Development of a Heat Index Related to Air Quality and Meteorology for an Assessment of Work Performance in Thailand’s Urban Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information of Cities in This Study
2.2. Multivariate Regression Models
2.3. Heat Index and Decrements in Work Performance
3. Results
3.1. Descriptive Analysis of Air Quality and Meteorology
3.2. Relationship between Heat Index, Air Pollutant, and Meteorology
3.3. Heat Index and Work Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lundgren, K.; Kuklane, K.; Gao, C.; Holmer, I. Effects of heat stress on working populations when facing climate change. Ind. Health 2013, 51, 3–15. [Google Scholar] [CrossRef]
- Lugo, K.; Aun, J. Summer Emergencies: Heat Illness, Lightning Injuries, Drowning, and Sunburn. Emerg. Med. Rep. 2015, 36. [Google Scholar]
- Miller, V.S.; Bates, G.P. The thermal work limit is a simple reliable heat index for the protection of workers in thermally stressful environments. Ann. Occup. Hyg. 2007, 51, 553–561. [Google Scholar]
- Steadman, R.G. The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. J. Appl. Meteorol. Climatol. 1979, 18, 861–873. [Google Scholar] [CrossRef]
- Dong, W.; Liu, Z.; Liao, H.; Tang, Q.; Li, X.e. New climate and socio-economic scenarios for assessing global human health challenges due to heat risk. Clim. Chang. 2015, 130, 505–518. [Google Scholar] [CrossRef]
- Harrington, L.J.; Otto, F.E. Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5 °C and 2 °C of warming. Environ. Res. Lett. 2018, 13, 034011. [Google Scholar] [CrossRef]
- Liu, Z.; Anderson, B.; Yan, K.; Dong, W.; Liao, H.; Shi, P. Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change. Sci. Rep. 2017, 7, 43909. [Google Scholar] [CrossRef]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V. Global risk of deadly heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef]
- Coffel, E.D.; Horton, R.M.; De Sherbinin, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 2017, 13, 014001. [Google Scholar] [CrossRef]
- Matthews, T.K.; Wilby, R.L.; Murphy, C. Communicating the deadly consequences of global warming for human heat stress. Proc. Natl. Acad. Sci. USA 2017, 114, 3861–3866. [Google Scholar] [CrossRef]
- Yaglou, C.; Minaed, D. Control of heat casualties at military training centers. Arch. Indust. Health 1957, 16, 302–316. [Google Scholar]
- Moran, D.S.; Pandolf, K.B.; Shapiro, Y.; Heled, Y.; Shani, Y.; Mathew, W.; Gonzalez, R. An environmental stress index (ESI) as a substitute for the wet bulb globe temperature (WBGT). J. Therm. Biol. 2001, 26, 427–431. [Google Scholar] [CrossRef]
- Koteswara Rao, K.; Lakshmi Kumar, T.; Kulkarni, A.; Ho, C.-H.; Mahendranath, B.; Desamsetti, S.; Patwardhan, S.; Dandi, A.R.; Barbosa, H.; Sabade, S. Projections of heat stress and associated work performance over India in response to global warming. Sci. Rep. 2020, 10, 16675. [Google Scholar] [CrossRef]
- Vaneckova, P.; Neville, G.; Tippett, V.; Aitken, P.; FitzGerald, G.; Tong, S. Do biometeorological indices improve modeling outcomes of heat-related mortality? J. Appl. Meteorol. Climatol. 2011, 50, 1165–1176. [Google Scholar] [CrossRef]
- Anderson, B.G.; Bell, M.L. Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States. Epidemiol. Camb. Mass. 2009, 20, 205. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Sherwood, S.C.; Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA 2010, 107, 9552–9555. [Google Scholar] [CrossRef]
- García-Herrera, R.; Díaz, J.; Trigo, R.M.; Luterbacher, J.; Fischer, E.M. A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Kjellstrom, T.; Briggs, D.; Freyberg, C.; Lemke, B.; Otto, M.; Hyatt, O. Heat, human performance, and occupational health: A key issue for the assessment of global climate change impacts. Annu. Rev. Public Health 2016, 37, 97–112. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Parasin, N. Perspective on Particulate Matter: From Biomass Burning to the Health Crisis in Mainland Southeast Asia. Toxics 2023, 11, 553. [Google Scholar] [CrossRef]
- Pongpiachan, S.; Tipmanee, D.; Khumsup, C.; Kittikoon, I.; Hirunyatrakul, P. Assessing risks to adults and preschool children posed by PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) during a biomass burning episode in Northern Thailand. Sci. Total Environ. 2015, 508, 435–444. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Parasin, N.; Limsakul, A. Health risk assessment of exposure near-future PM2.5 in Northern Thailand. Air Qual. Atmos. Health 2022, 15, 1963–1979. [Google Scholar] [CrossRef]
- Li, L.; Qian, J.; Ou, C.-Q.; Zhou, Y.-X.; Guo, C.; Guo, Y. Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011. Environ. Pollut. 2014, 190, 75–81. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Kaewkanchanawong, P.; Panpeng, P. Distribution and Meteorological Control of PM2.5 and Its Effect on Visibility in Northern Thailand. Atmosphere 2023, 14, 538. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Barth, M.; Emmons, L.; Carmichael, G.; Kreasuwun, J.; Prasitwattanaseree, S.; Chantara, S. Effect of different emission inventories on modeled ozone and carbon monoxide in Southeast Asia. Atmos. Chem. Phys. 2014, 14, 12983–13012. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Chatfield, C.; Xing, H. The Analysis of Time Series: An Introduction with R; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Rothfusz, L.P.; NWS Southern Region Headquarters. The Heat Index Equation (or, More than You Ever Wanted to Know about Heat Index); National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology: Fort Worth, TX, USA, 1990; Volume 9023, p. 640. [Google Scholar]
- Amnuaylojaroen, T.; Limsakul, A.; Kirtsaeng, S.; Parasin, N.; Surapipith, V. Effect of the near-future climate change under RCP8. 5 on the heat stress and associated work performance in Thailand. Atmosphere 2022, 13, 325. [Google Scholar] [CrossRef]
- Dunne, J.P.; Stouffer, R.J.; John, J.G. Reductions in labour capacity from heat stress under climate warming. Nat. Clim. Chang. 2013, 3, 563–566. [Google Scholar] [CrossRef]
- Huang, K.; Fu, J.S.; Hsu, N.C.; Gao, Y.; Dong, X.; Tsay, S.-C.; Lam, Y.F. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA. Atmos. Environ. 2013, 78, 291–302. [Google Scholar] [CrossRef]
- Han, X.; Zhang, C.; Zhan, J. A three-way decision method under probabilistic linguistic term sets and its application to Air Quality Index. Inf. Sci. 2022, 617, 254–276. [Google Scholar] [CrossRef]
- Li, W.; Zhang, C.; Cui, Y.; Shi, J. A Collaborative Multi-Granularity Architecture for Multi-Source IoT Sensor Data in Air Quality Evaluations. Electronics 2023, 12, 2380. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, C.; Li, D.; Sangaiah, A.K. Hyperautomation for air quality evaluations: A perspective of evidential three-way decision-making. Cogn. Comput. 2023, 1–17. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy logic—A personal perspective. Fuzzy Sets Syst. 2015, 281, 4–20. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. Deep Learning. In An Introduction to Statistical Learning: With Applications in Python; Springer: Berlin/Heidelberg, Germany, 2023; pp. 399–467. [Google Scholar]
- Yu, D.; Shi, S. Researching the development of Atanassov intuitionistic fuzzy set: Using a citation network analysis. Appl. Soft Comput. 2015, 32, 189–198. [Google Scholar] [CrossRef]
- Deng, X.; Hu, Y.; Deng, Y.; Mahadevan, S. Supplier selection using AHP methodology extended by D numbers. Expert Syst. Appl. 2014, 41, 156–167. [Google Scholar] [CrossRef]
- McGregor, G.R.; Vanos, J.K. Heat: A primer for public health researchers. Public Health 2018, 161, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Desert, A.; Naboni, E.; Garcia, D. The spatial comfort and thermal delight of outdoor misting installations in hot and humid extreme environments. Energy Build. 2020, 224, 110202. [Google Scholar] [CrossRef]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Monks, P.S.; Archibald, A.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef]
- Ye, X.; Wolff, R.; Yu, W.; Vaneckova, P.; Pan, X.; Tong, S. Ambient temperature and morbidity: A review of epidemiological evidence. Environ. Health Perspect. 2012, 120, 19–28. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Doick, K.J.; Peace, A.; Hutchings, T.R. The role of one large greenspace in mitigating London’s nocturnal urban heat island. Sci. Total Environ. 2014, 493, 622–671. [Google Scholar] [CrossRef]
- Tian, L.; Li, Y.; Lu, J.; Wang, J. Review on urban heat island in China: Methods, its impact on buildings energy demand and mitigation strategies. Sustainability 2021, 13, 762. [Google Scholar] [CrossRef]
- Liu, P.; Song, H.; Wang, T.; Wang, F.; Li, X.; Miao, C.; Zhao, H. Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities. Environ. Pollut. 2020, 262, 114366. [Google Scholar] [CrossRef] [PubMed]
- Kjellstrom, T.; Lemke, B.; Otto, M. Climate conditions, workplace heat and occupational health in South-East Asia in the context of climate change. WHO South East Asia J. Public Health 2017, 6, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.; Watkins, S.L.; Marshall, H.; Dascombe, B.J.; Foster, J. The impact of different environmental conditions on cognitive function: A focused review. Front. Physiol. 2016, 6, 372. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- Akbari, H.; Menon, S.; Rosenfeld, A. Global cooling: Increasing world-wide urban albedos to offset CO2. Clim. Chang. 2009, 94, 275–286. [Google Scholar] [CrossRef]
- Yahia, M.W.; Johansson, E. Evaluating the behaviour of different thermal indices by investigating various outdoor urban environments in the hot dry city of Damascus, Syria. Int. J. Biometeorol. 2013, 57, 615–630. [Google Scholar] [CrossRef]
Temperature Range | Notes |
---|---|
27–32 °C | Caution: Fatigue may occur with prolonged exposure and activity. Continuing activity could result in heat cramps. |
32–41 °C | Extreme caution: Heat cramps and heat exhaustion are possible. Continuing activity could result in heat stroke. |
41–54 °C | Danger: heat cramps and heat exhaustion are likely; heat stroke is probable with continued activity. |
>54 °C | Extreme danger: heat stroke is imminent. |
Statistics | Chiang Mai | Bangkok | Nakhon Ratchasima | Ubon Ratchathani | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PM2.5 (μg/m3) | CO (ppm) | NOx (ppb) | Temp. (°C) | RH (%) | PM2.5 (μg/m3) | CO (ppm) | NOx (ppb) | Temp. (°C) | RH (%) | PM2.5 (μg/m3) | CO (ppm) | NOx (ppb) | Temp. (°C) | RH (%) | PM2.5 (μg/m3) | CO (ppm) | NOx (ppb) | Temp. (°C) | RH (%) | |
Means | 23.84 | 0.81 | 35.18 | 29.37 | 53.00 | 22.04 | 0.57 | 18.11 | 28.74 | 75.04 | 26.39 | 0.57 | 22.65 | 27.00 | 65.23 | 25.04 | 0.27 | 9.42 | 27.45 | 67.88 |
Standard deviation | 24.56 | 0.49 | 25.58 | 4.67 | 21.84 | 15.71 | 0.27 | 22.59 | 2.98 | 18.76 | 16.57 | 0.24 | 17.63 | 4.14 | 16.68 | 26.05 | 0.18 | 9.90 | 4.53 | 16.75 |
25th percentile | 8.00 | 0.47 | 17.00 | 26.30 | 37.00 | 11.00 | 0.40 | 5.00 | 26.70 | 60.00 | 14.10 | 0.40 | 11.00 | 24.30 | 53.00 | 8.00 | 0.16 | 3.00 | 24.70 | 55.00 |
Median: | 15.00 | 0.70 | 27.00 | 29.00 | 52.00 | 18.00 | 0.50 | 9.00 | 28.70 | 76.00 | 21.00 | 0.54 | 18.00 | 26.70 | 65.00 | 15.00 | 0.25 | 6.00 | 27.20 | 68.00 |
75th percentile | 30.00 | 1.09 | 46.00 | 32.40 | 68.00 | 28.00 | 0.80 | 20.50 | 30.90 | 93.00 | 34.00 | 0.70 | 29.00 | 29.80 | 77.00 | 32.00 | 0.36 | 13.00 | 30.60 | 81.00 |
Provinces | R-Squared (R2) | Mean Squared Error (MSE) |
---|---|---|
Chiang Mai | 0.97 | 57.23 |
Bangkok | 0.82 | 66.94 |
Nakhon Ratchasima | 0.92 | 70.23 |
Ubon Ratchathani | 0.92 | 70.19 |
Coefficient | Chiang Mai | Bangkok | Nakhon Ratchasima | Ubon Ratchathani | ||||
---|---|---|---|---|---|---|---|---|
Value | p-Value | Value | p-Value | Value | p-Value | Value | p-Value | |
Intercept | 239.86 | <0.001 | 250.73 | <0.001 | 296.89 | <0.001 | 320.50 | <0.001 |
PM2.5 | 0.039 | <0.001 | −0.009 | <0.001 | 0.009 | 0.079 | 0.034 | 0.077 |
NOx | −0.02 | <0.001 | −3.10 | 0.090 | 2.45 | <0.001 | 0.35 | <0.001 |
CO | 0.17 | <0.001 | 0.058 | 0.088 | −0.033 | <0.001 | −0.13 | <0.001 |
Temperature | −4.90 | <0.001 | −3.95 | <0.001 | −5.46 | <0.001 | −5.78 | <0.001 |
Relative humidity | 1.22 | <0.001 | 0.54 | <0.001 | 0.53 | <0.001 | 0.34 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parasin, N.; Amnuaylojaroen, T. Development of a Heat Index Related to Air Quality and Meteorology for an Assessment of Work Performance in Thailand’s Urban Areas. Urban Sci. 2023, 7, 124. https://doi.org/10.3390/urbansci7040124
Parasin N, Amnuaylojaroen T. Development of a Heat Index Related to Air Quality and Meteorology for an Assessment of Work Performance in Thailand’s Urban Areas. Urban Science. 2023; 7(4):124. https://doi.org/10.3390/urbansci7040124
Chicago/Turabian StyleParasin, Nichapa, and Teerachai Amnuaylojaroen. 2023. "Development of a Heat Index Related to Air Quality and Meteorology for an Assessment of Work Performance in Thailand’s Urban Areas" Urban Science 7, no. 4: 124. https://doi.org/10.3390/urbansci7040124
APA StyleParasin, N., & Amnuaylojaroen, T. (2023). Development of a Heat Index Related to Air Quality and Meteorology for an Assessment of Work Performance in Thailand’s Urban Areas. Urban Science, 7(4), 124. https://doi.org/10.3390/urbansci7040124