Modal Identification Techniques for Concrete Dams: A Comprehensive Review and Application
Abstract
:1. Introduction
2. Instrumentation
3. Operational Modal Analysis (OMA)
3.1. OMA Approaches
3.1.1. Peak Picking (PP) Method
3.1.2. FDD Method
3.1.3. EFDD Method
3.1.4. ERA Method
3.1.5. SSI Method
3.1.6. Empirical Mode Decomposition (EMD) and Hilbert–Huang Transform (HHT)
3.2. Recent Advancement in Modal Identification Algorithms
4. Evolution of Fully Automated Algorithms in Modal Identification
5. Applications in DHM
6. Conclusions
- Instrumentation plays a foundational role in OMA, and selecting the appropriate sensing system to meet specific requirements is crucial. Sensor placement and installation must be performed with precision to ensure accurate modal identification outcomes, requiring careful handling and maintenance. Many existing dams were not instrumented during their construction, resulting in limited available data. For these dams, only specific types of sensors, such as GPS and total stations, can be installed now, which presents significant challenges in developing a DSHM model based on such limited data. Innovative approaches and improved sensor technologies and installation techniques are needed to enhance data collection and analysis for dams with limited initial instrumentation. Also, the SSI method emerges as the predominant choice in automated modal identification algorithms.
- Regarding the optimal reliability, efficiency, precision, and applicability of various modal identification techniques in the time and frequency domains, the SSI method is widely favored by researchers. The SSI method emerges as the predominant choice in automated modal identification algorithms.
- Applying sophisticated techniques like machine learning enhances the accuracy of OMA outcomes for DSHM. This ensures model applicability across different dams, accommodating variations in their geometric configurations and material properties. Moreover, incorporating wavelet transformation into OMA methodologies for DSHM could offer enhanced noise reduction and feature extraction capabilities, further refining modal parameter identification.
- Unlike the extensive research in building and bridge health monitoring, DHM has been relatively underexplored. Therefore, there is a pressing need for research to develop algorithms for damage detection and estimating the remaining useful life of dams.
Funding
Data Availability Statement
Conflicts of Interest
Glossary
Abbreviation | Meaning |
CWT | Continuous Wavelet Transform |
SSI-Cov | covariance-driven Stochastic Subspace Identification |
DSHM | dam structural health monitoring |
ERA | Eigensystem Realization Algorithm |
EMD | empirical mode decomposition |
EFDD | Enhanced Frequency-Domain Decomposition |
EMA | Experimental Modal Analysis |
FDD | Frequency-Domain Decomposition |
FRF | frequency response function |
HHT | Hilbert–Huang Transform |
ITD | Ibrahim Time Domain |
MAC | modal assurance criterion |
NExT | natural excitation technique |
OMA | operational modal analysis |
OSP | optimal sensor placement |
PP | Peak Picking |
PTD | Polyreference Time Domain |
PSD | power spectral density |
RDT | Random Decrement Technique |
SVD | Singular Value Decomposition |
SSA | sparrow search algorithm |
SSI | Stochastic Subspace Identification |
VMD | variational modal decomposition |
WT | wavelet transform |
References
- Harte, R.; Krätzig, W.B.; Noh, S.Y.; Petryna, Y.S. On progressive damage phenomena of structures. Comput. Mech. 2000, 25, 404–412. [Google Scholar] [CrossRef]
- Mostafaei, H.; Behnamfar, F.; Alembagheri, M. Nonlinear analysis of stability of rock wedges in the abutments of an arch dam due to seismic loading. Struct. Monit. Maint. 2020, 7, 295–317. [Google Scholar]
- Mostafaei, H.; Gilani, M.S.; Ghaemian, M. A comparative study between pseudo-static and dynamic analyses on rock wedge stability of an arch dam. Civ. Eng. J. 2018, 4, 179–187. [Google Scholar] [CrossRef]
- Ponzo, F.C.; Iacovino, C.; Ditommaso, R.; Auletta, G.; Soldovieri, F.; Bonano, M.; Cuomo, V. An advanced approach to the long term SHM of structures and transport infrastructures. In Civil Structural Health Monitoring: Proceedings of CSHM-8 Workshop 8; Springer: Berlin/Heidelberg, Germany, 2021; pp. 373–388. [Google Scholar]
- Moriconi, G.; Naik, T.R. Monitoring system to provide assurance for maintenance of structures. Pract. Period. Struct. Des. Constr. 2010, 15, 4–8. [Google Scholar] [CrossRef]
- Rafiq, M.I. Structural health monitoring for maintenance management of deteriorating structures: Current practice and state of the art. In Proceedings of the 2nd International & 6th National Conference on Earthquake & Structures, Kerman, Iran, 14–15 October 2015. [Google Scholar]
- Wieland, M. Safety aspects of sustainable storage dams and earthquake safety of existing dams. Engineering 2016, 2, 325–331. [Google Scholar] [CrossRef]
- Lee, B.-S.; You, G.J.-Y. An assessment of long-term overtopping risk and optimal termination time of dam under climate change. J. Environ. Manag. 2013, 121, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Chopra, A.K. Earthquake Engineering for Concrete Dams: Analysis, Design, and Evaluation; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Proulx, J.; Paultre, P.; Rheault, J.; Robert, Y. An experimental investigation of water level effects on the dynamic behaviour of a large arch dam. Earthq. Eng. Struct. Dyn. 2001, 30, 1147–1166. [Google Scholar] [CrossRef]
- Lotfi, V. Frequency domain analysis of concrete arch dams by decoupled modal approach. Struct. Eng. Mech. Int. J. 2005, 21, 423–435. [Google Scholar] [CrossRef]
- Avitabile, P. Modal Testing: A Practitioner’s Guide; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Au, S.-K. Operational modal analysis. In Modeling, Bayesian Inference, Uncertainty Laws; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Doebling, S.W.; Farrar, C.R.; Prime, M.B.; Shevitz, D.W. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review; Los Alamos National Lab: Washington, DC, USA, 1996.
- Cheng, L.; Zheng, D. The identification of a dam’s modal parameters under random support excitation based on the Hankel matrix joint approximate diagonalization technique. Mech. Syst. Signal Process. 2014, 42, 42–57. [Google Scholar] [CrossRef]
- Hasani, H.; Freddi, F. Operational Modal Analysis on Bridges: A Comprehensive Review. Infrastructures 2023, 8, 172. [Google Scholar] [CrossRef]
- Pereira, S.; Magalhães, F.; Cunha, Á.; Moutinho, C.; Pacheco, J. Modal identification of concrete dams under natural excitation. J. Civ. Struct. Health Monit. 2021, 11, 465–484. [Google Scholar] [CrossRef]
- Sujatha, C. Equipment for Measurement and Generation of Vibration. In Vibration, Acoustics and Strain Measurement: Theory and Experiments; Springer: Berlin/Heidelberg, Germany, 2023; pp. 67–159. [Google Scholar]
- Suwatthikul, J.; Vanijjirattikhan, R.; Supakchukul, U.; Suksomboon, K.; Nuntawattanasirichai, R.; Phontip, J.; Lewlomphaisarl, U.; Tangpimolrut, K.; Samranyoodee, S. Development of dam safety remote monitoring and evaluation system. J. Disaster Res. 2021, 16, 607–617. [Google Scholar] [CrossRef]
- Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Hussein, M.; Gabbouj, M.; Inman, D.J. A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mech. Syst. Signal Process. 2021, 147, 107077. [Google Scholar] [CrossRef]
- Brincker, R.; Ventura, C. Introduction to Operational Modal Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Zahid, F.B.; Ong, Z.C.; Khoo, S.Y. A review of operational modal analysis techniques for in-service modal identification. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 398. [Google Scholar] [CrossRef]
- Magalhães, F.; Cunha, Á.; Caetano, E. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection. Mech. Syst. Signal Process. 2012, 28, 212–228. [Google Scholar] [CrossRef]
- Tibaduiza Burgos, D.A.; Gomez Vargas, R.C.; Pedraza, C.; Agis, D.; Pozo, F. Damage identification in structural health monitoring: A brief review from its implementation to the use of data-driven applications. Sensors 2020, 20, 733. [Google Scholar] [CrossRef] [PubMed]
- Mostafaei, H.; Mostofinejad, D.; Ghamami, M.; Wu, C. Fully automated operational modal identification of regular and irregular buildings with ensemble learning. Structures 2023, 58, 105439. [Google Scholar] [CrossRef]
- Yang, C.; Liang, K.; Zhang, X.; Geng, X. Sensor placement algorithm for structural health monitoring with redundancy elimination model based on sub-clustering strategy. Mech. Syst. Signal Process. 2019, 124, 369–387. [Google Scholar] [CrossRef]
- Salazar, F.; Morán, R.; Toledo, M.Á.; Oñate, E. Data-based models for the prediction of dam behaviour: A review and some methodological considerations. Arch. Comput. Methods Eng. 2017, 24, 1–21. [Google Scholar] [CrossRef]
- Oliveira, S.; Alegre, A.; Carvalho, E.; Mendes, P.; Proença, J. Seismic and structural health monitoring systems for large dams: Theoretical, computational and practical innovations. Bull. Earthq. Eng. 2022, 20, 4483–4512. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Dam safety: Use of instrumentation in dams. J. Earth Sci. Geotech. Eng. 2021, 11, 145–202. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yang, J.; Hu, D. Dam monitoring data analysis methods: A literature review. Struct. Control Health Monit. 2020, 27, e2501. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Dam Safety: Use of Seismic Monitoring Instrumentation in Dams. J. Earth Sci. Geotech. Eng. 2021, 11, 203–247. [Google Scholar] [CrossRef] [PubMed]
- Scaioni, M.; Marsella, M.; Crosetto, M.; Tornatore, V.; Wang, J. Geodetic and remote-sensing sensors for dam deformation monitoring. Sensors 2018, 18, 3682. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Ali, S.H.; Laue, J.; Knutsson, S. Dams safety: Review of satellite remote sensing applications to dams and reservoirs. J. Earth Sci. Geotech. Eng. 2021, 11, 347–438. [Google Scholar] [CrossRef] [PubMed]
- Kang, F.; Li, J.-j.; Xu, Q. Virus coevolution partheno-genetic algorithms for optimal sensor placement. Adv. Eng. Inform. 2008, 22, 362–370. [Google Scholar] [CrossRef]
- Lian, J.; He, L.; Ma, B.; Li, H.; Peng, W. Optimal sensor placement for large structures using the nearest neighbour index and a hybrid swarm intelligence algorithm. Smart Mater. Struct. 2013, 22, 095015. [Google Scholar] [CrossRef]
- He, L.; Lian, J.; Ma, B.; Wang, H. Optimal multiaxial sensor placement for modal identification of large structures. Struct. Control Health Monit. 2014, 21, 61–79. [Google Scholar] [CrossRef]
- Zhu, K.; Gu, C.; Qiu, J.; Liu, W.; Fang, C.; Li, B. Determining the optimal placement of sensors on a concrete arch dam using a quantum genetic algorithm. J. Sens. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Chen, B.; Huang, Z.; Zheng, D.; Zhong, L. A hybrid method of optimal sensor placement for dynamic response monitoring of hydro-structures. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717707728. [Google Scholar] [CrossRef]
- Vosoughifar, H.; Khorani, M. Optimal Sensor Placement of RCC Dams using Modified Approach of COMAC-TTFD. KSCE J. Civ. Eng. 2019, 23, 2933–2947. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Xu, Q.; Li, J. A distance coefficient-multi objective information fusion algorithm for optimal sensor placement in structural health monitoring. Adv. Struct. Eng. 2021, 24, 718–732. [Google Scholar] [CrossRef]
- Altunisik, A.C.; Sevim, B.; Sunca, F.; Okur, F.Y. Optimal sensor placements for system identification of concrete arch dams. Adv. Concr. Constr. 2021, 11, 397–407. [Google Scholar]
- Giahi, A.M.; Marnani, J.A.; Rohanimanesh, M.S.; Ahmadi, H. A New Optimal Sensor Location Method for Double-curvature Arch Dams: A Comparison with the Modal Assurance Criterion (MAC). Period. Polytech. Civ. Eng. 2024, 68, 411–425. [Google Scholar] [CrossRef]
- Rainieri, C.; Fabbrocino, G. Operational Modal Analysis of Civil Engineering Structures; Springer: New York, NY, USA, 2014; Volume 142, pp. 103–210. [Google Scholar]
- Janeliukstis, R.; Mironovs, D.; Safonovs, A. Statistical structural integrity control of composite structures based on an automatic operational modal analysis—A review. Mech. Compos. Mater. 2022, 58, 181–208. [Google Scholar] [CrossRef]
- AlHamaydeh, M.; Ghazal Aswad, N. Structural health monitoring techniques and technologies for large-scale structures: Challenges, limitations, and recommendations. Pract. Period. Struct. Des. Constr. 2022, 27, 03122004. [Google Scholar] [CrossRef]
- Mohanty, P.; Rixen, D.J. Operational modal analysis in the presence of harmonic excitation. J. Sound Vib. 2004, 270, 93–109. [Google Scholar] [CrossRef]
- Ghalishooyan, M.; Shooshtari, A.; Abdelghani, M. Output-only modal identification by in-operation modal appropriation for use with enhanced frequency domain decomposition method. J. Mech. Sci. Technol. 2019, 33, 3055–3067. [Google Scholar] [CrossRef]
- Cárdenas, E.M.; Medina, L.U. Non-parametric operational modal analysis methods in frequency domain: A systematic review. Int. J. Eng. Technol. Innov. 2021, 11, 34. [Google Scholar] [CrossRef]
- Bin Abu Hasan, M.D.; Bin Ahmad, Z.A.; Leong, M.S.; Hee, L.M. A Study of the Parameters That Effect the Quality of the Estimated Modal Parameters in Automated Enhanced Frequency Domain Decomposition Algorithm. Pertanika J. Sci. Technol. 2020, 28, 797–828. [Google Scholar]
- Agrez, D. A frequency domain procedure for estimation of the exponentially damped sinusoids. In Proceedings of the 2009 IEEE Instrumentation and Measurement Technology Conference, Singapore, 5–7 May 2009; pp. 1321–1326. [Google Scholar]
- Malekjafarian, A.; Brincker, R.; Ashory, M.R.; Khatibi, M.M. Modified Ibrahim time domain method for identification of closely spaced modes: Experimental results. In Topics on the Dynamics of Civil Structures; Springer: Berlin/Heidelberg, Germany, 2012; pp. 443–449. [Google Scholar]
- Wagner, G.B.; Foiny, D.; Sampaio, R.; Lima, R. Operational modal analysis under wind load using stochastic sub-space identification. In Proceedings of the XVII International Symposium on Dynamic Problems of Mechanics, Sao Sebastiao, SP, Brazil, 5–10 March 2017. [Google Scholar]
- Pan, H.; Li, Y.; Deng, T.; Fu, J. An improved stochastic subspace identification approach for automated operational modal analysis of high-rise buildings. J. Build. Eng. 2024, 89, 109267. [Google Scholar] [CrossRef]
- Cho, K.; Cho, J.-R. Stochastic Subspace Identification-Based Automated Operational Modal Analysis Considering Modal Uncertainty. Appl. Sci. 2023, 13, 12274. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, J.; Chen, Z.; Wang, R. Automated eigensystem realisation algorithm for operational modal analysis. J. Sound Vib. 2014, 333, 3550–3563. [Google Scholar] [CrossRef]
- Mohanty, P.; Rixen, D.J. Modified ERA method for operational modal analysis in the presence of harmonic excitations. Mech. Syst. Signal Process. 2006, 20, 114–130. [Google Scholar] [CrossRef]
- Tarinejad, R.; Ahmadi, M.T.; Harichandran, R.S. Full-scale experimental modal analysis of an arch dam: The first experience in Iran. Soil Dyn. Earthq. Eng. 2014, 61, 188–196. [Google Scholar] [CrossRef]
- García-Palacios, J.H.; Soria, J.M.; Díaz, I.M.; Tirado-Andrés, F. Ambient modal testing of a double-arch dam: The experimental campaign and model updating. J. Phys. Conf. Ser. 2016, 744, 012037. [Google Scholar] [CrossRef]
- Felber, A.J. Development of a Hybrid Bridge Evaluation System. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1994. [Google Scholar]
- Li, X.; Dong, Y.-X.; Zhang, F.-L. Fully automated operational modal identification based on scale-space peak picking algorithm and power spectral density estimation. Meas. Sci. Technol. 2024, 35, 076206. [Google Scholar] [CrossRef]
- Gentile, C.; Saisi, A. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Constr. Build. Mater. 2007, 21, 1311–1321. [Google Scholar] [CrossRef]
- Darbre, G.R.; De Smet, C.A.M.; Kraemer, C. Natural frequencies measured from ambient vibration response of the arch dam of Mauvoisin. Earthq. Eng. Struct. Dyn. 2000, 29, 577–586. [Google Scholar] [CrossRef]
- Brincker, R.; Zhang, L.; Andersen, P. Modal identification from ambient responses using frequency domain decomposition. In Proceedings of the International Modal Analysis Conference (IMAC), San Antonio, TX, USA, 7–10 February 2000; pp. 625–630. [Google Scholar]
- Le, T.-H.; Tamura, Y. Modal identification of ambient vibration structure using frequency domain decomposition and wavelet transform. In Proceedings of the Seventh Asia-Pacific Conference on Wind Engineering, Taipei, Taiwan, 8–12 November 2009. [Google Scholar]
- Batel, M. Operational modal analysis-another way of doing modal testing. Sound Vib. 2002, 36, 22–27. [Google Scholar]
- Neu, E.; Janser, F.; Khatibi, A.A.; Braun, C.; Orifici, A.C. Operational Modal Analysis of a wing excited by transonic flow. Aerosp. Sci. Technol. 2016, 49, 73–79. [Google Scholar] [CrossRef]
- Tarinejad, R.; Falsafian, K.; Aalami, M.T.; Ahmadi, M.T. Modal identification of Karun IV arch dam based on ambient vibration tests and seismic responses. J. Vibroeng. 2016, 18, 3869–3880. [Google Scholar] [CrossRef]
- Damadipour, M.; Tarinejad, R. Health monitoring of a concrete arch dam using an effective hybrid method based on frequency domain decomposition and wavelet transform. Modares Mech. Eng. 2018, 18, 99–109. [Google Scholar]
- Tarinejad, R.; Damadipour, M. Extended FDD-WT method based on correcting the errors due to non-synchronous sensing of sensors. Mech. Syst. Signal Process. 2016, 72, 547–566. [Google Scholar] [CrossRef]
- Bukenya, P.; Moyo, P.; Oosthuizen, C. Long Term Ambient Vibration Monitoring of Roode Elsberg Dam–Initial Results. In Proceedings of the International Symposium on Dams in a Global Environmental Challenges, Bali, Indonesia, 2–6 June 2014. [Google Scholar]
- Brincker, R.; Ventura, C.E.; Andersen, P. Damping estimation by frequency domain decomposition. In Proceedings of the IMAC 19: A Conference on Structural Dynamics, Kissimmee, FL, USA, 5–8 February 2001; pp. 698–703. [Google Scholar]
- Kudu, F.N.; Uçak, Ş.; Osmancikli, G.; Türker, T.; Bayraktar, A. Estimation of damping ratios of steel structures by Operational Modal Analysis method. J. Constr. Steel Res. 2015, 112, 61–68. [Google Scholar] [CrossRef]
- El-Borgi, S.; Choura, S.; Ventura, C.; Baccouch, M.; Cherif, F. Modal identification and model updating of a reinforced concrete bridge. Smart Struct. Syst. 2005, 1, 83–101. [Google Scholar] [CrossRef]
- Sevim, B.; Bayraktar, A.; Altunişik, A.C. Finite element model calibration of berke arch dam using operational modal testing. J. Vib. Control 2011, 17, 1065–1079. [Google Scholar] [CrossRef]
- Sevim, B.; Bayraktar, A.; Altunışık, A.C.; Adanur, S.; Akköse, M. Dynamic characteristics of a prototype arch dam. Exp. Mech. 2011, 51, 787–791. [Google Scholar] [CrossRef]
- Sevim, B.; Altunisik, A.C.; Bayraktar, A. Structural identification of concrete arch dams by ambient vibration tests. Adv. Concr. Constr. 2013, 1, 227. [Google Scholar] [CrossRef]
- Sevim, B.; Altunisik, A.C.; Bayraktar, A. Experimental evaluation of crack effects on the dynamic characteristics of a prototype arch dam using ambient vibration tests. Comput. Concr. 2012, 10, 277–294. [Google Scholar] [CrossRef]
- Altunişik, A.C.; Günaydin, M.; Sevim, B.; Bayraktar, A.; Adanur, S. CFRP composite retrofitting effect on the dynamic characteristics of arch dams. Soil Dyn. Earthq. Eng. 2015, 74, 1–9. [Google Scholar] [CrossRef]
- Altunisik, A.C.; Gunaydin, M.; Sevim, B.; Adanur, S. System identification of arch dam model strengthened with CFRP composite materials. Steel Compos. Struct. 2017, 25, 231–244. [Google Scholar]
- Altunişik, A.C.; Sevİm, B.; Bayraktar, A.; Adanur, S.; Günaydin, M. Time dependent changing of dynamic characteristics of laboratory arch dam model. KSCE J. Civ. Eng. 2015, 19, 1069–1077. [Google Scholar] [CrossRef]
- Davoodi, M.; Eghbali, D. Determination of Dynamic Characteristics of Double Curvature Concrete Dez Dam by Using Ambient Vibration Test with Three Different Signal Processing Methods. Bull. Earthq. Sci. Eng. 2022, 9, 13–29. [Google Scholar]
- Guo, X.; Dufour, F.; Humbert, N. Modal analysis of an arch dam combining ambient vibration measurements, advanced fluid-element method and modified engineering approach. Earthq. Eng. Struct. Dyn. 2022, 51, 1321–1342. [Google Scholar] [CrossRef]
- Guo, X.; Dufour, F.; Humbert, N. Ambient Vibration Data-Based Modal Parameter Estimation and Numerical Model Calibration of an Arch Dam. In Experimental Vibration Analysis for Civil Engineering Structures; Springer: Berlin/Heidelberg, Germany, 2023; pp. 252–262. [Google Scholar]
- Hu, S.-L.J.; Yang, W.-L.; Liu, F.-S.; Li, H.-J. Fundamental comparison of time-domain experimental modal analysis methods based on high-and first-order matrix models. J. Sound Vib. 2014, 333, 6869–6884. [Google Scholar] [CrossRef]
- Petsounis, K.A.; Fassois, S.D. Parametric time-domain methods for the identification of vibrating structures—A critical comparison and assessment. Mech. Syst. Signal Process. 2001, 15, 1031–1060. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y. Modal Parameter Identification of Hydraulic Structures Based on ERA Method. In Proceedings of the 2010 3rd International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 29–31 October 2010; pp. 132–135. [Google Scholar]
- Li, Y.; Hu, J.; Ma, B.; Liang, C. Development and verification of hydroelastic model experiment for the flow-induced vibration analysis of roller compacted concrete dam. J. Low Freq. Noise Vib. Act. Control 2021, 40, 1907–1926. [Google Scholar] [CrossRef]
- Zhang, Y.; Lian, J.; Liu, F. Modal parameter identification for a roof overflow powerhouse under ambient excitation. Water Sci. Eng. 2016, 9, 67–80. [Google Scholar] [CrossRef]
- Van Overschee, P.; De Moor, B.L. Subspace Identification for Linear Systems: Theory—Implementation—Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Pourgholi, M.; Koohdaragh, M. Output-Error Methods in Structural Modal Identification. AUT J. Civ. Eng. 2023, 7, 49–66. [Google Scholar]
- Sevim, B.; Bayraktar, A.; Altunişik, A.C.; Adanur, S.; Akköse, M. Modal parameter identification of a prototype arch dam using enhanced frequency domain decomposition and stochastic subspace identification techniques. J. Test. Eval. 2010, 38, 588–597. [Google Scholar] [CrossRef]
- Bukenya, P.; Moyo, P.; Oosthuizen, C. Modal parameter estimation from ambient vibration measurements of a dam using stochastic subspace identification methods. In Concrete Repair, Rehabilitation and Retrofitting III; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Tarinejad, R.; Pourgholi, M. Modal identification of arch dams using balanced stochastic subspace identification. J. Vib. Control 2018, 24, 2030–2044. [Google Scholar] [CrossRef]
- Pirboudaghi, S.; Tarinejad, R.; Alami, M.T. Damage detection based on system identification of concrete dams using an extended finite element–wavelet transform coupled procedure. J. Vib. Control 2018, 24, 4226–4246. [Google Scholar] [CrossRef]
- Li, H.; Wang, G.; Wei, B.; Zhong, Y.; Zhan, L. Dynamic inversion method for the material parameters of a high arch dam and its foundation. Appl. Math. Model. 2019, 71, 60–76. [Google Scholar] [CrossRef]
- Fang, Z.; Su, H.; Wen, Z. Joint back-analysis for dynamic material parameters of concrete dam based on time-frequency domain information. Struct. Control Health Monit. 2019, 26, e2385. [Google Scholar] [CrossRef]
- Cheng, L.; Tong, F.; Yang, J.; Zheng, D. Online modal identification of concrete dams using the subspace tracking-based method. Shock. Vib. 2019, 2019, 1–18. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.-T.; Jin, A.-Y.; Luo, G.-H. Parametric analysis of SSI algorithm in modal identification of high arch dams. Soil Dyn. Earthq. Eng. 2020, 129, 105929. [Google Scholar] [CrossRef]
- Wang, M.; Chi, S.; Zhou, X. Modal identification of high earth-rock dams based on seismic records and SSI method. Chin. J. Geotech. Eng. 2021, 43, 1279–1287. [Google Scholar]
- Li, J.; Bao, T.; Ventura, C.E. A robust methodology for output-only modal identification of civil engineering structures. Eng. Struct. 2022, 270, 114764. [Google Scholar] [CrossRef]
- Pourgholi, M.; Tarinejad, R.; Khabir, M.E.; Mohammadzadeh Gilarlue, M. System identification of Karun IV Dam using balanced stochastic subspace algorithm considering the uncertainty of results. J. Vib. Control 2023, 29, 5342–5356. [Google Scholar] [CrossRef]
- Wang, G.; Li, H.; Fu, Z.; Huang, W.; Liu, B.; Yao, S. A novel methodology for modal parameter identification of arch dam based on multi-level information fusion. Mech. Syst. Signal Process. 2023, 183, 109578. [Google Scholar] [CrossRef]
- Pourgholi, M.; Ghannadi, M.; Gavgani, S.S. Modal analysis of earthquake records for dams using stochastic subspace based on error analysis. Eng. Rep. 2023, 2023, e12822. [Google Scholar] [CrossRef]
- Liu, B.; Li, H.; Wang, G.; Huang, W.; Wu, P.; Li, Y. Dynamic material parameter inversion of high arch dam under discharge excitation based on the modal parameters and Bayesian optimised deep learning. Adv. Eng. Inform. 2023, 56, 102016. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Lin, C.-S.; Chiu, S.-H.; Lin, T.-Y. Empirical mode decomposition–based least squares support vector regression for foreign exchange rate forecasting. Econ. Model. 2012, 29, 2583–2590. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, Q.; Ma, B.; Zhao, Y.; Zhu, L. Signal de-noising method for vibration signal of flood discharge structure based on combined wavelet and EMD. J. Vib. Control 2017, 23, 2401–2417. [Google Scholar] [CrossRef]
- Esmaielzadeh, S.; Ahmadi, H.; Hosseini, S.A. Damage detection of concrete gravity dams using Hilbert-Huang method. J. Appl. Eng. Sci. 2018, 8, 7–16. [Google Scholar] [CrossRef]
- Li, B.; Zhang, L.; Zhang, Q.; Yang, S. An EEMD-based denoising method for seismic signal of high arch dam combining wavelet with singular spectrum analysis. Shock. Vib. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Qiao, W.; Li, R. Identification of hydraulic structural parameters under limited input earthquake records. J. Perform. Constr. Facil. 2019, 33, 04018112. [Google Scholar] [CrossRef]
- Mirtaheri, M.; Salkhordeh, M.; Mohammadgholiha, M. A system identification-based damage-detection method for gravity dams. Shock. Vib. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Wei, B.; Xie, B.; Li, H.; Zhong, Z.; You, Y. An improved Hilbert–Huang transform method for modal parameter identification of a high arch dam. Appl. Math. Model. 2021, 91, 297–310. [Google Scholar] [CrossRef]
- Guo, Y.; You, Z.; Wei, B. Working Mode Identification Method for High Arch Dam Discharge Structure Based on Improved Wavelet Threshold–EMD and RDT Algorithm. Water 2022, 14, 3735. [Google Scholar] [CrossRef]
- Li, S.; Pan, J.-W.; Luo, G.-H.; Wang, J.-T. Improvements in the HHT for the modal parameter identification of structures with closely spaced modes. J. Earthq. Eng. 2022, 26, 331–356. [Google Scholar] [CrossRef]
- Barbosh, M.; Sadhu, A. Damage identification in concrete structures using a hybrid time–frequency decomposition of acoustic emission responses. J. Civ. Struct. Health Monit. 2023, 14, 237–253. [Google Scholar] [CrossRef]
- Liu, Y.F.; Xin, K.G.; Fan, J.S.; Cui, D.Y. A review of structure modal identification methods through ambient excitation. Eng. Mech. 2014, 31, 46–53. [Google Scholar]
- Cheng, L.; Tong, F.; Li, Y.; Yang, J.; Zheng, D. Comparative study of the dynamic back-analysis methods of concrete gravity dams based on multivariate machine learning models. J. Earthq. Eng. 2021, 25, 1–22. [Google Scholar] [CrossRef]
- Flah, M.; Nunez, I.; Ben Chaabene, W.; Nehdi, M.L. Machine learning algorithms in civil structural health monitoring: A systematic review. Arch. Comput. Methods Eng. 2021, 28, 2621–2643. [Google Scholar] [CrossRef]
- Su, H.; Wen, Z.; Sun, X.; Yang, M. Time-varying identification model for dam behavior considering structural reinforcement. Struct. Saf. 2015, 57, 1–7. [Google Scholar] [CrossRef]
- Sevieri, G.; De Falco, A. Dynamic structural health monitoring for concrete gravity dams based on the Bayesian inference. J. Civ. Struct. Health Monit. 2020, 10, 235–250. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Chen, J. An advanced Bayesian parameter estimation methodology for concrete dams combining an improved extraction technique of hydrostatic component and hybrid response surface method. Eng. Struct. 2022, 267, 114687. [Google Scholar] [CrossRef]
- Pappa, R.S.; Woodard, S.E.; Juang, J.-N. A Benchmark Problem for Development of Autonomous Structural Modal Identification; NASA: Washington, DC, USA, 1996.
- Ye, X.; Huang, P.; Pan, C.; Mei, L. Innovative stabilization diagram for automated structural modal identification based on ERA and hierarchical cluster analysis. J. Civ. Struct. Health Monit. 2021, 11, 1355–1373. [Google Scholar] [CrossRef]
- Savoia, M.; Vincenzi, L. Differential evolution algorithm for dynamic structural identification. J. Earthq. Eng. 2008, 12, 800–821. [Google Scholar] [CrossRef]
- Mayes, R.L.; Dorrell, L.R.; Klenke, S.E. Applications of the Automated SMAC Modal Parameter Extraction Package; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 1999.
- Lardies, J. Modal parameter identification based on ARMAV and state–space approaches. Arch. Appl. Mech. 2010, 80, 335–352. [Google Scholar] [CrossRef]
- Zhang, F.L.; Au, S.K.; Lam, H.F. Assessing uncertainty in operational modal analysis incorporating multiple setups using a Bayesian approach. Struct. Control Health Monit. 2015, 22, 395–416. [Google Scholar] [CrossRef]
- Pereira, S.; Magalhães, F.; Gomes, J.P.; Cunha, Á.; Lemos, J.V. Dynamic monitoring of a concrete arch dam during the first filling of the reservoir. Eng. Struct. 2018, 174, 548–560. [Google Scholar] [CrossRef]
- Pereira, S.; Reynders, E.; Magalhães, F.; Cunha, Á.; Gomes, J. Tracking the modal parameters of Baixo Sabor concrete arch dam with uncertainty quantification. In Proceedings of the 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering, Crete, Greece, 24–26 June 2019; pp. 90–102. [Google Scholar]
- Pereira, S.; Reynders, E.; Magalhaes, F.; Cunha, A.; Gomes, J.P. The role of modal parameters uncertainty estimation in automated modal identification, modal tracking and data normalization. Eng. Struct. 2020, 224, 111208. [Google Scholar] [CrossRef]
- Li, S.; Pan, J.; Luo, G.; Wang, J. Automatic modal parameter identification of high arch dams: Feasibility verification. Earthq. Eng. Eng. Vib. 2020, 19, 953–965. [Google Scholar] [CrossRef]
- Mostafaei, H.; Ghamami, M.; Aghabozorgi, P. Modal identification of concrete arch dam by fully automated operational modal identification. Structures 2021, 32, 228–236. [Google Scholar] [CrossRef]
- Li, J.; Bao, T.; Ventura, C.E. An automated operational modal analysis algorithm and its application to concrete dams. Mech. Syst. Signal Process. 2022, 168, 108707. [Google Scholar] [CrossRef]
- Li, B.; Liang, W.; Yang, S.; Zhang, L. Automatic identification of modal parameters for high arch dams based on SSI incorporating SSA and K-means algorithm. Appl. Soft Comput. 2023, 138, 110201. [Google Scholar] [CrossRef]
- Mostafaei, H.; Mostofinejad, D.; Ghamami, M.; Wu, C. A new approach of ensemble learning in fully automated identification of structural modal parameters of concrete gravity dams: A case study of the Koyna dam. Structures 2023, 50, 255–271. [Google Scholar] [CrossRef]
- Liu, B.; Li, H.; Liu, F.; Huang, W.; Wang, G.; Wang, H.; Wang, W.; Tang, Y.; Liu, H. Beat vibration analysis model of overflow dam pier under discharge excitation based on adaptive VMD and automatic operational modal analysis. Mech. Syst. Signal Process. 2024, 211, 111201. [Google Scholar] [CrossRef]
- Mostafaei, H.; Keshavarz, Z.; Rostampour, M.A.; Mostofinejad, D.; Wu, C. Sustainability evaluation of a concrete gravity dam: Life cycle assessment, carbon footprint analysis, and life cycle costing. Structures 2023, 53, 279–295. [Google Scholar] [CrossRef]
- Mostafaei, H.; Behnamfar, F. Wedge movement effects on the nonlinear behavior of an arch dam subjected to seismic loading. Int. J. Geomech. 2022, 22, 04021289. [Google Scholar] [CrossRef]
- Mostafaei, H.; Behnamfar, F.; Alembagheri, M. Reliability and sensitivity analysis of wedge stability in the abutments of an arch dam using artificial neural network. Earthq. Eng. Eng. Vib. 2022, 21, 1019–1033. [Google Scholar] [CrossRef]
- Maia, N.M.M.; Silva, J.M.M.; Almas, E.A.M.; Sampaio, R.P.C. Damage detection in structures: From mode shape to frequency response function methods. Mech. Syst. Signal Process. 2003, 17, 489–498. [Google Scholar] [CrossRef]
- Hui, S.; Charlebois, L.; Sun, C. Real-time monitoring for structural health, public safety, and risk management of mine tailings dams. Can. J. Earth Sci. 2018, 55, 221–229. [Google Scholar] [CrossRef]
- Zhu, X.; Qiu, J.; Xu, Y.; Chen, X.; Xu, P.; Wu, X.; Guo, S.; Zhao, J.; Lin, J. Modal Parameter Recursive Estimation of Concrete Arch Dams under Seismic Loading Using an Adaptive Recursive Subspace Method. Sensors 2024, 24, 3845. [Google Scholar] [CrossRef] [PubMed]
- Entezami, A.; Sarmadi, H.; Behkamal, B. Short-term damage alarming with limited vibration data in bridge structures: A fully non-parametric machine learning technique. Measurement 2024, 235, 114935. [Google Scholar] [CrossRef]
- Azimi, M.; Eslamlou, A.D.; Pekcan, G. Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review. Sensors 2020, 20, 2778. [Google Scholar] [CrossRef]
- Lotfollahi-Yaghin, M.A.; Hesari, M.A. Using wavelet analysis in crack detection at the arch concrete dam under frequency analysis with FEM. World Appl. Sci. J. 2008, 3, 691–704. [Google Scholar]
- Turker, T.; Bayraktar, A.; Sevim, B. Vibration based damage identification of concrete arch dams by finite element model updating. Comput. Concr. 2014, 13, 209–220. [Google Scholar] [CrossRef]
- Hamidian, D.; Salajegheh, J.; Salajegheh, E. Damage detection of irregular plates and regular dams by wavelet transform combined adoptive neuro fuzzy inference system. Civ. Eng. J. 2018, 4, 305–319. [Google Scholar] [CrossRef]
- Esmaielzadeh, S.; Ahmadi, H.; Hosseini, S.A. Damage detection in concrete gravity dams using signal processing algorithms based on earthquake vibrations. J. Vibroeng. 2019, 21, 2196–2215. [Google Scholar] [CrossRef]
- Zuo, C.; Feng, X.; Fan, Z.; Zhang, Y.; Zhou, J. Detection of post-earthquake damage inside a concrete arch dam using the electromechanical impedance method. J. Civ. Struct. Health Monit. 2021, 11, 105–116. [Google Scholar] [CrossRef]
- Zar, A.; Kang, F.; Li, J.; Wu, Y. Vibration-based damage detection of arch dams using least-square support vector machines and salp swarm algorithms. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 4441–4462. [Google Scholar] [CrossRef]
- Mohebian, P.; Motahari, M.R.; Aval, S.B.B. A Two-Stage Method for Damage Identification in Concrete Gravity Dams by Using a Modal Curvature-Based Index and Pathfinder Algorithm. Arab. J. Sci. Eng. 2023, 49, 5927–5947. [Google Scholar] [CrossRef]
- Si, Z.; Pan, J.; Yang, X. Damage identification of concrete arch dams based on wavelet packets and neural networks. Buildings 2023, 13, 1417. [Google Scholar] [CrossRef]
- Cao, X.; Chen, L.; Chen, J.; Jing, L.; Li, J.; Lu, W.; Liu, H.; Liu, P.; Ke, M.; Tang, Y. Unsupervised Domain Adaptation Damage Identification Approach of High Arch Dams after Earthquakes. Struct. Control Health Monit. 2023, 2023, 1–18. [Google Scholar]
- YiFei, L.; Minh, H.-L.; Khatir, S.; Sang-To, T.; Cuong-Le, T.; MaoSen, C.; Wahab, M.A. Structure damage identification in dams using sparse polynomial chaos expansion combined with hybrid K-means clustering optimizer and genetic algorithm. Eng. Struct. 2023, 283, 115891. [Google Scholar] [CrossRef]
- Zar, A.; Hussain, Z.; Akbar, M.; Tayeh, B.A.; Lin, Z. A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms. Smart Struct. Syst. 2023, 32, 319–338. [Google Scholar]
- Li, Y.; Minh, H.-L.; Cao, M.; Qian, X.; Wahab, M.A. An integrated surrogate model-driven and improved termite life cycle optimizer for damage identification in dams. Mech. Syst. Signal Process. 2024, 208, 110986. [Google Scholar] [CrossRef]
- Qiu, J.; He, W.; Zheng, D.; Xu, Y.; Guo, S.; Ma, T.; Xu, P.; Liu, Y. Dynamic failure experimental study of a gravity dam model on a shaking table and analysis of its structural dynamic characteristics. Sensors 2024, 24, 1602. [Google Scholar] [CrossRef] [PubMed]
Instrumentation Method | Cost | Sensitivity | Deployment Complexity | Data Quality | Application Scope |
---|---|---|---|---|---|
Accelerometers | Moderate | High | Easy | High | Suitable for detecting vibrations in a wide frequency range. |
Seismometers | High | Very High | Moderate | Very High | Ideal for capturing low-frequency ground motions. |
Strain gauges | Low | Moderate | Easy | Moderate | Effective for measuring deformation but less effective for dynamic modal analysis. |
Laser Doppler Vibrometers | High | Very High | Moderate | Very High | Non-contact method providing precise vibration measurements. |
GPS | High | Moderate | Complex | Moderate | Useful for monitoring large-scale movements but less sensitive to high-frequency vibrations. |
Fiber Optic Sensors | High | High | Complex | High | Ideal for monitoring strain and temperature changes over long distances. |
Microelectromechanical Systems (MEMSs) | Low to Moderate | High | Easy to Moderate | Moderate to High | Compact, cost-effective solutions suitable for dense sensor networks. |
Method | Strengths | Weaknesses |
---|---|---|
PP |
|
|
FDD |
|
|
EFDD |
|
|
SSI |
|
|
ERA |
|
|
EMD |
|
|
HHT |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafaei, H. Modal Identification Techniques for Concrete Dams: A Comprehensive Review and Application. Sci 2024, 6, 40. https://doi.org/10.3390/sci6030040
Mostafaei H. Modal Identification Techniques for Concrete Dams: A Comprehensive Review and Application. Sci. 2024; 6(3):40. https://doi.org/10.3390/sci6030040
Chicago/Turabian StyleMostafaei, Hasan. 2024. "Modal Identification Techniques for Concrete Dams: A Comprehensive Review and Application" Sci 6, no. 3: 40. https://doi.org/10.3390/sci6030040
APA StyleMostafaei, H. (2024). Modal Identification Techniques for Concrete Dams: A Comprehensive Review and Application. Sci, 6(3), 40. https://doi.org/10.3390/sci6030040