H. Review: Solid and liquid density determination/Übersicht: Bestimmung der Dichte von Festkörpern und Flüssigkeiten. Tm Tech. Mess. 1992, 59, 285–292. [Google Scholar] [CrossRef]
- Gupta, S.V. Practical Density Measurement and Hydrometry; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Putranta, H.; Wiyatmo, Y.; Supahar, X.X.; Dwandaru, W.S.B. A Simple Liquid Density Measuring Instrument Based on Hooke’s Law and Hydrostatic Pressure. Phys. Educ. 2020, 55, 025010. [Google Scholar] [CrossRef]
- Nordness, O.; Brennecke, J.F. Ion Dissociation in Ionic Liquids and Ionic Liquid Solutions. Chem. Rev. 2020, 120, 12873–12902. [Google Scholar] [CrossRef]
- McLinden, M.O.; Splett, J.D. A Liquid Density Standard Over Wide Ranges of Temperature and Pressure Based on Toluene. J. Res. Natl. Inst. Stand. Technol. 2008, 113, 29–67. [Google Scholar] [CrossRef] [PubMed]
- Queimada, A.J.; Quiñones-Cisneros, S.E.; Marrucho, I.M.; Coutinho, J.A.P.; Stenby, E.H. Viscosity and Liquid Density of Asymmetric Hydrocarbon Mixtures. Int. J. Thermophys. 2003, 24, 1221–1239. [Google Scholar] [CrossRef]
- Queimada, A.J.; Marrucho, I.M.; Coutinho, J.A.P.; Stenby, E.H. Viscosity and Liquid Density of Asymmetric N-Alkane Mixtures: Measurement and Modeling. Int. J. Thermophys. 2005, 26, 47–61. [Google Scholar] [CrossRef]
- Hales, J.L.; Townsend, R. Liquid Densities from 293 to 490 K of Nine Aromatic Hydrocarbons. J. Chem. Thermodyn. 1972, 4, 763–772. [Google Scholar] [CrossRef]
- Murrieta-Guevara, F.; Rodriguez, A.T. Liquid Density as a Function of Temperature of Five Organic Solvents. Available online: https://pubs.acs.org/doi/pdf/10.1021/je00036a032 (accessed on 16 June 2024).
- Ramos-Estrada, M.; Iglesias-Silva, G.A.; Hall, K.R. Experimental Measurements and Prediction of Liquid Densities for n-Alkane Mixtures. J. Chem. Thermodyn. 2006, 38, 337–347. [Google Scholar] [CrossRef]
- Avia Semiconductor. Available online: https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/hx711_english.pdf (accessed on 5 January 2024).
- Abraham, S.; Li, X. A Cost-Effective Wireless Sensor Network System for Indoor Air Quality Monitoring Applications. Procedia Comput. Sci. 2014, 34, 165–171. [Google Scholar] [CrossRef]
- Subin, E.K.; Renuka, S.; Chaitanya, K.; Sudheer, A.P. Implementation Of Signal Processing Filters for Portable ECG Devices Using Android Mobile Phone and Bluetooth. In Proceedings of the 2017 14th IEEE India Council International Conference (INDICON), Roorkee, India, 15–17 December 2017; IEEE: Piscataway Township, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Pressure Sensor MPS20N0040D-S. Available online: https://softroboticstoolkit.com/files/sorotoolkit/files/mps20n0040d-s_datasheet.pdf (accessed on 1 May 2024).
- Least Squares Regression: Definition, Formulas & Example—Statistics By Jim. Available online: https://statisticsbyjim.com/regression/least-squares-regression-line/ (accessed on 2 May 2024).
- Dayioǧlu, M.A. Development of Real-Time Wireless Monitoring System for Greenhouses: Industrial Bluetooth Application. In Proceedings of the 2014 22nd Signal Processing and Communications Applications Conference (SIU), Trabzon, Turkey, 23–25 April 2014; IEEE: Piscataway Township, NJ, USA, 2014; pp. 548–551. [Google Scholar]
- Hao, S.; Zongtao, C. Design of the Environmental Temperature and Humidity Wireless Monitoring System. In Proceedings of the 2015 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Qingdao, China, 16–18 July 2015; IEEE: Piscataway Township, NJ, USA, 2015; Volume 3, pp. 1652–1657. [Google Scholar]
Method | Density of Water ± SD */Kg m−3 | Density of Coconut Oil ± SD/Kg m−3 | Density of Kerosene Oil ± SD/Kg m−3 |
---|---|---|---|
Pycnometer | 997.12 ± 0.01 | 922.26 ± 0.01 | 810.27 ± 0.02 |
Densitometer | 997.19 ± 0.24 | 922.25 ± 0.11 | 810.29 ± 0.05 |
Error | 0.007% | 0.001% | 0.002% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayakantha, D.N.P.R.; Gamage, K.A.A.; Bandara, N.; Karunarathne, M.; Seneviratne, M.; Comini, E.; Zappa, D.; Gunawardhana, N. Fabrication of Automated Hydrostatic Pressure-Based Densitometer with a Calibrated Pressure Sensor. Sci 2024, 6, 41. https://doi.org/10.3390/sci6030041
Jayakantha DNPR, Gamage KAA, Bandara N, Karunarathne M, Seneviratne M, Comini E, Zappa D, Gunawardhana N. Fabrication of Automated Hydrostatic Pressure-Based Densitometer with a Calibrated Pressure Sensor. Sci. 2024; 6(3):41. https://doi.org/10.3390/sci6030041
Chicago/Turabian StyleJayakantha, D. N. P. Ruwan, Kelum A. A. Gamage, Navaratne Bandara, Migara Karunarathne, Madushani Seneviratne, Elisabetta Comini, Dario Zappa, and Nanda Gunawardhana. 2024. "Fabrication of Automated Hydrostatic Pressure-Based Densitometer with a Calibrated Pressure Sensor" Sci 6, no. 3: 41. https://doi.org/10.3390/sci6030041
APA StyleJayakantha, D. N. P. R., Gamage, K. A. A., Bandara, N., Karunarathne, M., Seneviratne, M., Comini, E., Zappa, D., & Gunawardhana, N. (2024). Fabrication of Automated Hydrostatic Pressure-Based Densitometer with a Calibrated Pressure Sensor. Sci, 6(3), 41. https://doi.org/10.3390/sci6030041