Experimental Study of the Interaction of Silica Nanoparticles with a Phospholipid Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formation of the Liposomes
2.2. Nanoparticles
2.3. Preparation of Silicon Wafers for Formation of the Planar Bilayers
2.4. Reflectometry
2.5. Formation of the Sandwich-like Film from Lipids and NPs on the Membrane
2.6. Determination of the Electrokinetic Charge and Size of Liposomes and NPs
2.7. Microscopy
3. Results
3.1. Characterization of the Liposomes and Particles
3.2. A Sequential Adsorption of Liposomes and NPs
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bitar, A.; Ahmad, N.M.; Fessi, H.; Elaissari, A. Silica-based nanoparticles for biomedical application. Drug Discov. Today 2012, 17, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Cheng, J. Nonporous silica nanoparticles for nanomedicine application. Nano Today 2013, 8, 290–312. [Google Scholar] [CrossRef] [PubMed]
- Contini, C.; Schneemilch, M.; Gaisford, S.; Quirke, N. Nanoparticle-membrane interactions. J. Exp. Nanosci. 2017, 13, 62–81. [Google Scholar] [CrossRef]
- Rojewska, M.; Tim, B.; Prochaska, K. Interactions between silica particles and model phospholipid monolayers. J. Mol. Liq. 2022, 345, 116999. [Google Scholar] [CrossRef]
- Elsaesser, A.; Howard, C.V. Toxicology of nanoparticles. Adv. Drug Deliv. Rev. 2012, 64, 129–137. [Google Scholar] [CrossRef] [PubMed]
- De Lange, N.; Leermakers, F.A.M.; Kleijn, J.M. Self-limiting aggregation of phospholipid vesicles. Soft Matter 2020, 16, 2379–2389. [Google Scholar] [CrossRef]
- Rascol, E.; Devoisselle, J.M.; Chopineau, J. The relevance of membrane models to understand nanoparticles–cell membrane interactions. Nanoscale 2016, 8, 4780–4798. [Google Scholar] [CrossRef]
- Curtis, E.M.; Bahrami, A.H.; Weikl, T.R.; Hall, C.K. Modeling nanoparticle wrapping or translocation in bilayer membranes. Nanoscale 2015, 7, 14505–14514. [Google Scholar] [CrossRef] [PubMed]
- Pera, H.; Kleijn, J.M.; Leermakers, F.A.M. Interaction of Silica Nanoparticles with Phospholipid Membranes. Chem. Lett. 2012, 41, 1322–1324. [Google Scholar] [CrossRef]
- Kettiger, H.; Québatte, G.; Perrone, B.; Huwyler, J. Interactions between silica nanoparticles and phospholipid membranes. Biochim. Biophys. Acta Biomembr. 2016, 1858, 2163–2170. [Google Scholar] [CrossRef]
- Mohanraj, V.J.; Barnes, T.J.; Prestidge, C.A. Silica nanoparticle coated liposomes: A new type of hybrid nanocapsule for proteins. Int. J. Pharm. 2010, 439, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Michel, R.; Kesselman, E.; Plostica, T.; Danino, D.; Gradzielski, M. Internalization of silica nanoparticles into fluid liposomes: Formation of interesting hybrid colloids. Angew. Chem. 2014, 126, 12649–12653. [Google Scholar] [CrossRef]
- Alkhammsh, H.I.; Li, N.; Berthier, R.; de Planque, M.R.R. Native silica nanoparticles are powerful membrane disruptors. Phys. Chem. Chem. Phys. 2015, 17, 15547–15560. [Google Scholar] [CrossRef] [PubMed]
- Michel, R.; Gradzielski, M. Experimental aspects of colloidal interactions in mixed systems of liposomes and inorganic nanoparticle and their applications. Int. J. Mol. Sci. 2012, 13, 11610–11642. [Google Scholar] [CrossRef] [PubMed]
- Lipowsky, R.; Seifert, U. Adhesion of vesicles and membranes. Mol. Cryst. Liq. Cryst. 1991, 202, 17–25. [Google Scholar] [CrossRef]
- Dimitrievski, K.; Kasemo, B. Influence of lipid vesicle composition and surface charge density on vesicle adsorption events: A kinetic phase diagram. Langmuir 2009, 26, 8865–8869. [Google Scholar] [CrossRef]
- Revaiakine, I.; Brisson, A. Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir 2000, 16, 1806–1815. [Google Scholar] [CrossRef]
- Reinhult, E.; Höök, F.; Kasemo, B. Intact vesicle adsorption and supported biomembrane formation from vesicles in solution: influence of surface chemistry, vesicle size, temperature, and osmotic pressure. Langmuir 2003, 19, 1681–1691. [Google Scholar] [CrossRef]
- Nollert, P.; Kiefer, H.; Jähning, F. Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces. Biophys. J. 1995, 69, 1447–1455. [Google Scholar] [CrossRef]
- Keller, C.; Kasemo, B. Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J. 1998, 75, 1397–1402. [Google Scholar] [CrossRef] [PubMed]
- Blodgett, K.B. Films built by depositing successive monomolecular layers on a solid surface. J. Am. Chem. Soc. 1953, 57, 1007–1022. [Google Scholar] [CrossRef]
- Tiberg, F.; Harwigsson, I.; Malmstein, M. Formation of model lipid bilayers at the silica-water interface by co-adsorption with non-ionic dodecyl maltoside surfactant. Eur. Biophys. J. 2000, 29, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Tamm, L.; McConnel, H. Supported phospholipid bilayers. Biophys. J. 1985, 47, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Mornet, S.; Lambert, O.; Duguet, E.; Brisson, A. The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. Nano Lett. 2005, 5, 281–285. [Google Scholar] [CrossRef]
- Milkova, V.; Vilhelmova-Ilieva, N.; Gyurova, A.; Kamburova, K.; Dimitrov, I.; Tsvetanova, E.; Georgieva, A.; Mileva, M. Remdesivir-Loaded Nanoliposomes Stabilized by Chitosan/Hyaluronic Acid Film with a Potential Application in the Treatment of Coronavirus Infection. Neurol. Int. 2023, 15, 1320–1338. [Google Scholar] [CrossRef] [PubMed]
- Maccarini, M.; Himmelhaus, M.; Stoycheva, S.; Grunze, M. Characterization and stability of hydrophobic surfaces in water. Appl. Surf. Sci. 2005, 252, 1941–1946. [Google Scholar] [CrossRef]
- Dijt, J.C.; Cohen Stuart, M.A.; Hofman, J.E.; Fleer, G.J. Kinetics of polymer adsorption in stagnation point flow. Colloids Surf. 1990, 51, 141–158. [Google Scholar] [CrossRef]
- Dijt, J.C.; Cohen Stuart, M.A.; Fleer, G.J. Reflectometry as a tool for adsorption studies. Adv. Colloid Interface Sci. 1994, 50, 79–101. [Google Scholar] [CrossRef]
- Dabros, T.; van de Ven, T.G.M. A direct method for studying particle deposition onto solid surfaces. Colloid Polym. Sci. 1983, 261, 694–707. [Google Scholar] [CrossRef]
- Nagle, J.F.; Tristram-Ngle, S. Structure of lipid bilayers. Biochim. Biophys. Acta 2000, 1469, 159–195. [Google Scholar] [CrossRef]
- Bolt, G.H. Determination of the Charge Density of Silica Sols. J. Phys. Chem. 1957, 61, 1166–1169. [Google Scholar] [CrossRef]
- Zimmermann, R.; Küttner, D.; Renner, L.; Kaufmann, M.; Zitzmann, J.; Müller, M. Charging and structure of zwitterionic supported bilayer lipid membranes studied by streaming current measurements, fluorescence microscopy, and attenuated total reflection Fourier transform infrared spectroscopy. Biointerphases 2009, 4, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Richter, R.; Mukhopadhyay, A.; Brisson, A. Pathways of lipid vesicle deposition on solid surfaces: A combined QCM-D and AFM study. Biophys. J. 2003, 85, 3035–3047. [Google Scholar] [CrossRef] [PubMed]
- Santos, O.; Arnebrant, T. Silica supported phospholipid layers doped with GM1: A comparison between different methods. J. Colloid Interface Sci. 2009, 329, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Benes, M.; Billy, D.; Benda, A.; Spejer, H.; Hof, M.; Hermens, W.T. Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica and glass. Langmuir 2004, 20, 10129–10137. [Google Scholar] [CrossRef]
- Rand, R.P. Interacting phospholipid-bilayers-measured forces and induced structural changes. Annu. Rev. Biophys. Bioeng. 1981, 10, 277–314. [Google Scholar] [CrossRef]
- Kalb, E.; Frey, S.; Tamm, K.L. Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim. Biophys. Acta. Biomembr. 1992, 1103, 307–316. [Google Scholar] [CrossRef]
- Goveia, D.; Pinheiro, J.P.; Milkova, V.; Rosa, A.H.; van Leeuwen, H.P. Dynamics and Heterogeneity of Pb(II) Binding by SiO2 Nanoparticles in an Aqueous Dispersion. Langmuir 2011, 27, 7877–7883. [Google Scholar] [CrossRef]
- Oleson, T.; Sahai, N. Oxide-dependent adsorption and self-assembly of dipalymitoylphosphatidylcholine, a cell-membrane phospholipid: Bulk Adsorption Isotherms. Langmuir 2008, 24, 4865–4873. [Google Scholar] [CrossRef]
- Fleck, C.C.; Netz, R.R. Electrostatic colloid-membrane binding. Europhys. Lett. 2004, 67, 314–320. [Google Scholar] [CrossRef]
- Deserno, M. When do fluid membranes engulf sticky colloids? J. Phys. Condes. Matter 2004, 16, S2061–S2070. [Google Scholar] [CrossRef]
- Helfrich, W. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. 1973, 28, 693–703. [Google Scholar] [CrossRef]
- Roiter, Y.; Ornatska, M.; Rammohan, A.R.; Balakrishnan, J.; Heine, D.R.; Minko, S. Interaction of nanoparticles with lipid membrane. Nano Lett. 2008, 8, 941–944. [Google Scholar] [CrossRef] [PubMed]
Sample | D, nm (PDI) | ζ-Potential | ||||
---|---|---|---|---|---|---|
pH 4 | pH 7 | pH 9 | pH 4 | pH 7 | pH 9 | |
liposomes | 223.7 ± 3.9 (0.12) | 198.4 ± 7.4 (0.22) | 200.5 ± 2.6 (0.10) | −22.1 ± 0.4 | −70.5 ± 1.2 | −83.2 ± 2.7 |
NPs | 19.3 ± 1.2 (0.14) | 20.4 ± 2.0 (0.10) | 18.1 ± 1.7 (0.31) | −26.2 ± 1.0 | −95.0 ± 4.5 | −135.1 ± 1.9 |
Surface | Adsorption Step | Γexp saturated mg/m2 |
---|---|---|
Hydrophilic pH 4 | DOPC 1 | 3.5 |
NPs 1 | 17.8 | |
DOPC 2 | 9.1 | |
NPs 2 | 25.1 | |
Hydrophobic pH 4 | DOPC 1 | 1.6 |
NPs 1 | 15.9 | |
DOPC 2 | 10.8 | |
NPs 2 | 5.9 |
Surface | Adsorption Step | Γexp saturated mg/m2 |
---|---|---|
Hydrophilic pH 7 | DOPC 1 | 3.5 |
NPs 1 | 10.8 | |
DOPC 2 | 9.1 | |
NPs 2 | 20.7 | |
Hydrophobic pH 7 | DOPC 1 | 1.7 |
NPs 1 | 11.2 | |
DOPC 2 | 7.1 | |
NPs 2 | 4.6 |
Surface | Adsorption Step | Γexp saturated mg/m2 |
---|---|---|
Hydrophilic pH 9 | DOPC 1 | 3.5 |
NPs 1 | 4.9 | |
Hydrophobic pH 9 | DOPC 1 | 0.7 |
NPs 1 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milkova, V. Experimental Study of the Interaction of Silica Nanoparticles with a Phospholipid Membrane. Sci 2025, 7, 6. https://doi.org/10.3390/sci7010006
Milkova V. Experimental Study of the Interaction of Silica Nanoparticles with a Phospholipid Membrane. Sci. 2025; 7(1):6. https://doi.org/10.3390/sci7010006
Chicago/Turabian StyleMilkova, Viktoria. 2025. "Experimental Study of the Interaction of Silica Nanoparticles with a Phospholipid Membrane" Sci 7, no. 1: 6. https://doi.org/10.3390/sci7010006
APA StyleMilkova, V. (2025). Experimental Study of the Interaction of Silica Nanoparticles with a Phospholipid Membrane. Sci, 7(1), 6. https://doi.org/10.3390/sci7010006