Are the Instructions Clear? Evaluating the Visual Characteristics of Augmented Reality Content for Remote Guidance
Abstract
:1. Introduction
2. AR-Based Authoring Tool for Remote Collaboration
3. User Study on a Remote Maintenance Scenario
3.1. Part I—Evaluate the Visual Characteristics of a Set of AR-Instructions
- Visual Complexity (VC), i.e., property that refers to the amount of detail present within the image;
- Visual Impact (VI), i.e., extent to which the image is attractive and facilitates attention and recall;
- Clarity (CLA), i.e., property of the image to be self-explanatory and easily understandable with reduced cognitive effort;
- Directed Focus (DF), i.e., extent to which the image draws attention to one or more items;
- Inference Support (IS), i.e., extent to which new insights may emerge as a result of the visualization used.
3.2. Part II—Using Step-By-Step AR Instructions during Remote Collaboration
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geng, J.; Song, X.; Pan, Y.; Tang, J.; Liu, Y.; Zhao, D.; Ma, Y. A systematic design method of adaptive augmented reality work instruction for complex industrial operations. Comput. Ind. 2020, 119, 103229. [Google Scholar] [CrossRef]
- Longo, F.; Nicoletti, L.; Padovano, A. Smart operators in industry 4.0: A human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context. Comput. Ind. Eng. 2017, 113, 144–159. [Google Scholar] [CrossRef]
- Bottani, E.; Vignali, G. Augmented reality technology in the manufacturing industry: A review of the last decade. IISE Trans. 2019, 51, 284–310. [Google Scholar] [CrossRef] [Green Version]
- Ens, B.; Lanir, J.; Tang, A.; Bateman, S.; Lee, G.; Piumsomboon, T.; Billinghurst, M. Revisiting Collaboration through Mixed Reality: The Evolution of Groupware. Int. J. Hum.-Comput. Stud. 2019, 131, 81–98. [Google Scholar] [CrossRef]
- Kim, S.; Lee, G.; Billinghurst, M.; Huang, W. The combination of visual communication cues in mixed reality remote collaboration. J. Multimodal User Interfaces 2020, 14, 321–335. [Google Scholar] [CrossRef]
- Alves, J.B.; Marques, B.; Dias, P.; Santos, B.S. Using augmented reality for industrial quality assurance: A shop floor user study. Int. J. Adv. Manuf. Technol. 2021, 115, 105–116. [Google Scholar] [CrossRef]
- Calandra, D.; Cannavò, A.; Lamberti, F. Improving AR-powered remote assistance: A new approach aimed to foster operator’s autonomy and optimize the use of skilled resources. Int. J. Adv. Manuf. Technol. 2021, 114, 3147–3164. [Google Scholar] [CrossRef]
- Uva, A.E.; Gattullo, M.; Manghisi, V.M.; Spagnulo, D.; Cascella, G.L.; Fiorentino, M. Evaluating the effectiveness of spatial augmented reality in smart manufacturing: A solution for manual working stations. Int. J. Adv. Manuf. Technol. 2018, 94, 509–521. [Google Scholar] [CrossRef]
- Zubizarreta, J.; Iker, A.; Aiert, A. A framework for augmented reality guidance in industry. Int. J. Adv. Manuf. Technol. 2019, 102, 4095–4108. [Google Scholar] [CrossRef]
- Masood, T.; Egger, J. Augmented reality in support of Industry 4.0—Implementation challenges and success factors. Robot. Comput.-Integr. Manuf. 2019, 58, 181–195. [Google Scholar] [CrossRef]
- Hernandez-de Menendez, M.; Morales-Menendez, R.; Escobar, C.A.; McGovern, M. Competencies for Industry 4.0. Int. J. Interact. Des. Manuf. 2020, 14, 1511–1524. [Google Scholar] [CrossRef]
- Bruno, F.; Barbieri, L.; Marino, E.; Muzzupappa, M.; D’Oriano, L.; Colacino, B. An augmented reality tool to detect and annotate design variations in an Industry 4.0 approach. Int. J. Adv. Manuf. Technol. 2019, 105, 875–887. [Google Scholar] [CrossRef]
- Boboc, R.G.; Gîrbacia, F.; Butilă, E.V. The Application of Augmented Reality in the Automotive Industry: A Systematic Literature Review. Appl. Sci. 2020, 10, 4259. [Google Scholar] [CrossRef]
- Laviola, E.; Gattullo, M.; Manghisi, V.M.; Fiorentino, M.; Uva, A.E. Minimal AR: Visual asset optimization for the authoring of augmented reality work instructions in manufacturing. Int. J. Adv. Manuf. Technol. 2021, 119, 1769–1784. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Winer, E.H. Augmented reality via expert demonstration authoring (AREDA). Comput. Ind. 2019, 105, 61–79. [Google Scholar] [CrossRef]
- van Lopik, K.; Sinclair, M.; Sharpe, R.; Conway, P.; West, A. Developing augmented reality capabilities for industry 4.0 small enterprises: Lessons learnt from a content authoring case study. Comput. Ind. 2020, 117, 103208. [Google Scholar] [CrossRef]
- Winer, E.H. Authoring Augmented Reality Work Instructions by Expert Demonstration; Technical Report; Iowa State University: Ames, IA, USA, 2018. [Google Scholar]
- Gimeno, J.; Morillo, P.; Orduña, J.M.; Fernández, M. An easy-to-use AR authoring tool for industrial applications. In Computer Vision, Imaging and Computer Graphics. Theory and Application; Springer: Berlin/Heidelberg, Germany, 2013; pp. 17–32. [Google Scholar]
- Dengel, A.; Iqbal, M.; Grafe, S.; Mangina, E. A Review on Augmented Reality Authoring Toolkits for Education. Front. Virtual Real. 2022, 3, 798032. [Google Scholar] [CrossRef]
- Bégout, P.; Duval, T.; Kubicki, S.; Charbonnier, B.; Bricard, E. WAAT: A Workstation AR Authoring Tool for Industry 4.0. In Proceedings of the International Conference on Augmented Reality, Virtual Reality and Computer Graphics, Lecce, Italy, 7–10 September 2020; pp. 304–320. [Google Scholar]
- Roberto, R.A.; Lima, J.P.; Mota, R.C.; Teichrieb, V. Authoring tools for augmented reality: An analysis and classification of content design tools. In Proceedings of the International Conference of Design, User Experience, and Usability, Toronto, ON, Canada, 17–22 July 2016; pp. 237–248. [Google Scholar]
- Ramirez, H.; Mendivil, E.G.; Flores, P.R.; Gonzalez, M.C. Authoring Software for Augmented Reality Applications for the Use of Maintenance and Training Process. Procedia Comput. Sci. 2013, 25, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Quint, F.; Loch, F.; Bertram, P. The Challenge of Introducing AR in Industry—Results of a Participative Process Involving Maintenance Engineers. Procedia Manuf. 2017, 11, 1319–1323. [Google Scholar] [CrossRef]
- del Amo, I.F.; Erkoyuncu, J.A.; Roy, R.; Palmarini, R.; Onoufriou, D. A systematic review of Augmented Reality content-related techniques for knowledge transfer in maintenance applications. Comput. Ind. 2018, 103, 47–71. [Google Scholar] [CrossRef]
- Quandt, M.; Knoke, B.; Gorldt, C.; Freitag, M.; Thoben, K.D. General Requirements for Industrial Augmented Reality Applications. Procedia CIRP 2018, 72, 1130–1135. [Google Scholar] [CrossRef]
- Masood, T.; Egger, J. Adopting augmented reality in the age of industrial digitalisation. Comput. Ind. 2020, 115, 103112. [Google Scholar] [CrossRef]
- Kim, S.; Billinghurst, M.; Lee, C.; Lee, G. Using Freeze Frame and Visual Notifications in an Annotation Drawing Interface for Remote Collaboration. In Proceedings of the Transactions on Internet & Information Systems, San Francisco, CA, USA, 13–16 December 2018; Volume 12, pp. 6034–6056. [Google Scholar]
- Johnson, S.; Gibson, M.; Mutlu, B. Handheld or Handsfree? Remote Collaboration via Lightweight Head-Mounted Displays and Handheld Devices. In Proceedings of the ACM Conference on Computer Supported Cooperative Work & Social Computing, Vancouver, BC, Canada, 14–18 March 2015; pp. 1825–1836. [Google Scholar]
- Piumsomboon, T.; Dey, A.; Ens, B.; Lee, G.; Billinghurst, M. The Effects of Sharing Awareness Cues in Collaborative Mixed Reality. Front. Robot. AI 2019, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Billinghurst, M.; Bruder, G.; Duh, H.B.; Welch, G.F. Revisiting Trends in Augmented Reality Research: A Review of the 2nd Decade of ISMAR (2008–2017). IEEE Trans. Vis. Comput. Graph. 2018, 24, 2947–2962. [Google Scholar] [CrossRef] [PubMed]
- de Souza Cardoso, L.F.; Mariano, F.C.M.Q.; Zorzal, E.R. A survey of industrial augmented reality. Comput. Ind. Eng. 2020, 139, 106159. [Google Scholar] [CrossRef]
- Marques, B.; Silva, S.; Alves, J.; Araujo, T.; Dias, P.; Santos, B.S. A Conceptual Model and Taxonomy for Collaborative Augmented Reality. IEEE Trans. Vis. Comput. Graph. 2021; early access. [Google Scholar]
- Röltgen, D.; Dumitrescu, R. Classification of industrial Augmented Reality use cases. Procedia CIRP 2020, 91, 93–100. [Google Scholar] [CrossRef]
- Fernández del Amo, I.; Erkoyuncu, J.A.; Roy, R.; Wilding, S. Augmented Reality in Maintenance: An information-centred design framework. Procedia Manuf. 2018, 19, 148–155. [Google Scholar] [CrossRef]
- Jetter, J.; Eimecke, J.; Rese, A. Augmented reality tools for industrial applications: What are potential key performance indicators and who benefits? Comput. Hum. Behav. 2018, 87, 18–33. [Google Scholar] [CrossRef]
- Marques, B.; Silva, S.; Dias, P.; Santos, B.S. Remote Collaboration using Augmented Reality: Development and Evaluation. In Proceedings of the IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Christchurch, New Zealand, 12–16 March 2022; pp. 1–2. [Google Scholar]
- Palmarini, R.; Erkoyuncu, J.A.; Roy, R.; Torabmostaedi, H. A systematic review of augmented reality applications in maintenance. Robot. Comput.-Integr. Manuf. 2018, 49, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Egger, J.; Masood, T. Augmented reality in support of intelligent manufacturing—A systematic literature review. Comput. Ind. Eng. 2020, 140, 106195. [Google Scholar] [CrossRef]
- Marques, B.; Silva, S.; Teixeira, A.; Dias, P.; Santos, B.S. A vision for contextualized evaluation of remote collaboration supported by AR. Comput. Graph. 2021, 102, 413–425. [Google Scholar] [CrossRef]
- Marques, B.; Silva, S.; Alves, J.; Rocha, A.; Dias, P.; Santos, B.S. Remote Collaboration in Maintenance Contexts using Augmented Reality: Insights from a Participatory Process. Int. J. Interact. Des. Manuf. 2022, 16, 419–438. [Google Scholar] [CrossRef]
- Marques, B.; Silva, S.; Rocha, A.; Dias, P.; Santos, B.S. Remote Asynchronous Collaboration in Maintenance scenarios using Augmented Reality and Annotations. In Proceedings of the IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Lisbon, Portugal, 27 March–3 April 2021; pp. 567–568. [Google Scholar]
- Madeira, T.; Marques, B.; Alves, J.; Dias, P.; Santos, B.S. Exploring Annotations and Hand Tracking in Augmented Reality for Remote Collaboration. In Proceedings of the Human Systems Engineering and Design III, Pula, Croatia, 23–25 September 2021; pp. 83–89. [Google Scholar]
- Marques, B.; Ferreira, C.; Silva, S.; Santos, A.; Dias, P.; Sousa Santos, B. Exploring Remote Augmented Reality as a 2D Authoring Tool for Creation of Guiding Instructions. In Proceedings of the International Conference on Graphics and Interaction, ICGI 2021, Porto, Portugal, 4–5 November 2021; pp. 1–4. [Google Scholar]
- Bresciani, S.; Blackwell, A.F.; Eppler, M. A Collaborative Dimensions Framework: Understanding the Mediating Role of Conceptual Visualizations in Collaborative Knowledge Work. In Proceedings of the Hawaii International Conference on System Sciences, Waikoloa, HI, USA, 7–10 January 2008; p. 364. [Google Scholar]
- Bresciani, S.; Eppler, M.J. Beyond Knowledge Visualization Usability: Toward a Better Understanding of Business Diagram Adoption. In Proceedings of the International Conference Information Visualisation, Barcelona, Spain, 15–17 July 2009; pp. 474–479. [Google Scholar]
- Bresciani, S.; Eppler, M.J. The Benefits of Synchronous Collaborative Information Visualization: Evidence from an Experimental Evaluation. IEEE Trans. Vis. Comput. Graph. 2009, 15, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Eppler, M.J. What is an Effective Knowledge Visualization? Insights from a Review of Seminal Concepts. In Proceedings of the 2011 15th International Conference on Information Visualisation, London, UK, 13–15 July 2011; pp. 349–354. [Google Scholar]
- Barthel, R.; Ainsworth, S.; Sharples, M. Collaborative knowledge building with shared video representations. Int. J. Hum.-Comput. Stud. 2013, 71, 59–75. [Google Scholar] [CrossRef]
- Ribeiro, F.C.; de Souza, J.M.; de Paula, M.M.V. Use of information visualization techniques in a collaborative context. In Proceedings of the IEEE International Conference on Computer Supported Cooperative Work in Design (CSCWD), Calabria, Italy, 6–8 May 2015; pp. 79–84. [Google Scholar]
- Kernbach, S.; Svetina Nabergoj, A. Visual Design Thinking: Understanding the Role of Knowledge Visualization in the Design Thinking Process. In Proceedings of the International Conference Information Visualisation (IV), Fisciano, Italy, 10–13 July 2018; pp. 362–367. [Google Scholar]
- Mourtzis, D.; Zogopoulos, V.; Vlachou, E. Augmented Reality Application to Support Remote Maintenance as a Service in the Robotics Industry. Procedia CIRP 2017, 63, 46–51. [Google Scholar] [CrossRef]
- Zhu, J.; Ong, S.K.; Nee, A.Y. A context-aware augmented reality system to assist the maintenance operators. Int. J. Interact. Des. Manuf. 2014, 8, 293–304. [Google Scholar]
- Fiorentino, M.; Uva, A.E.; Gattullo, M.; Debernardis, S.; Monno, G. Augmented reality on large screen for interactive maintenance instructions. Comput. Ind. 2014, 65, 270–278. [Google Scholar] [CrossRef]
- Nielsen, J.; Landauer, T.K. A Mathematical Model of the Finding of Usability Problems. In Proceedings of the Proceedings of the INTERACT’93 and CHI’93 Conference on Human Factors in Computing Systems, Amsterdam, The Netherlands, 24–29 April 1993; pp. 206–213. [Google Scholar]
- Tullis, T.; Albert, W. Measuring the User Experience, Second Edition: Collecting, Analyzing, and Presenting Usability Metrics; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 2013. [Google Scholar]
- Marques, B.; Teixeira, A.; Silva, S.; Alves, J.; Dias, P.; Santos, B.S. A critical analysis on remote collaboration mediated by augmented reality: Making a case for improved characterization and evaluation of the collaborative process. Comput. Graph. 2022, 102, 619–633. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, B.; Ferreira, C.; Silva, S.; Santos, A.; Dias, P.; Santos, B.S. Are the Instructions Clear? Evaluating the Visual Characteristics of Augmented Reality Content for Remote Guidance. Multimodal Technol. Interact. 2022, 6, 92. https://doi.org/10.3390/mti6100092
Marques B, Ferreira C, Silva S, Santos A, Dias P, Santos BS. Are the Instructions Clear? Evaluating the Visual Characteristics of Augmented Reality Content for Remote Guidance. Multimodal Technologies and Interaction. 2022; 6(10):92. https://doi.org/10.3390/mti6100092
Chicago/Turabian StyleMarques, Bernardo, Carlos Ferreira, Samuel Silva, Andreia Santos, Paulo Dias, and Beatriz Sousa Santos. 2022. "Are the Instructions Clear? Evaluating the Visual Characteristics of Augmented Reality Content for Remote Guidance" Multimodal Technologies and Interaction 6, no. 10: 92. https://doi.org/10.3390/mti6100092
APA StyleMarques, B., Ferreira, C., Silva, S., Santos, A., Dias, P., & Santos, B. S. (2022). Are the Instructions Clear? Evaluating the Visual Characteristics of Augmented Reality Content for Remote Guidance. Multimodal Technologies and Interaction, 6(10), 92. https://doi.org/10.3390/mti6100092