Improving Human–Computer Interface Design through Application of Basic Research on Audiovisual Integration and Amplitude Envelope
Abstract
:1. Introduction
2. Multimodal Processing
2.1. Lower-Order Multimodal Integration (Stimulus Orientation)
2.2. Higher-Order Multimodal Integration (Perceptual Binding)
2.3. Gains in Performance from Multisensory Stimulation
3. Amplitude Envelope and Alarm Design
3.1. A Demonstration of Envelope Affecting Audiovisual Integration
3.2. Sounds Currently Used in Medical Device Alarms
3.3. The Use of Percussive Tones in Multimodal Interfaces
Author Contributions
Funding
Conflicts of Interest
References
- Mullet, K.; Sano, D. Designing Visual Interfaces: Communication Oriented Techniques; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1994. [Google Scholar]
- Marcus, A. Human-computer Interaction; Baecker, R.M., Grudin, J., Buxton, W.A.S., Greenberg, S., Eds.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1995; pp. 425–441. ISBN 1-55860-246-1. [Google Scholar]
- Rocchesso, D.; Bresin, R.; Fernstrom, M. Sounding Objects. IEEE MultiMed. 2003, 10, 42–52. [Google Scholar] [CrossRef]
- Jeon, M. Auditory User Interface Design: Practical Evaluation Methods and Design Process Case Studies. Int. J. Des. Soc. 2015, 8, 1–16. [Google Scholar] [CrossRef]
- Calvert, G.A.; Spence, C.; Stein, B.E. The Handbook of Multisensory Processes; MIT Press: Cambridge, MA, USA, 2004; ISBN 0262033216. [Google Scholar]
- Meredith, M.A.; Stein, B.E. Interactions among Converging Sensory Inputs in the Superior Colliculus. Science 1983, 221, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Stein, B.E.; Stanford, T.R.; Ramachandran, R.; Perrault, T.; Rowland, B. Challenges in quantifying multisensory integration: Alternative criteria, models, and inverse effectiveness. Exp. Brain Res. 2009, 198, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Stein, B.E.; Meredith, M.A. The Merging of the Senses; The MIT Press: Cambridge, MA, USA, 1993; ISBN 0-262-19331-0. [Google Scholar]
- Stein, B.E.; Stanford, T.R. Multisensory integration: Current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 2008, 9, 255–266. [Google Scholar] [CrossRef]
- Meredith, M.A.; Stein, B.E. Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J. Neurophysiol. 1986, 56, 640–662. [Google Scholar] [CrossRef] [PubMed]
- May, P.J. The mammalian superior colliculus: Laminar structure and connections. In Neuroanatomy of the Oculomotor System; Büttner-Ennever, J., Ed.; Elsevier: New York, NY, USA, 2006; Volume 151, pp. 321–378. ISBN 0079-6123. [Google Scholar]
- King, A.J. The superior colliculus. Curr. Biol. 2004, 14, R335–R338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, M.T.; Meredith, M.A.; Stein, B.E. Multisensory Integration in the Superior Colliculus of the Alert Cat. J. Neurophysiol. 1998, 80, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Hirokawa, J.; Sadakane, O.; Sakata, S.; Bosch, M.; Sakurai, Y. Multisensory Information Facilitates Reaction Speed by Enlarging Activity Difference between Superior Colliculus Hemispheres in Rats. PLoS ONE 2011, 6, e25283. [Google Scholar] [CrossRef] [PubMed]
- Hammond-Kenny, A.; Bajo, V.M.; King, A.J.; Nodal, F.R. Behavioural benefits of multisensory processing in ferrets. Eur. J. Neurosci. 2017, 45, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L. Translation of sensory signals into commands for control of saccadic eye movements: Role of primate superior colliculus. Physiol. Rev. 1986, 66, 118–171. [Google Scholar] [CrossRef] [PubMed]
- Leo, F.; Bertini, C.; di Pellegrino, G.; Làdavas, E. Multisensory integration for orienting responses in humans requires the activation of the superior colliculus. Exp. Brain Res. 2008, 186, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Pitti, A.; Kuniyoshi, Y.; Quoy, M.; Gaussier, P. Development of the Multimodal Integration in the Superior Colliculus and Its Link to Neonates Facial Preference BT. In Advances in Cognitive Neurodynamics (IV); Liljenström, H., Ed.; Springer: Dordrecht, The Netherlands, 2015; pp. 543–546. [Google Scholar]
- Ross, L.A.; Saint-Amour, D.; Leavitt, V.M.; Javitt, D.C.; Foxe, J.J. Do you see what I am saying? Exploring visual enhancement of speech comprehension in noisy environments. Cereb. Cortex 2007, 17, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- McGurk, H.; MacDonald, J. Hearing lips and seeing voices. Nature 1976, 264, 746–748. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfar, A.A. The multisensory roles for auditory cortex in primate vocal communication. Hear. Res. 2009, 258, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venezia, J.H.; Vaden, K.I.; Rong, F.; Maddox, D.; Saberi, K.; Hickok, G. Auditory, Visual and Audiovisual Speech Processing Streams in Superior Temporal Sulcus. Front. Hum. Neurosci. 2017, 11, 174. [Google Scholar]
- Beauchamp, M.S.; Lee, K.E.; Argall, B.D.; Martin, A. Integration of Auditory and Visual Information about Objects in Superior Temporal Sulcus. Neuron 2004, 41, 809–823. [Google Scholar] [CrossRef] [Green Version]
- Hein, G.; Knight, R.T. Superior Temporal Sulcus—It’s My Area: Or Is It? J. Cogn. Neurosci. 2008, 20, 2125–2136. [Google Scholar] [CrossRef]
- Noesselt, T.; Rieger, J.W.; Schoenfeld, M.A.; Kanowski, M.; Hinrichs, H.; Heinze, H.; Driver, J. Audiovisual Temporal Correspondence Modulates Human Multisensory Superior Temporal Sulcus Plus Primary Sensory Cortices. J. Neurosci. 2007, 27, 11431–11441. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, M.S.; Nath, A.R.; Pasalar, S. fMRI-Guided transcranial magnetic stimulation reveals that the superior temporal sulcus is a cortical locus of the McGurk effect. J. Neurosci. 2010, 30, 2414–2417. [Google Scholar] [CrossRef]
- Marques, L.M.; Lapenta, O.M.; Merabet, L.B.; Bolognini, N.; Boggio, P.S. Tuning and disrupting the brain-modulating the McGurk illusion with electrical stimulation. Front. Hum. Neurosci. 2014, 8, 533. [Google Scholar] [CrossRef]
- Shams, L.; Kamitani, Y.; Shimojo, S. Visual illusion induced by sound. Cogn. Brain Res. 2002, 14, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Bolognini, N.; Rossetti, A.; Casati, C.; Mancini, F.; Vallar, G. Neuromodulation of multisensory perception: A tDCS study of the sound-induced flash illusion. Neuropsychologia 2011, 49, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.T.; Scott, K.J. Auditory-visual conflicts in the perceived duration of lights, tones and gaps. J. Exp. Psychol. Hum. Percept. Perform. 1981, 7, 1327–1339. [Google Scholar] [CrossRef] [PubMed]
- Iordanescu, L.; Grabowecky, M.; Franconeri, S.; Theeuwes, J.; Suzuki, S. Characteristic sounds make you look at target objects more quickly. Atten. Percept. Psychophys. 2010, 72, 1736–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vroomen, J.; de Gelder, B. Sound enhances visual perception: Cross-modal effects of auditory organization on vision. J. Exp. Psychol. Hum. Percept. Perform. 2000, 26, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Van der Burg, E.; Olivers, C.N.L.; Bronkhorst, A.W.; Theeuwes, J. Pip and pop: Nonspatial auditory signals improve spatial visual search. J. Exp. Psychol. Hum. Percept. Perform. 2008, 34, 1053–1065. [Google Scholar] [CrossRef]
- Perrott, D.R.; Sadralodabai, T.; Saberi, K.; Strybel, T.Z. Aurally Aided Visual Search in the Central Visual Field: Effects of Visual Load and Visual Enhancement of the Target. Hum. Factors 1991, 33, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Ushioda, H.; Wada, Y. Multisensory integration between visual and tactile motion information: Evidence from redundant-signals effects on reaction time. Proc. Fechner Day 2007, 23, 1. [Google Scholar]
- Brewster, S.; Raty, V.-P.; Kortekangas, A. Enhancing Scanning Input With Non-Speech Sounds. In Proceedings of the Second Annual ACM Conference on Assistive Technologies, Vancouver, BC, Canada, 11–12 April 1996; pp. 10–14. [Google Scholar]
- Vitense, H.S.; Jacko, J.A.; Emery, V.K. Multimodal feedback: An assessment of performance and mental workload. Ergonomics 2003, 46, 68–87. [Google Scholar] [CrossRef] [PubMed]
- Brewster, S. Sonically-Enhanced Drag and Drop. In Proceedings of the International Conference on Auditory Display (ICAD 98), Glasgow, UK, 1–4 November 1998; pp. 1–7. [Google Scholar]
- Lutfi, R.A. Auditory detection of hollowness. J. Acoust. Soc. Am. 2001, 110, 1010–1019. [Google Scholar] [CrossRef]
- Wee, A.N.; Sanderson, P. Are melodic medical equipment alarms easily learned? Anesth. Analg. 2008, 106, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, P.; Wee, A.N.; Lacherez, P. Learnability and discriminability of melodic medical equipment alarms. Anaesthesia 2006, 61, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Risset, J.-C.; Wessel, D.L. Exploration of Timbre by Analysis and Synthesis. In The Psychology of Music; Deutsch, D., Ed.; Gulf Professional Publishing: San Diego, CA, USA, 1999; pp. 113–169. ISBN 0122135652. [Google Scholar]
- Gaver, W. What in the world do we hear?: An ecological approach to auditory event perception. Ecol. Psychol. 1993, 5, 1–29. [Google Scholar] [CrossRef]
- Neuhoff, J.G. Ecological Psychoacoustics; Neuhoff, J.G., Ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2004; ISBN 9780125158510. [Google Scholar]
- Gordon, J.W. The perceptual attack time of musical tones. J. Acoust. Soc. Am. 1987, 82, 88–105. [Google Scholar] [CrossRef] [PubMed]
- Strong, W.; Clark, M. Perturbations of synthetic orchestral wind-instrument tones. J. Acoust. Soc. Am. 1967, 41, 277–285. [Google Scholar] [CrossRef]
- Skarratt, P.A.; Cole, G.G.; Gellatly, A.R.H. Prioritization of looming and receding objects: Equal slopes, different intercepts. Attent. Percep. Psychophys. 2009, 71, 964–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saldanha, E.L.; Corso, J.F. Timbre cues and the identification of musical instruments. J. Acoust. Soc. Am. 1964, 36, 2021–2026. [Google Scholar] [CrossRef]
- Goswami, U. A temporal sampling framework for developmental dyslexia. Trends Cogn. Sci. 2011, 15, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Schutz, M. Acoustic structure and musical function: Musical notes informing auditory research. In The Oxford Handbook on Music and the Brain; Thaut, M.H., Hodges, D.A., Eds.; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Schlauch, R.S.; Ries, D.T.; DiGiovanni, J.J. Duration discrimination and subjective duration for ramped and damped sounds. J. Acoust. Soc. Am. 2001, 109, 2880–2887. [Google Scholar] [CrossRef] [PubMed]
- Grassi, M.; Pavan, A. The subjective duration of audiovisual looming and receding stimuli. Atten. Percept. Psychophys. 2012, 74, 1321–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassi, M.; Darwin, C.J. The subjective duration of ramped and damped sounds. Percept. Psychophys. 2006, 68, 1382–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiGiovanni, J.J.; Schlauch, R.S. Mechanisms responsible for differences in perceived duration for rising-intensity and falling-intensity sounds. Ecol. Psychol. 2007, 19, 239–264. [Google Scholar] [CrossRef]
- Grassi, M. Sex difference in subjective duration of looming and receding sounds. Perception 2010, 39, 1424–1426. [Google Scholar] [CrossRef] [PubMed]
- Ries, D.T.; Schlauch, R.S.; DiGiovanni, J.J. The role of temporal-masking patterns in the determination of subjective duration and loudness for ramped and damped sounds. J. Acoust. Soc. Am. 2008, 124, 3772–3783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stecker, G.C.; Hafter, E.R. An effect of temporal asymmetry on loudness. J. Acoust. Soc. Am. 2000, 107, 3358–3368. [Google Scholar] [CrossRef] [PubMed]
- Teghtsoonian, R.; Teghtsoonian, M.; Canévet, G. Sweep-induced acceleration in loudness change and the “bias for rising intensities”. Percept. Psychophys. 2005, 67, 699–712. [Google Scholar] [CrossRef] [Green Version]
- Neuhoff, J.G. An Adaptive Bias in the Perception of Looming Auditory Motion. Ecol. Psychol. 2001, 13, 87–110. [Google Scholar] [CrossRef] [Green Version]
- Neuhoff, J.G. Perceptual bias for rising tones. Nature 1998, 395, 123–124. [Google Scholar] [CrossRef]
- Welch, R.; Warren, D. Immediate perceptual response to intersensory discrepancy. Psychol. Bull. 1980, 88, 638–667. [Google Scholar] [CrossRef] [PubMed]
- Fendrich, R.; Corballis, P.M. The temporal cross-capture of audition and vision. Percept. Psychophys. 2001, 63, 719–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schutz, M.; Lipscomb, S.D. Hearing gestures, seeing music: Vision influences perceived tone duration. Perception 2007, 36, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Schutz, M. The mind of the listener: Acoustics, perception, and the musical experience. Percuss. Notes 2009, 22–28. [Google Scholar]
- Schutz, M.; Kubovy, M. Causality and cross-modal integration. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 1791–1810. [Google Scholar] [CrossRef] [PubMed]
- Chuen, L.; Schutz, M. The unity assumption facilitates cross-modal binding of musical, non-speech stimuli: The role of spectral and amplitude cues. Attent. Percept. Psychophys. 2016, 78, 1512–1528. [Google Scholar] [CrossRef] [PubMed]
- Armontrout, J.A.; Schutz, M.; Kubovy, M. Visual determinants of a cross-modal illusion. Atten. Percept. Psychophys. 2009, 71, 1618–1627. [Google Scholar] [CrossRef] [Green Version]
- Schutz, M. Crossmodal Integration: The Search for Unity; University of Virginia: Charlottesville, VA, USA, 2009. [Google Scholar]
- Schutz, M.; Stefanucci, J.; Baum, S.H.; Roth, A. Name that percussive tune: Associative memory and amplitude envelope. Q. J. Exp. Psychol. 2017, 70, 1323–1343. [Google Scholar] [CrossRef]
- Schutz, M.; Vaisberg, J.M. Surveying the temporal structure of sounds used in Music Perception. Music Percept. Interdiscip. J. 2014, 31, 288–296. [Google Scholar] [CrossRef]
- Vallet, G.; Shore, D.I.; Schutz, M. Exploring the role of amplitude envelope in duration estimation. Perception 2014, 43, 616–630. [Google Scholar] [CrossRef]
- Schutz, M.; Stefanucci, J. Hearing value: Exploring the effects of amplitude envelope on consumer preference. Ergon. Des. Q. Hum. Factors Appl. in press.
- Sreetharan, S.; Schlesinger, J.; Schutz, M. Designing Effective Auditory Interfaces: Exploring the Role of Amplitude Envelope. In Proceedings of the ICMPC15/ESCOM10, Graz, Austria, 23–28 July 2018; Parncutt, R., Sattmann, S., Eds.; pp. 426–431. [Google Scholar]
- Rayo, M.F.; Moffatt-Bruce, S.D. Alarm system management: Evidence-based guidance encouraging direct measurement of informativeness to improve alarm response: Table 1. BMJ Qual. Saf. 2015, 24, 282–286. [Google Scholar] [CrossRef] [PubMed]
- AAMI. Clinical Alarms Clinical Alarms Summit Conveners; AAMI: Arlington, VA, USA, 2011. [Google Scholar]
- Edworthy, J. Does sound help us to work better with machines? a commentary on Rauterberg’s paper “About the importance of auditory alarms during the operation of a plant simulator”. Interact. Comput. 1998, 10, 401–409. [Google Scholar]
- Block, F.E. “For if the trumpet give an uncertain sound, who shall prepare himself to the battle?” (I Corinthians 14:8, KJV). Anesth. Analg. 2008, 106, 357–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassi, M.; Casco, C. Audiovisual bounce—Inducing effect: When sound congruence affects grouping in vision. Attent. Percep. Psychophys. 2010, 72, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Edworthy, J.; Hellier, E. Alarms and human behaviour: Implications for medical alarms. Br. J. Anaesth. 2006, 97, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Gillard, J.; Schutz, M. Composing alarms: Considering the musical aspects of auditory alarm design. Neurocase Neural Basis Cogn. 2016, 22, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Canada G of Medical Devices Industry Profile. 2017. Available online: https://www.ic.gc.ca/eic/site/lsg-pdsv.nsf/eng/h_hn01736.html (accessed on 27 September 2017).
- Schutz, M. Software Tool for Tone Creation. Available online: www.maplelab.net/software (accessed on 21 January 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sreetharan, S.; Schutz, M. Improving Human–Computer Interface Design through Application of Basic Research on Audiovisual Integration and Amplitude Envelope. Multimodal Technol. Interact. 2019, 3, 4. https://doi.org/10.3390/mti3010004
Sreetharan S, Schutz M. Improving Human–Computer Interface Design through Application of Basic Research on Audiovisual Integration and Amplitude Envelope. Multimodal Technologies and Interaction. 2019; 3(1):4. https://doi.org/10.3390/mti3010004
Chicago/Turabian StyleSreetharan, Sharmila, and Michael Schutz. 2019. "Improving Human–Computer Interface Design through Application of Basic Research on Audiovisual Integration and Amplitude Envelope" Multimodal Technologies and Interaction 3, no. 1: 4. https://doi.org/10.3390/mti3010004
APA StyleSreetharan, S., & Schutz, M. (2019). Improving Human–Computer Interface Design through Application of Basic Research on Audiovisual Integration and Amplitude Envelope. Multimodal Technologies and Interaction, 3(1), 4. https://doi.org/10.3390/mti3010004