Living and Working in a Multisensory World: From Basic Neuroscience to the Hospital
Abstract
:1. Introduction
2. The Intersection of Music Perception and Cognition with Neuroscience to Improve Audible Medical Alarms
3. A Primer on Multisensory Integration and Its Potential Clinical Applications
4. An Investigation of the Utility of Applying Multisensory Principles in a Clinical Setting
5. Employing the Conceptual Framework of Inverse Effectiveness to the Operating Room
6. Acoustic Features of Alarms—Tuning Stimulus Characteristics to Optimize Multisensory Benefit
7. Visual Features of Alarms
8. Interaction between Sensory Modalities and Cognitive Issues—Aspects of Vigilance
9. Patient Outcomes—Direct Effects of Alarms and Opportunities in the Multisensory Arena
10. Interference to Interoperability
11. Roadmap of Multisensory Design
12. The Future of Multisensory Design
13. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Santangelo, V.; Fagioli, S.; Macaluso, E. The costs of monitoring simultaneously two sensory modalities decrease when dividing attention in space. Neuroimage 2010, 49, 2717–2727. [Google Scholar] [CrossRef] [PubMed]
- Munoz, N.E.; Blumstein, D.T. Multisensory perception in uncertain environments. Behav. Ecol. 2012, 23, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Cvach, M. Monitor alarm fatigue: An integrative review. Biomed. Instrum. Technol. 2012, 46, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, R.A.; Schlesinger, J.J.; Wallace, M.T. Effects of divided attention and operating room noise on perception of pulse oximeter pitch changesa laboratory study. Anesthesiology 2013, 118, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Sendelbach, S.; Funk, M. Alarm fatigue: A patient safety concern. AACN Adv. Crit. Care 2013, 24, 378–386. [Google Scholar] [CrossRef]
- Linkov, J. Collision-Avoidance Systems Are Changing the Look of Car Safety. Available online: https://www.consumerreports.org/car-safety/collision-avoidance-systems-are-changing-the-look-of-car-safety/ (accessed on 29 November 2018).
- Patterson, R. Guidelines for Auditory Warning Systems of Civil Aircraft; Civil Aviation Authority: London, UK, 1982. [Google Scholar]
- Wise, J.A.; Hopkin, V.D.; Garland, D.J. Handbook of Aviation Human Factors; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Choiniere, D.B. The effects of hospital noise. Nurs. Adm. Q. 2010, 34, 327–333. [Google Scholar] [CrossRef]
- Xie, H.; Kang, J.; Mills, G.H. Clinical review: The impact of noise on patients’ sleep and the effectiveness of noise reduction strategies in intensive care units. Crit. Care 2009, 13, 208. [Google Scholar] [CrossRef]
- Kamdar, B.B.; Needham, D.M.; Collop, N.A. Sleep deprivation in critical illness: Its role in physical and psychological recovery. J. Intensiv. Care Med. 2012, 27, 97–111. [Google Scholar] [CrossRef]
- Magnée, M.J.C.M.; de Gelder, B.; van Engeland, H.; Kemner, C. Multisensory integration and attention in autism spectrum disorder: Evidence from event-related potentials. PLoS ONE 2011, 6, e24196. [Google Scholar] [CrossRef]
- Graham, K.C.; Cvach, M. Monitor alarm fatigue: Standardizing use of physiological monitors and decreasing nuisance alarms. Am. J. Crit. Care 2010, 19, 28–34. [Google Scholar] [CrossRef]
- Schlesinger, J.J.; Stevenson, R.A.; Shotwell, M.S.; Wallace, M.T. Improving pulse oximetry pitch perception with multisensory perceptual training. Anesth. Analg. 2014, 118, 1249–1253. [Google Scholar] [CrossRef] [PubMed]
- Commission, J. Medical device alarm safety in hospitals. Sentinel Event Alert 2013, 50, 1–3. [Google Scholar]
- Occupational Safety and Health Administration—Employee Alarm Systems. Available online: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.165 (accessed on 29 November 2018).
- Kit, S. ECRI’s Top 10 Health Technology Hazards for 2013. Health Devices 2013, 41, 342–365. [Google Scholar]
- Logan, M.K. A Roundtable Discussion: Home Healthcare—Not A Hospital in the Home. Biomed. Instrum. Technol. 2013, 47, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Lewicki, M.S. Efficient coding of natural sounds. Nat. Neurosci. 2002, 5, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Low, H.C.; Silver, M.I.; Brown, B.J.; Leng, C.Y.; Blas, M.M.; Gravitt, P.E.; Woo, Y.L. Comparison of Hybribio GenoArray and Roche human papillomavirus (HPV) linear array for HPV genotyping in anal swab samples. J. Clin. Microbiol. 2015, 53, 550–556. [Google Scholar] [CrossRef]
- Schlesinger, J. Pulse Oximetry: Perception, Pitch, Psychoacoustics, and Pedagogy. Anesth. Analg. 2016. [Google Scholar] [CrossRef]
- Sanderson, P.M.; Wee, A.; Lacherez, P. Learnability and discriminability of melodic medical equipment alarms. Anaesthesia 2006, 61, 142–147. [Google Scholar] [CrossRef]
- Schutz, M.; Stefanucci, J.K.; H Baum, S.; Roth, A. Name that percussive tune: Associative memory and amplitude envelope. Q. J. Exp. Psychol. 2017, 70, 1323–1343. [Google Scholar] [CrossRef]
- Sharmila Sreetharan, J.S.; Michael, S. Designing Effective Auditory Interfaces: Exploring the Role of Amplitude Envelope. In Proceedings of the 15th International Conference on Music Perception and Cognition 10th Triennial Conference of the European Society for the Cognitive Sciences of Music, Graz, Austria, 23–28 July 2018. [Google Scholar]
- Schellenberg, E.G.; Trehub, S.E. Good pitch memory is widespread. Psychol. Sci. 2003, 14, 262–266. [Google Scholar] [CrossRef]
- Koelewijn, T.; Bronkhorst, A.; Theeuwes, J. Attention and the multiple stages of multisensory integration: A review of audiovisual studies. Acta Psychol. 2010, 134, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Stanford, T.R.; Stein, B.E. Superadditivity in multisensory integration: Putting the computation in context. Neuroreport 2007, 18, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Berthoz, A.; Viaud-Delmon, I. Multisensory integration in spatial orientation. Curr. Opin. Neurobiol. 1999, 9, 708–712. [Google Scholar] [CrossRef]
- Lippert, M.; Logothetis, N.K.; Kayser, C. Improvement of visual contrast detection by a simultaneous sound. Brain Res. 2007, 1173, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Macaluso, E.; Driver, J. Spatial attention and crossmodal interactions between vision and touch. Neuropsychologia 2001, 39, 1304–1316. [Google Scholar] [CrossRef]
- McDonald, J.J.; Teder-Sälejärvi, W.A.; Russo, F.D.; Hillyard, S.A. Neural substrates of perceptual enhancement by cross-modal spatial attention. J. Cogn. Neurosci. 2003, 15, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Nelson, W.T.; Hettinger, L.J.; Cunningham, J.A.; Brickman, B.J.; Haas, M.W.; McKinley, R.L. Effects of localized auditory information on visual target detection performance using a helmet-mounted display. Hum. Factors 1998, 40, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Senkowski, D.; Saint-Amour, D.; Höfle, M.; Foxe, J.J. Multisensory interactions in early evoked brain activity follow the principle of inverse effectiveness. Neuroimage 2011, 56, 2200–2208. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, R.A.; Fister, J.K.; Barnett, Z.P.; Nidiffer, A.R.; Wallace, M.T. Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance. Exp. Brain Res. 2012, 219, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, R.A.; James, T.W. Audiovisual integration in human superior temporal sulcus: Inverse effectiveness and the neural processing of speech and object recognition. Neuroimage 2009, 44, 1210–1223. [Google Scholar] [CrossRef]
- Ross, L.A.; Saint-Amour, D.; Leavitt, V.M.; Javitt, D.C.; Foxe, J.J. Do you see what I am saying? Exploring visual enhancement of speech comprehension in noisy environments. Cereb. Cortex 2006, 17, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Senkowski, D.; Saint-Amour, D.; Gruber, T.; Foxe, J.J. Look who’s talking: The deployment of visuo-spatial attention during multisensory speech processing under noisy environmental conditions. Neuroimage 2008, 43, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Alais, D.; Cass, J. Multisensory perceptual learning of temporal order: Audiovisual learning transfers to vision but not audition. PLoS ONE 2010, 5, e11283. [Google Scholar] [CrossRef] [PubMed]
- Busse, L.; Roberts, K.C.; Crist, R.E.; Weissman, D.H.; Woldorff, M.G. The spread of attention across modalities and space in a multisensory object. Proc. Natl. Acad. Sci. USA 2005, 102, 18751–18756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spence, C. Multisensory flavour perception. Curr. Biol. 2013, 23, R365–R369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, B.E.; Meredith, M.A. The Merging of the Senses; MIT Press: Cambridge, MA, USA, 1993. [Google Scholar]
- De Gelder, B.; Bertelson, P. Multisensory integration, perception and ecological validity. Trends Cogn. Sci. 2003, 7, 460–467. [Google Scholar] [CrossRef] [Green Version]
- Diederich, A.; Colonius, H. Bimodal and trimodal multisensory enhancement: Effects of stimulus onset and intensity on reaction time. Percept. Psychophys. 2004, 66, 1388–1404. [Google Scholar] [CrossRef] [Green Version]
- Ghazanfar, A.A.; Lemus, L. Multisensory integration: Vision boosts information through suppression in auditory cortex. Curr. Biol. 2010, 20, R22–R23. [Google Scholar] [CrossRef]
- Green, A.M.; Angelaki, D.E. Multisensory integration: Resolving sensory ambiguities to build novel representations. Curr. Opin. Neurobiol. 2010, 20, 353–360. [Google Scholar] [CrossRef]
- Hairston, W.D.; Burdette, J.H.; Flowers, D.L.; Wood, F.B.; Wallace, M.T. Altered temporal profile of visual–auditory multisensory interactions in dyslexia. Exp. Brain Res. 2005, 166, 474–480. [Google Scholar] [CrossRef]
- King, A.J.; Calvert, G.A. Multisensory integration: Perceptual grouping by eye and ear. Curr. Biol. 2001, 11, R322–R325. [Google Scholar] [CrossRef]
- Klemen, J.; Chambers, C.D. Current perspectives and methods in studying neural mechanisms of multisensory interactions. Neurosci. Biobehav. Rev. 2012, 36, 111–133. [Google Scholar] [CrossRef] [PubMed]
- Kwakye, L.D.; Foss-Feig, J.H.; Cascio, C.J.; Stone, W.L.; Wallace, M.T. Altered auditory and multisensory temporal processing in autism spectrum disorders. Front. Integr. Neurosci. 2011, 4, 129. [Google Scholar] [CrossRef] [PubMed]
- Lewkowicz, D.J.; Ghazanfar, A.A. The emergence of multisensory systems through perceptual narrowing. Trends Cogn. Sci. 2009, 13, 470–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meredith, M.A.; Nemitz, J.W.; Stein, B.E. Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J. Neurosci. 1987, 7, 3215–3229. [Google Scholar] [CrossRef] [PubMed]
- Molholm, S.; Martinez, A.; Shpaner, M.; Foxe, J.J. Object-based attention is multisensory: Co-activation of an object’s representations in ignored sensory modalities. Eur. J. Neurosci. 2007, 26, 499–509. [Google Scholar] [CrossRef]
- Stevenson, R.A.; Bushmakin, M.; Kim, S.; Wallace, M.T.; Puce, A.; James, T.W. Inverse effectiveness and multisensory interactions in visual event-related potentials with audiovisual speech. Brain Topogr. 2012, 25, 308–326. [Google Scholar] [CrossRef]
- Sperdin, H.F.; Cappe, C.; Foxe, J.J.; Murray, M.M. Early, low-level auditory-somatosensory multisensory interactions impact reaction time speed. Front. Integr. Neurosci. 2009, 3, 2. [Google Scholar] [CrossRef]
- Bholat, O.S.; Haluck, R.S.; Murray, W.B.; Gorman, P.J.; Krummel, T.M. Tactile feedback is present during minimally invasive surgery. J. Am. Coll. Surg. 1999, 189, 349–355. [Google Scholar] [CrossRef]
- Weinger, M.B.; Reddy, S.B.; Slagle, J.M. Multiple measures of anesthesia workload during teaching and nonteaching cases. Anesth. Analg. 2004, 98, 1419–1425. [Google Scholar] [CrossRef]
- Biebuyck, J.F.; Weinger, M.B.; Englund, C.E. Ergonomic and human factors affecting anesthetic vigilance and monitoring performance in the operating room environment. Anesthesiology 1990, 73, 995–1021. [Google Scholar] [CrossRef]
- Paine, C.W.; Goel, V.V.; Ely, E.; Stave, C.D.; Stemler, S.; Zander, M.; Bonafide, C.P. Systematic review of physiologic monitor alarm characteristics and pragmatic interventions to reduce alarm frequency. J. Hosp. Med. 2016, 11, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Powers, A.R.; Hevey, M.A.; Wallace, M.T. Neural correlates of multisensory perceptual learning. J. Neurosci. 2012, 32, 6263–6274. [Google Scholar] [CrossRef] [PubMed]
- Powers, A.R.; Hillock, A.R.; Wallace, M.T. Perceptual training narrows the temporal window of multisensory binding. J. Neurosci. 2009, 29, 12265–12274. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, R.A.; Wilson, M.M.; Powers, A.R.; Wallace, M.T. The effects of visual training on multisensory temporal processing. Exp. Brain Res. 2013, 225, 479–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clock, A.E.; Salvi, R.J.; Saunders, S.S.; Powers, N.L. Neural correlates of temporal integration in the cochlear nucleus of the chinchilla. Hear. Res. 1993, 71, 37–50. [Google Scholar] [CrossRef]
- JJ, S.; Stevenson, R.A.; Wallace, M.T. In response: Smart operating room music. Anesth. Analg. 2015, 121, 836. [Google Scholar]
- Sutherland, A.D.; Faragher, I.G.; Frizelle, F.A. Intradermal injection of methylene blue for the treatment of refractory pruritus ani. Colorectal Dis. 2009, 11, 282–287. [Google Scholar] [CrossRef]
- MacDonald, A. Smart operating room music. Anesth. Analg. 2015, 121, 836. [Google Scholar] [CrossRef]
- MacDonald, A.; Schlesinger, J. Canary in an Operating Room: Integrated Operating Room Music. Available online: https://www.hfes-europe.org/wp-content/uploads/2017/10/MacDonald2017.pdf (accessed on 29 November 2018).
- McNeer, R.R.; Horn, D.B.; Bennett, C.L.; Edworthy, J.R.; Dudaryk, R. Auditory Icon Alarms Are More Accurately and Quickly Identified than Current Standard Melodic Alarms in a Simulated Clinical Setting. Anesthesiology 2018, 129, 58–66. [Google Scholar] [CrossRef]
- Schlesinger, J.J.; Baum Miller, S.H.; Nash, K.; Bruce, M.; Ashmead, D.; Shotwell, M.S.; Edworthy, J.R.; Wallace, M.T.; Weinger, M.B. Acoustic features of auditory medical alarms—An experimental study of alarm volume. J. Acoust. Soc. Am. 2018, 143, 3688–3697. [Google Scholar] [CrossRef] [PubMed]
- Irwin, A.; Hall, D.A.; Peters, A.; Plack, C.J. Listening to urban soundscapes: Physiological validity of perceptual dimensions. Psychophysiology 2011, 48, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Koelsch, S.; Kasper, E.; Sammler, D.; Schulze, K.; Gunter, T.; Friederici, A.D. Music, language and meaning: Brain signatures of semantic processing. Nat. Neurosci. 2004, 7, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Peretz, I.; Champod, A.S.; Hyde, K. Varieties of musical disorders: The Montreal Battery of Evaluation of Amusia. Ann. N. Y. Acad. Sci. 2003, 999, 58–75. [Google Scholar] [CrossRef]
- Patil, K.; Pressnitzer, D.; Shamma, S.; Elhilali, M. Music in our ears: The biological bases of musical timbre perception. PLoS Comput. Biol. 2012, 8, e1002759. [Google Scholar] [CrossRef]
- Siegwart-Zesiger, H.M.; Scherer, K.R. Acoustic concomitants of emotional expression in operatic singing: The case of Lucia in Ardi gli incensi. J. Voice 1995, 9, 249–260. [Google Scholar] [CrossRef]
- Lemaitre, G.; Houix, O.; Misdariis, N.; Susini, P. Listener expertise and sound identification influence the categorization of environmental sounds. J. Exp. Psychol. Appl. 2010, 16, 16–32. [Google Scholar] [CrossRef]
- Edworthy, J.R.; Edworthy, J.D. Audible medical alarms. Anaesthesia 2015, 70, 1215. [Google Scholar] [CrossRef]
- Block, F.E. For if the trumpet give an uncertain sound, who shall prepare himself to the battle? (I Corinthians 14: 8, KJV). Anesth. Analg. 2008, 106, 357–359. [Google Scholar] [CrossRef]
- Block, F.E.; Rouse, J.D.; Hakala, M.; Thompson, C.L. A proposed new set of alarm sounds which satisfy standards and rationale to encode source information. J. Clin. Monit. Comput. 2000, 16, 541–546. [Google Scholar] [CrossRef]
- Vallet, G.T.; Shore, D.I.; Schutz, M. Exploring the role of the amplitude envelope in duration estimation. Perception 2014, 43, 616–630. [Google Scholar] [CrossRef] [PubMed]
- ICU Delirium and Cognitive Impairment Study Group. Available online: https://slideplayer.com/slide/1719671/ (accessed on 29 November 2018).
- Manning, F.C.; Schutz, M. Trained to keep a beat: Movement-related enhancements to timing perception in percussionists and non-percussionists. Psychol. Res. 2016, 80, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Blike, G.T. The challenges of human engineering research. J. Clin. Monit. Comput. 1999, 15, 413–415. [Google Scholar] [CrossRef]
- Sanderson, P.M.; Watson, M.O.; Russell, W.J. Advanced patient monitoring displays: Tools for continuous informing. Anesth. Analg. 2005, 101, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, P. The multimodal world of medical monitoring displays. Appl. Ergon. 2006, 37, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Shive, J.; Schlesinger, J.J.; Jester, J.K. Peripheral Colour Contrast Sensitivity Under Perceptual Load. In Proceedings of the Human Factors and Ergonomics in Health Care, Washington, DC, USA, 27–31 July 2016. [Google Scholar]
- Perry, N.C.; Stevens, C.J.; Wiggins, M.W.; Howell, C.E. Cough once for danger: Icons versus abstract warnings as informative alerts in civil aviation. Hum. Factors 2007, 49, 1061–1071. [Google Scholar] [CrossRef]
- Grier, R.A.; Warm, J.S.; Dember, W.N.; Matthews, G.; Galinsky, T.L.; Szalma, J.L.; Parasuraman, R. The vigilance decrement reflects limitations in effortful attention, not mindlessness. Hum. Factors 2003, 45, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Finomore, V.S., Jr.; Shaw, T.H.; Warm, J.S.; Matthews, G.; Boles, D.B. Viewing the workload of vigilance through the lenses of the NASA-TLX and the MRQ. Hum. Factors 2013, 55, 1044–1063. [Google Scholar] [CrossRef]
- Funke, G.J.; Warm, J.S.; Baldwin, C.L.; Garcia, A.; Funke, M.E.; Dillard, M.B.; Finomore, V.S., Jr.; Matthews, G.; Greenlee, E.T. The independence and interdependence of coacting observers in regard to performance efficiency, workload, and stress in a vigilance task. Hum. Factors 2016, 58, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Hancock, P.A. A dynamic model of stress and sustained attention. Hum. Factors 1989, 31, 519–537. [Google Scholar] [CrossRef] [PubMed]
- Karnik, A.; Bonafide, C.P. A framework for reducing alarm fatigue on pediatric inpatient units. Hosp. Pediatr. 2015, 5, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Weinger, M.B. Vigilance, boredom, and sleepiness. J. Clin. Monit. Comput. 1999, 15, 549–552. [Google Scholar] [CrossRef]
- Weinger, M.B.; Ancoli-Israel, S. Sleep deprivation and clinical performance. JAMA 2002, 287, 955–957. [Google Scholar] [CrossRef] [PubMed]
- Weinger, M.B.; Gaba, D.M. Human factors engineering in patient safety. Anesthesiology 2014, 120, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Weinger, M.B.; Pantiskas, C.; Wiklund, M.E.; Carstensen, P. Incorporating human factors into the design of medical devices. JAMA 1998, 280, 1484. [Google Scholar] [CrossRef] [PubMed]
- Weinger, M.B.; Slagle, J. Human Factors Research in Anesthesia Patient Safety. Available online: https://academic.oup.com/jamia/article/9/Supplement_6/S58/703195 (accessed on 29 November 2018).
- Szalma, J.L.; Hancock, P.A.; Dember, W.N.; Warm, J.S. Training for vigilance: The effect of knowledge of results format and dispositional optimism and pessimism on performance and stress. Br. J. Psychol. 2006, 97, 115–135. [Google Scholar] [CrossRef] [PubMed]
- Manly, T.; Robertson, I.H.; Galloway, M.; Hawkins, K. The absent mind: Further investigations of sustained attention to response. Neuropsychologia 1999, 37, 661–670. [Google Scholar] [CrossRef]
- Hitchcock, E.M.; Dember, W.N.; Warm, J.S.; Moroney, B.W.; See, J.E. Effects of cueing and knowledge of results on workload and boredom in sustained attention. Hum. Factors 1999, 41, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Ely, E.W.; Siegel, M.D.; Inouye, S.K. Delirium in the Intensive Care Unit: An Under-Recognized Syndrome of Organ Dysfunction; Thieme Medical Publishers, Inc.: New York, NY, USA, 2001; Volume 22, pp. 115–126. [Google Scholar]
- Jackson, J.C.; Pandharipande, P.P.; Girard, T.D.; Brummel, N.E.; Thompson, J.L.; Hughes, C.G.; Pun, B.T.; Vasilevskis, E.E.; Morandi, A.; Shintani, A.K.; et al. Depression, post-traumatic stress disorder, and functional disability in survivors of critical illness in the BRAIN-ICU study: A longitudinal cohort study. Lancet Respir. Med. 2014, 2, 369–379. [Google Scholar] [CrossRef]
- Patel, M.B.; Jackson, J.C.; Morandi, A.; Girard, T.D.; Hughes, C.G.; Thompson, J.L.; Kiehl, A.L.; Elstad, M.R.; Wasserstein, M.L.; Goodman, R.B. Incidence and risk factors for intensive care unit-related post-traumatic stress disorder in veterans and civilians. Am. J. Respir. Crit. Care Med. 2016, 193, 1373–1381. [Google Scholar] [CrossRef]
- American Psychiatric, A. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Brewin, C.R. Systematic review of screening instruments for adults at risk of PTSD. J. Trauma. Stress 2005, 18, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Burdick, K.; Courtney, M.C.; Schlesinger, J.J. Post-Intensive Care Syndrome (PICS): Behavioral Therapies. In Lessons from the ICU; Springer: Berlin, Germany, 2019. [Google Scholar]
- Goldman, J.; Jackson, J.; Whitehead, S.; Rausch, T.; Weininger, S. The Medical Device “Plug-and-Play” (MD PnP) Interoperability Program. Computer 2006, 39, 30–31. [Google Scholar]
- Arney, D.; Plourde, J.; Goldman, J.M. OpenICE medical device interoperability platform overview and requirement analysis. Biomed. Tech. 2018, 63, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Celdrán, A.H.; Clemente, F.J.G.; Weimer, J.; Lee, I. ICE++: Improving Security, QoS, and High Availability of Medical Cyber-Physical Systems through Mobile Edge Computing. In Proceedings of the 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom), Ostrava, Czech Republic, 17–20 September 2018; pp. 1–8. [Google Scholar]
- Okamoto, J.; Masamune, K.; Iseki, H.; Muragaki, Y. Development concepts of a smart cyber operating theater (SCOT) using ORiN technology. Biomed. Tech. 2018, 63, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, J.; Masamune, K.; Iseki, H.; Muragaki, Y. Development of a next-generation operating room “Smart Cyber Operating Theater (SCOT)”–development concept and project summay. In Proceedings of the CARS, Barcelona, Spain, 24–27 June 2015; pp. 156–158. [Google Scholar]
- Kasparick, M.; Schmitz, M.; Andersen, B.; Rockstroh, M.; Franke, S.; Schlichting, S.; Golatowski, F.; Timmermann, D. OR. NET: A service-oriented architecture for safe and dynamic medical device interoperability. Biomed. Tech. 2018, 63, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Rockstroh, M.; Franke, S.; Hofer, M.; Will, A.; Kasparick, M.; Andersen, B.; Neumuth, T. OR. NET: Multi-perspective qualitative evaluation of an integrated operating room based on IEEE 11073 SDC. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1461–1469. [Google Scholar] [CrossRef]
- Goldman, J.; Arney, D.; Peterson, J.; Alonso, D.; Feinberg, M.; Weininger, S.; Dain, S.; Engel, T.; Rausch, T. Integrated Clinical Environments (ICE) to Improve Safety and Enable Rapid Innovation Demonstration: Safety System to Automatically Detect PEA and Display a Cognitive Aid. Available online: https://www.researchgate.net/publication/293482785_Integrated_Clinical_Environments_ICE_to_Improve_Safety_and_Enable_Rapid_Innovation_Demonstration_Safety_System_to_Automatically_Detect_PEA_and_Display_a_Cognitive_Aid (accessed on 29 November 2018).
- Visell, Y.; Giordano, B.L.; Millet, G.; Cooperstock, J.R. Vibration influences haptic perception of surface compliance during walking. PLoS ONE 2011, 6, e17697. [Google Scholar] [CrossRef]
- Diamond, J.; Breslin, P.A.; Doolittle, N.; Nagata, H.; Dalton, P. Flavor processing: Perceptual and cognitive factors in multi-modal integration. Chem. Senses 2005, 30, i232–i233. [Google Scholar] [CrossRef] [PubMed]
- Noesselt, T.; Tyll, S.; Boehler, C.N.; Budinger, E.; Heinze, H.-J.; Driver, J. Sound-induced enhancement of low-intensity vision: Multisensory influences on human sensory-specific cortices and thalamic bodies relate to perceptual enhancement of visual detection sensitivity. J. Neurosci. 2010, 30, 13609–13623. [Google Scholar] [CrossRef]
- Alirezaee, P.; Girgis, R.; Kim, T.; Schlesinger, J.J.; Cooperstock, J.R. Did you Feel that? Developing Novel Multimodal Alarms for High Consequence Clinical Environments; Georgia Institute of Technology: Atlanta, GA, USA, 2017. [Google Scholar]
- Burdick, K.; Jorgensen, S.K.; Holmberg, M.O.; Kultgen, S.P.; Combs, T.N.; Schlesinger, J.J. Benefits of sonification and haptic displays with physiologic variables to improve patient safety. In Proceedings of the Acoustical Society of America, Victoria, BC, Canada, 8–10 November 2018. [Google Scholar]
- Nedelman, M. Solving the Problem of Sleep in Hospitals. Cable News Network. Available online: https://www.cnn.com/2017/07/10/health/hospital-sleep-noisy-alarms-study/index.html (accessed on 7 October 2017).
- Edworthy, J.R.; Schlesinger, J.J.; McNeer, R.R.; Kristensen, M.S.; Bennett, C.L. Classifying alarms: Seeking durability, credibility, consistency, and simplicity. Biomed. Instrum. Technol. 2017, 51, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Edworthy, J.; McNeer, R.; Bennett, C.; Dudaryk, R.; McDougall, S.; Schlesinger, J.; Bolton, M.; Reed Edworthy, J.; Özcan Vieira, E.; Boyd, A. Getting Alarm Sounds into a Global Standard: A Cases Study with Reflections. Available online: https://pearl.plymouth.ac.uk/bitstream/handle/10026.1/11274/Edworthy%20EiD%20revision%20copy.pdf?sequence=1 (accessed on 29 November 2018).
- Greer, J.M.; Burdick, K.J.; Chowdhury, A.R.; Schlesinger, J.J. Dynamic Alarm Systems for Hospitals (D.A.S.H.). Ergon. Des. 2018, 26, 14–19. [Google Scholar] [CrossRef]
- Bogers, K. Care Tunes: Music as a Nurses’ Monitoring Tool. 2018. Available online: https://delftdesignlabs.org/criticalalarmslab/ (accessed on 29 November 2018).
- Bogers, K.; Schlesinger, J.J. Care Tunes: A Musical Sonification for Critical Care. 2018. Available online: https://www.ddw.nl/ (accessed on 29 November 2018).
- Girard, T.D.; Exline, M.C.; Carson, S.S.; Hough, C.L.; Rock, P.; Gong, M.N.; Douglas, I.S.; Malhotra, A.; Owens, R.L.; Feinstein, D.J.; et al. Haloperidol and Ziprasidone for Treatment of Delirium in Critical Illness. N. Engl. J. Med. 2018, 379, 2506–2516. [Google Scholar] [CrossRef]
- Brown, A.D.; Beemer, B.T.; Greene, N.T.; Argo Iv, T.; Meegan, G.D.; Tollin, D.J. Effects of active and passive hearing protection devices on sound source localization, speech recognition, and tone detection. PLoS ONE 2015, 10, e0136568. [Google Scholar] [CrossRef]
- Schlesinger, J.J.; Reynolds, E.; Sweyer, B.; Pradham, A. Frequency-Selective Silencing Device for Digital Filtering of Audible Medical Alarm Sounds to Enhance ICU Patient Recovery; Georgia Institute of Technology: Atlanta, GA, USA, 2017. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burdick, K.; Courtney, M.; Wallace, M.T.; Baum Miller, S.H.; Schlesinger, J.J. Living and Working in a Multisensory World: From Basic Neuroscience to the Hospital. Multimodal Technol. Interact. 2019, 3, 2. https://doi.org/10.3390/mti3010002
Burdick K, Courtney M, Wallace MT, Baum Miller SH, Schlesinger JJ. Living and Working in a Multisensory World: From Basic Neuroscience to the Hospital. Multimodal Technologies and Interaction. 2019; 3(1):2. https://doi.org/10.3390/mti3010002
Chicago/Turabian StyleBurdick, Kendall, Madison Courtney, Mark T. Wallace, Sarah H. Baum Miller, and Joseph J. Schlesinger. 2019. "Living and Working in a Multisensory World: From Basic Neuroscience to the Hospital" Multimodal Technologies and Interaction 3, no. 1: 2. https://doi.org/10.3390/mti3010002
APA StyleBurdick, K., Courtney, M., Wallace, M. T., Baum Miller, S. H., & Schlesinger, J. J. (2019). Living and Working in a Multisensory World: From Basic Neuroscience to the Hospital. Multimodal Technologies and Interaction, 3(1), 2. https://doi.org/10.3390/mti3010002